Literature: topics in geodynamics

This is a very rough attempt at classifying my somewhat extensive bibliography per theme/topic. It goes without saying that this cannot be extensive and that since I started computational geodynamics myself around 2006. The provided lists are biaised towards the last 2 decades or so. In retrospect, the categories I have chosen could have been subdivided into narrower fields. I understand that having 100+ references for ’subduction’ or ’mantle convection’ is not particularly useful, but it means that all these papers show up in the bibliography section of this book, and the titles of said papers are then searchable per keyword.

Contents

 1 (Data) Assimilation
 2 Eclogites, eclogitization
 3 Biogeodynamic, geodynamics+biosphere
 4 Hadean Earth
 5 Archean tectonics, early Earth
 6 Asymmetry
 7 Anisotropy, Lattice/Crystal preferred orientation (LPO/CPO), SKS splitting
 8 Back-arc basin, spreading
 9 Continental crust
 10 Oceanic crust
 11 Oceanic plateaus - evolution, subduction
 12 Core dynamics, core formation, CMB temperature/heat flux, core-mantle interaction
 13 Compressible flow, Compressibility
 14 Computational Structural geology, cm-scale, shear zones, texture
 15 Channel flow model
 16 Continental collision
 17 Core complexes
 18 Tomography, deep Earth structure, lower-mantle structure
 19 Extrusion tectonics
 20 (Surface) Heat flow
 21 gravity, GRACE, GOCE, free-air gravity
 22 Dynamo
 23 (role of) Elasticity (in geodynamics modelling)
 24 (Geodynamics+) surface processes, erosion, sedimentation, topography evolution
 25 Geotechnics
 26 Glacier dynamics, ice sheets, ice flow, ice rheology, ice sheet modelling
 27 Large scale mantle-plate interaction, whole Earth models
 28 Crust/Lithosphere modelling, plate motion, plate stress
 29 Delamination, edge driven convection, gravitational instability, mantle unrooting, lithosphere thinning, small scale convection, drip
 30 Detachment faults
 31 dynamic topography
 32 Cratons
 33 Lithospheric stress, intra-plate stress, intra-plate deformation
 34 Passive margins
 35 Eclogites
 36 Folding, buckling
 37 geoid
 38 Geothermal Energy
 39 Grain size (evolution) & influence on geodynamics
 40 LLSVP, ULVZ, CMB layer, thermo-chemical piles, D” layer
 41 Magma ocean
 42 magma transport / melting / two-phase flow/ (intra-plate) volcanism / lava flow/ continental flood basalt, melt migration
 43 Magma chambers
 44 mantle convection/dynamics, whole Earth models, plate interaction
 45 Mantle convection + growing continents
 46 Mantle rheology, phase transitions, stratification, (temperature) profile
 47 mantle wedge, subduction zone (temperature)
 48 Mixing, stirring, degassing, Lyapunov exponent
 49 Mantle reservoirs, magma reservoirs
 50 Obduction, ophiolites
 51 Oceanic Lithosphere
 52 ocean floor, seafloor
 53 Onset of convection
 54 Plate motion and mantle, plate tectonic reconstruction, mechanism
 55 plume dynamics & shape
 56 plume-Lithosphere interaction, LIP, hotspots
 57 porous media flow, Darcy
 58 Precambrian tectonics
 59 Reservoir modelling
 60 Restoration, Dynamic Reverse Modelling, Inversion tectonics
 61 Retrodiction
 62 Rheology, material parameters, rock mechanics
 63 sea level change
 64 Rifting, seafloor spreading, mid-ocean ridges, extension
 65 Pull-apart basins
 66 Critical Wedges
 67 salt tectonics, shale tectonics
 68 Sea Level evolution, GIA, Post-glacial rebound
 69 Seismo-tectonics, subduction earthquakes
 70 Stagnant lid
 71 subduction
 72 Subduction of mid-oceanic ridges
 73 Thermal structure subduction zone and/or slab
 74 Underplating
 75 Slab foundering
 76 Intra-oceanic subduction
 77 subduction & plate bending, unbending
 78 subduction - slab detachment, break-off, tearing, sinking velocity
 79 subduction retreat, trench retreat
 80 subduction + water (fluids), mantle dynamics + water
 81 subduction/plate tectonics initiation
 82 subduction - flat/low angle/horizontal subduction
 83 subduction - slab rollback
 84 subduction - interface
 85 single-sided subduction
 86 Teaching
 87 Tethys
 88 Tidal dissipation and heating
 89 Transform faults
 90 Wilson cycle, supercontinent cycles
 91 Planetary accretion, exoplanets, planet formation, segregation
 92 Accretionary wedges, nappes, thrust wedges, orogenic wedge, fold-thrust belt
 93 Thrust-wrench fault
 94 Thrust fault
 95 Normal faults
 96 Strike slip faults
 97 Transpressional systems
 98 HP/UHP rocks, exhumation
 99 Urey ratio
 100 Intrusions, diapirism, Rayleigh-Taylor instability, plutons
 References

topics.tex

1 (Data) Assimilation

2 Eclogites, eclogitization

3 Biogeodynamic, geodynamics+biosphere

4 Hadean Earth

5 Archean tectonics, early Earth

6 Asymmetry

7 Anisotropy, Lattice/Crystal preferred orientation (LPO/CPO), SKS splitting

8 Back-arc basin, spreading

9 Continental crust

10 Oceanic crust

11 Oceanic plateaus - evolution, subduction

12 Core dynamics, core formation, CMB temperature/heat flux, core-mantle interaction

13 Compressible flow, Compressibility

14 Computational Structural geology, cm-scale, shear zones, texture

15 Channel flow model

16 Continental collision

17 Core complexes

18 Tomography, deep Earth structure, lower-mantle structure

19 Extrusion tectonics

20 (Surface) Heat flow

21 gravity, GRACE, GOCE, free-air gravity

To sort out:

1977: Barbara Romanowicz and Kurt Lambeck. “The mass and moment of inertia of the Earth”. In: Phys. Earth. Planet. Inter. 15.1 (1977), pp. 1–4

1992: Richard G Gordon and Seth Stein. “Global tectonics and space geodesy”. In: Science 256.5055 (1992), pp. 333–342

1998: John Wahr, Mery Molenaar, and Frank Bryan. “Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE”. In: J. Geophys. Res.: Solid Earth 103.B12 (1998), pp. 30205–30229. doi: 10.1029/98jb02844

1999: [2459] [2459]
[2683] [2683]
2000: [279] [279]
2001: [350] [350]
2002: [145] [145]
2003: [1609] [1609]
[2718] [2718]
[3009] [3009]
2004: [2858] [2858]
[2460] [2460]
[261] [261]
[3035] [3035]
2005: [481] [481]
[2923] [2923]
2006: [1882] [1882]
[61] [61]
[2814] [2814]
[620] [620]
2007: [1962] [1962]
[1811] [1811]
[2458] [2458]
[2369] [2369]
[2848] [2848]
[1217] [1217]
2008: [3311] [3311]
[2482] [2482]
[2868] [2868]
[3036] [3036]
2012: [1213] [1213]
[2398] [2398]
[868] [868]
[143] [143]
[2235] [2235]
[2549] [2549]
[2546] [2546]
[1858] [1858]
[1384] [1384]
[1270] [1270]
2013: [2399] [2399]
[794] [794]
[698] [698]
[2554] [2554]
[2978] [2978]
2014: [2224] [793] [1608] [1737] [65] [412] [2604] 2015: [271] [311] [941] [2201] [1857] [862] [1944] [2397] 2016: [1570] [1570]
[2487] [2487]
[760] [760]
[557] [557]
2017: [2486] [2486]
2018: [2207] [2207]
[1214] [1214]
[2440] [2440]
2019: [2694] [2694]
[2650] [2650]
[8] [8]
[2545] [2545]
[2817] [2817]

22 Dynamo

23 (role of) Elasticity (in geodynamics modelling)

24 (Geodynamics+) surface processes, erosion, sedimentation, topography evolution

25 Geotechnics

26 Glacier dynamics, ice sheets, ice flow, ice rheology, ice sheet modelling

also ian_hewitt_karthaus_rheology.pdf

27 Large scale mantle-plate interaction, whole Earth models

28 Crust/Lithosphere modelling, plate motion, plate stress

29 Delamination, edge driven convection, gravitational instability, mantle unrooting, lithosphere thinning, small scale convection, drip

30 Detachment faults

31 dynamic topography

PIC
Taken from http://www.ga.gov.au/news-events/news/latest-news/dynamic-topography-of-australias-margins

See also report/article written by Zhong (2018) Zhong [3289]

32 Cratons

33 Lithospheric stress, intra-plate stress, intra-plate deformation

34 Passive margins

35 Eclogites

36 Folding, buckling

37 geoid

38 Geothermal Energy

39 Grain size (evolution) & influence on geodynamics

40 LLSVP, ULVZ, CMB layer, thermo-chemical piles, D” layer

PIC[371]

41 Magma ocean

42 magma transport / melting / two-phase flow/ (intra-plate) volcanism / lava flow/ continental flood basalt, melt migration

43 Magma chambers

44 mantle convection/dynamics, whole Earth models, plate interaction

45 Mantle convection + growing continents

46 Mantle rheology, phase transitions, stratification, (temperature) profile

47 mantle wedge, subduction zone (temperature)

48 Mixing, stirring, degassing, Lyapunov exponent

49 Mantle reservoirs, magma reservoirs

50 Obduction, ophiolites

51 Oceanic Lithosphere

52 ocean floor, seafloor

53 Onset of convection

54 Plate motion and mantle, plate tectonic reconstruction, mechanism

55 plume dynamics & shape

56 plume-Lithosphere interaction, LIP, hotspots

57 porous media flow, Darcy

58 Precambrian tectonics

59 Reservoir modelling

2013: B Orlic and BBT Wassing. “A study of stress change and fault slip in producing gas reservoirs overlain by elastic and viscoelastic caprocks”. In: Rock Mechanics and Rock Engineering 46.3 (2013), pp. 421–435

60 Restoration, Dynamic Reverse Modelling, Inversion tectonics

61 Retrodiction

reconstructions of past states of Earth’s mantle obtained using present information.

Colli, Bunge, and Schuberth [556] (2015) Colli, Ghelichkhan, Bunge, and Oeser [558] (2018) Ghelichkhan, Bunge, and Oeser [1016]

62 Rheology, material parameters, rock mechanics

63 sea level change

64 Rifting, seafloor spreading, mid-ocean ridges, extension

this should be split into oceanic, continental, 2D, 3D ... add oceanic transforms as separate topic?

Mid-Ocean Ridges

Oceanic transforms

Rifted margins

Continental extension/rifting

65 Pull-apart basins

66 Critical Wedges

67 salt tectonics, shale tectonics

68 Sea Level evolution, GIA, Post-glacial rebound

69 Seismo-tectonics, subduction earthquakes

70 Stagnant lid

71 subduction

This category should be subdivided into continental collision, subduction 2D & 3D...

needs sorting: what are the major subtopics ? plate contact/trench? bending ? angle?

72 Subduction of mid-oceanic ridges

73 Thermal structure subduction zone and/or slab

74 Underplating

75 Slab foundering

76 Intra-oceanic subduction

77 subduction & plate bending, unbending

78 subduction - slab detachment, break-off, tearing, sinking velocity

79 subduction retreat, trench retreat

80 subduction + water (fluids), mantle dynamics + water

81 subduction/plate tectonics initiation

splitbetween Induced(ISI)andSpontaneous(SSI)

82 subduction - flat/low angle/horizontal subduction

83 subduction - slab rollback

84 subduction - interface

85 single-sided subduction

86 Teaching

87 Tethys

88 Tidal dissipation and heating

89 Transform faults

90 Wilson cycle, supercontinent cycles

91 Planetary accretion, exoplanets, planet formation, segregation

92 Accretionary wedges, nappes, thrust wedges, orogenic wedge, fold-thrust belt

93 Thrust-wrench fault

94 Thrust fault

95 Normal faults

96 Strike slip faults

97 Transpressional systems

98 HP/UHP rocks, exhumation

99 Urey ratio

100 Intrusions, diapirism, Rayleigh-Taylor instability, plutons

See EGU blog article: https://blogs.egu.eu/divisions/gd/2021/02/17/rayleigh-taylor-instability-in-geodynamics/

References

[1]

Geruo A, John Wahr, and Shijie Zhong. “The effects of laterally varying icy shell structure on the tidal response of Ganymede and Europa”. In: J. Geophys. Res.: Planets 119.3 (2014), pp. 659–678. doi: 10.1002/2013JE004570.

[2]

Geoffrey A Abers, Peter E van Keken, Erik A Kneller, Aaron Ferris, and Joshua C Stachnik. “The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow”. In: Earth Planet. Sci. Lett. 241.3-4 (2006), pp. 387–397. doi: 10.1016/j.epsl.2005.11.055.

[3]

Geoffrey A Abers, Peter E van Keken, and Cian R Wilson. “Deep decoupling in subduction zones: Observations and temperature limits”. In: Geosphere 16.6 (2020), pp. 1408–1424. doi: 10.1130/GES02278.1.

[4]

V. Acocella, A. Gudmundsson, and R. Funiciello. “Interaction and linkage of extension fractures and normal faults: examples from the rift zone of Iceland”. In: Journal of Structural Geology 22.9 (2000), pp. 1233–1246.

[5]

C Adam, SD King, and MJ Caddick. “Mantle temperature and density anomalies: The influence of thermodynamic formulation, melt, and anelasticity”. In: Phys. Earth. Planet. Inter. (2021), p. 106772. doi: 10.1016/j.pepi.2021.106772.

[6]

J. C. Afonso, M. Fernandez, G. Ranalli, W.L. Griffin, and J.A.D. Connolly. “Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications”. In: Geochem. Geophys. Geosyst. 9.5 (2008). doi: 10. 1029/2007GC001834.

[7]

J.C. Afonso, G. Ranalli, and M. Fernandez. “Density structure and buoyancy of the oceanic lithosphere revisited”. In: Geophys. Res. Lett. 34 (2007), p. L10302. doi: 10.1029/ 2007GL029515.

[8]

Juan Carlos Afonso, Farshad Salajegheh, Wolfgang Szwillus, Jorg Ebbing, and Carmen Gaina. “A global reference model of the lithosphere and upper mantle from joint inversion and analysis of multiple data sets”. In: Geophy. J. Int. 217.3 (2019), pp. 1602–1628. doi: 10.1093/gji/ggz094.

[9]

P. Agard, P. Yamato, L. Jolivet, and E. Burov. “Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms”. In: Earth-Science Reviews 92.1-2 (2009), pp. 53–79. doi: 10.1016/j.earscirev.2008.11.002.

[10]

Ph. Agard, X. Zuo, N. Bellahsen, C. Faccenna, and D. Savva. “Obduction: Why, how and where. Clues from analog models”. In: Earth Planet. Sci. Lett. 393 (2014), pp. 132–145. doi: 10.1016/j.epsl.2014.02.021.

[11]

Philippe Agard et al. “Plate interface rheological switches during subduction infancy: Control on slab penetration and metamorphic sole formation”. In: Earth Planet. Sci. Lett. 451 (2016), pp. 208–220. doi: 10.1016/j.epsl.2016.06.054.

[12]

Andrea Agostini, Giacomo Corti, Antonio Zeoli, and Genene Mulugeta. “Evolution, pattern, and partitioning of deformation during oblique continental rifting: Inferences from lithospheric-scale centrifuge models”. In: Geochem. Geophys. Geosyst. 10.11 (2009), Q11015. doi: 10.1029/2009GC002676.

[13]

Roberto Agrusta, Diane Arcay, Andréa Tommasi, Anne Davaille, Neil Ribe, and Taras Gerya. “Small-scale convection in a plume-fed low-viscosity layer beneath a moving plate”. In: Geophy. J. Int. 194.2 (2013), pp. 591–610. doi: 10.1093/gji/ggt128.

[14]

Roberto Agrusta et al. “Mantle convection interacting with magma oceans”. In: Geophy. J. Int. 220.3 (2020), pp. 1878–1892. doi: 10.1093/gji/ggz549.

[15]

E Aharonov, JA Whitehead, PB Kelemen, and M Spiegelman. “Channeling instability of upwelling melt in the mantle”. In: J. Geophys. Res.: Solid Earth 100.B10 (1995), pp. 20433–20450. doi: 10.1029/95JB01307.

[16]

Josefin Ahlkrona, Per Lötstedt, Nina Kirchner, and Thomas Zwinger. “Dynamically coupling the non-linear Stokes equations with the shallow ice approximation in glaciology: Description and first applications of the ISCAL method”. In: J. Comp. Phys. 308 (2016), pp. 1–19. doi: 10.1016/j.jcp.2015.12.025.

[17]

Francis Albarède and Rob D van der Hilst. “Zoned mantle convection”. In: Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 360.1800 (2002), pp. 2569–2592. doi: 10.1098/rsta.2002.1081.

[18]

M. Albers. “A local mesh refinement multigrid method for 3D convection problems with strongly variable viscosity”. In: J. Comp. Phys. 160 (2000), pp. 126–150.

[19]

M. Albertz and C. Beaumont. “An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 2. Comparison of observations with geometrically complex numerical models”. In: Tectonics 29.TC4018 (2010). doi: 10 . 1029 / 2009TC002540.

[20]

M. Albertz, C. Beaumont, and S.J. Ings. “Geodynamic modeling of sedimentation-induced overpressure, gravitational spreading, and deformation of passive margin mobile shale basins”. In: AAPG Memoir 93 (2010), pp. 29–62. doi: 10.1306/l3231307M933417.

[21]

M. Albertz, C. Beaumont, J.W. Shimeld, S.J. Ingsand, and S. Gradmann. “An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: Part 1, comparison of observations with geometrically simple numerical models”. In: Tectonics 29 (2010). doi: 10.1029/2009TC002539.

[22]

L. Alisic, M. Gurnis, G. Stadler, C. Burstedde, and O. Ghattas. “Multi-scale dynamics and rheology of mantle flow with plates”. In: J. Geophys. Res.: Solid Earth 117 (2012). doi: 10.1029/2012JB009234.

[23]

Claude J Allègre and Donald L Turcotte. “Implications of a two-component marble-cake mantle”. In: Nature 323.6084 (1986), pp. 123–127. doi: 10.1038/323123a0.

[24]

J. Allen and C. Beaumont. “Continental margin syn-rift salt tectonics at intermediate width margins”. In: Basin Research 28.5 (2016), pp. 598–633. doi: 10.1111/bre.12123.

[25]

J. Allen and C. Beaumont. “Impact of inconsistent density scaling on physical analogue models of continental margin scale salt tectonics”. In: J. Geophys. Res.: Solid Earth 117.8 (2012). doi: 10.1029/2012JB009227.

[26]

P.A. Allen. “From landscapes into geological history”. In: Nature 451 (2008), pp. 274–276. doi: 10.1038/nature06586.

[27]

Richard B Alley. “Flow-law hypotheses for ice-sheet modeling”. In: Journal of Glaciology 38.129 (1992), pp. 245–256. doi: 10.3189/S0022143000003658.

[28]

V. Allken, R. Huismans, and C. Thieulot. “Factors controlling the mode of rift interaction in brittle-ductile coupled systems: a 3D numerical study”. In: Geochem. Geophys. Geosyst. 13.5 (2012), Q05010. doi: 10.1029/2012GC004077.

[29]

V. Allken, R. Huismans, and C. Thieulot. “Three dimensional numerical modelling of upper crustal extensional systems”. In: J. Geophys. Res.: Solid Earth 116 (2011), B10409. doi: 10.1029/2011JB008319.

[30]

V. Allken, R.S. Huismans, H. Fossen, and C. Thieulot. “3D numerical modelling of graben interaction and linkage: a case study of the Canyonlands grabens, Utah”. In: Basin Research 25 (2013), pp. 1–14. doi: 10.1111/bre.12010.

[31]

J Almeida, N Riel, FM Rosas, JC Duarte, and B Kaus. “Self-replicating subduction zone initiation by polarity reversal”. In: Communications Earth & Environment 3 (2022). doi: 10.1038/s43247-022-00380-2.

[32]

J Almeida, N Riel, FM Rosas, JC Duarte, and WP Schellart. “Polarity-reversal subduction zone initiation triggered by buoyant plateau obstruction”. In: Earth Planet. Sci. Lett. 577 (2022), p. 117195. doi: 10.1016/j.epsl.2021.117195.

[33]

LA Alpert, TW Becker, and IW Bailey. “Global slab deformation and centroid moment tensor constraints on viscosity”. In: Geochem. Geophys. Geosyst. 11.12 (2010). doi: 10. 1029/2010GC003301.

[34]

Lisa A Alpert, Meghan S Miller, Thorsten W Becker, and Amir A Allam. “Structure beneath the Alboran from geodynamic flow models and seismic anisotropy”. In: J. Geophys. Res.: Solid Earth 118.8 (2013), pp. 4265–4277. doi: 10.1002/jgrb.50309.

[35]

Manar Alsaif, Fanny Garel, Frédéric Gueydan, and D Rhodri Davies. “Upper plate deformation and trench retreat modulated by subduction-driven shallow asthenospheric flows”. In: Earth Planet. Sci. Lett. 532 (2020), p. 116013. doi: 10.1016/j.epsl.2019. 116013.

[36]

J. Amodeo, B.S.A. Schuberth, H.-P. Bunge, P. Carrez, and P. Cordier. “On the role of thermal heterogeneities on the rheology of MgO under conditions of the Earth’s lower mantle”. In: Phys. Earth. Planet. Inter. 242 (2015), pp. 1–8. doi: 10.1016/j.pepi.2015.02.008.

[37]

A Julia Andersen, Oguz Hakan Göğüş, Russell N Pysklywec, Ebru Şengül Uluocak, and Tasca Santimano. “Multistage lithospheric drips control active basin formation within an uplifting orogenic plateau”. In: Nature Communications 15.1 (2024), p. 7899. doi: 10. 1038/s41467-024-52126-7.

[38]

D.L. Anderson. “The scales of mantle convection”. In: Tectonophysics 284.1-2 (1998), pp. 1–17. doi: 10.1016/S0040-1951(97)00169-8.

[39]

DL Anderson. “The persistent mantle plume myth”. In: Australian Journal of Earth Sciences 60.6-7 (2013), pp. 657–673. doi: 10.1080/08120099.2013.835283.

[40]

Miguel Andrés-Mart´i  nez, Marta Pérez-Gussinyé, John Armitage, and Jason P Morgan. “Thermomechanical Implications of Sediment Transport for the Architecture and Evolution of Continental Rifts and Margins”. In: Tectonics 38.2 (2019), pp. 641–665. doi: 10.1029/ 2018TC005346.

[41]

E.R. Andrews and M.I. Billen. “Rheologic controls on the dynamics of slab detachment”. In: Tectonophysics 464 (2009), pp. 60–69. doi: 10.1016/j.tecto.2007.09.004.

[42]

Nevena Andrić-Tomašević, Alexander Koptev, Giridas Maiti, Taras Gerya, and Todd A Ehlers. “Slab tearing in non-collisional settings: Insights from thermo-mechanical modelling of oblique subduction”. In: Earth Planet. Sci. Lett. 610 (2023), p. 118097. doi: 10.1016/ j.epsl.2023.118097.

[43]

Sophie Androvandi, Anne Davaille, Angela Limare, Aurélie Foucquier, and Catherine Marais. “At least three scales of convection in a mantle with strongly temperature-dependent viscosity”. In: Phys. Earth. Planet. Inter. 188.3-4 (2011), pp. 132–141. doi: 10.1016/j. pepi.2011.07.004.

[44]

A. Androvicova, H. Čížková, and A. van den Berg. “The effects of rheological decoupling on slab deformation in the Earth’s upper mantle”. In: Stud. Geophys. Geod. 57 (2013), pp. 460–481. doi: 10.1007/s11200-012-0259-7.

[45]

S. Angiboust, S. Wolf, E. Burov, P. Agard, and P. Yamato. “Effect of fluid circulation on subduction interface tectonic processes: Insights from thermo-mechanical numerical modelling”. In: Earth Planet. Sci. Lett. 357-358 (2012), pp. 238–248. doi: 10.1016/j. epsl.2012.09.012.

[46]

Samuel Angiboust, Paraskevi Io Ioannidi, and Iskander Muldashev. “Garnet fracturing reveals ancient unstable slip events hosted in plate interface metasediments”. In: Earth Planet. Sci. Lett. 640 (2024), p. 118794. doi: 10.1016/j.epsl.2024.118794.

[47]

Samuel Angiboust, Armel Menant, Taras Gerya, and Onno Oncken. “The rise and demise of deep accretionary wedges: A long-term field and numerical modeling perspective”. In: Geosphere (2021). doi: 10.1130/GES02392.1.

[48]

D Arcay, M-P Doin, E Tric, R Bousquet, and C De Capitani. “Overriding plate thinning in subduction zones: Localized convection induced by slab dehydration”. In: Geochem. Geophys. Geosyst. 7.2 (2006). doi: 10.1029/2005GC001061.

[49]

D. Arcay, E. Tric, and M.-P. Doin. “Numerical simulations of subduction zones. Effect of slab dehydration on the mantle wedge dynamics”. In: Phys. Earth. Planet. Inter. 149 (2005), pp. 133–153. doi: 10.1016/j.pepi.2004.08.020.

[50]

D. Arcay, E. Tric, and M.-P. Doin. “Slab surface temperature in subduction zones: influence of the interplate decoupling depth and upper plate thinning processes”. In: Earth Planet. Sci. Lett. 255 (2007), pp. 324–338. doi: 10.1016/j.epsl.2006.12.027.

[51]

Diane Arcay. “Modelling the interplate domain in thermo-mechanical simulations of subduction: Critical effects of resolution and rheology, and consequences on wet mantle melting”. In: Phys. Earth. Planet. Inter. 269 (2017), pp. 112–132. doi: 10.1016/j.pepi. 2017.05.008.

[52]

Diane Arcay, Serge Lallemand, Sarah Abecassis, and Fanny Garel. “Can subduction initiation at a transform fault be spontaneous?” In: Solid Earth 11 (2020), pp. 37–62. doi: 10.5194/se-11-37-2020.

[53]

Diane Arcay, Serge Lallemand, and M-P Doin. “Back-arc strain in subduction zones: Statistical observations versus numerical modeling”. In: Geochem. Geophys. Geosyst. 9.5 (2008). doi: 10.1029/2007GC001875.

[54]

Richard J Arculus, Michael Gurnis, Osamu Ishizuka, Mark K Reagan, Julian A Pearce, and Rupert Sutherland. “How to create new subduction zones”. In: Oceanography 32.1 (2019), pp. 160–174. doi: xxxx.

[55]

Donald F Argus, W Richard Peltier, Geoffrey Blewitt, and Corné Kreemer. “The viscosity of the top third of the lower mantle estimated using GPS, GRACE, and relative sea level measurements of glacial isostatic adjustment”. In: J. Geophys. Res.: Solid Earth 126.5 (2021), e2020JB021537. doi: 10.1029/2020JB021537.

[56]

M Arnould, Nicolas Coltice, Nicolas Flament, V Seigneur, and RD Müller. “On the Scales of Dynamic Topography in Whole-Mantle Convection Models”. In: Geochem. Geophys. Geosyst. 19.9 (2018), pp. 3140–3163. doi: 10.1029/2018GC007516.

[57]

Maëlis Arnould, Nicolas Coltice, Nicolas Flament, and Claire Mallard. “Plate tectonics and mantle controls on plume dynamics”. In: Earth Planet. Sci. Lett. 547 (2020), p. 116439. doi: 10.1016/j.epsl.2020.116439.

[58]

Maëlis Arnould, Jérôme Ganne, Nicolas Coltice, and Xiaojun Feng. “Northward drift of the Azores plume in the Earth’s mantle”. In: Nature Communications 10.1 (2019), p. 3235. doi: 10.1038/s41467-019-11127-7.

[59]

P.-A. Arrial and M.I. Billen. “Influence of geometry and eclogitization on oceanic plateau subduction”. In: Earth Planet. Sci. Lett. 363 (2013), pp. 34–43. doi: 10.1016/j.epsl. 2012.12.011.

[60]

P.A. Arrial, N. Flyer, G.B. Wright, and L.H. Kellogg. “On the sensitivity of 3-D thermal convection codes to numerical discretization: a model intercomparison”. In: Geosci. Model. Dev. 7 (2014), pp. 2065–2076. doi: 10.5194/gmd-7-2065-2014.

[61]

I.M. Artemieva. “Global 1circ × 1circ thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution”. In: Tectonophysics 416 (2006), pp. 245–277. doi: 10.1016/j.tecto.2005.11.022.

[62]

A. Aschwanden and H. Blatter. “Numerical modeling of glacier flow”. In: COMSOL Users Conference (2006).

[63]

Matteo Assanelli, Pietro Luoni, Gisella Rebay, Manuel Roda, and Maria Iole Spalla. “Tectono-Metamorphic Evolution of Serpentinites from Lanzo Valleys Subduction Complex (Piemonte-Sesia-Lanzo Zone Boundary, Western Italian Alps)”. In: Minerals 10.11 (2020), p. 985. doi: 10.3390/min10110985.

[64]

Suzanne Atkins and Nicolas Coltice. “Constraining the range and variation of lithospheric net rotation using geodynamic modelling”. In: J. Geophys. Res.: Solid Earth 126 (2021), e2021JB022057. doi: 10.1029/2021JB022057.

[65]

L. Auer, L. Boschi and. T.W. Becker, T. Nissen-Meyer, and D. Giardini. “Savani: a variable-resolution whole-mantle model of anisotropic shear-velocity variations based on multiple datasets”. In: J. Geophys. Res.: Solid Earth 119.4 (2014), pp. 3006–3034. doi: 10.1002/2013JB010773.

[66]

J. Austermann, J. X. Mitrovica, P. Huybers, and A. Rovere. “Detection of a dynamic topography signal in last interglacial sea-level records”. In: Science Advances 3.7 (2017), p. 1700457. doi: 10.1126/sciadv.1700457.

[67]

J. Austermann et al. “The impact of dynamic topography change on Antarctic ice sheet stability during the mid-Pliocene warm period”. In: Geology 43.10 (2015), pp. 927–930. doi: 10.1130/G36988.1.

[68]

J. Autin, N. Bellahsen, L. Husson, M.-O. Beslier, S. Leroy, and E. d’Acremont. “Analog models of oblique rifting in a cold lithosphere”. In: Tectonics 29.6 (2010), TC6016. doi: 10.1029/2010TC002671.

[69]

A Auzemery, E Willingshofer, Philippe Yamato, Thibault Duretz, and D Sokoutis. “Strain localization mechanisms for subduction initiation at passive margins”. In: Global and Planetary Change 195 (2020), p. 103323. doi: 10.1016/j.gloplacha.2020.103323.

[70]

Antoine Auzemery, Ernst Willingshofer, Dimitrios Sokoutis, Jean-Pierre Brun, and Sierd APL Cloetingh. “Passive margin inversion controlled by stability of the mantle lithosphere”. In: Tectonophysics 817 (2021), p. 229042. doi: 10.1016/j.tecto.2021.229042.

[71]

Antoine Auzemery, Ernst Willingshofer, Philippe Yamato, Thibault Duretz, and Fred Beekman. “Kinematic boundary conditions favouring subduction initiation at passive margins over subduction at mid-oceanic ridges”. In: Frontiers in Earth Science (2021), p. 1131. doi: 10.3389/feart.2021.765893.

[72]

Antoine Auzemery, Philippe Yamato, Thibault Duretz, E Willingshofer, L Matenco, and K Porkoláb. “Influence of magma-poor versus magma-rich passive margins on subduction initiation”. In: Gondwana Research 103 (2022), pp. 172–186. doi: 10.1016/j.gr.2021. 11.012.

[73]

J.P. Avouac and E.B. Burov. “Erosion as a driving mechanism of intracontinental mountain growth”. In: J. Geophys. Res.: Solid Earth 101.B8 (1996), p. 17747.

[74]

A.E. Pusok aand B.J.P. Kaus and A.A. Popov. “The effect of rheological approximations in 3-D numerical simulations of subduction and collision”. In: Tectonophysics 746 (2018), pp. 296–311. doi: 10.1016/j.tecto.2018.04.017.

[75]

A Yu Babeyko, Stephan V Sobolev, RB Trumbull, Onno Oncken, and LL Lavier. “Numerical models of crustal scale convection and partial melting beneath the Altiplano–Puna plateau”. In: Earth Planet. Sci. Lett. 199.3-4 (2002), pp. 373–388. doi: 10.1016/S0012-821X(02) 00597-6.

[76]

A. Babeyko and S. Sobolev. “High-resolution numerical modeling of stress distribution in visco-elasto-plastic subducting slabs”. In: Lithos 103 (2008), pp. 205–216. doi: 10.1016/ j.lithos.2007.09.015.

[77]

Andrey Y Babeyko, Stephan V Sobolev, Tim Vietor, Onno Oncken, and Robert B Trumbull. “Numerical study of weakening processes in the central Andean back-arc”. In: The Andes. 2006, pp. 495–512. doi: 10.1007/978-3-540-48684-8_24.

[78]

M. Baes, R. Govers, and R. Wortel. “Subduction initiation along the inherited weakness zone at the edge of a slab: Insights from numerical models”. In: Geophy. J. Int. 184 (2011), pp. 991–1008. doi: 10.1111/j.1365-246X.2010.04896.x.

[79]

M. Baes, R. Govers, and R. Wortel. “Switching between alternative responses of the lithosphere to continental collision”. In: Geophy. J. Int. 187 (2011), pp. 1151–1174. doi: 10.1111/j.1365-246X.2011.05236.x.

[80]

Marzieh Baes, Taras Gerya, and Stephan V Sobolev. “3-D thermo-mechanical modeling of plume-induced subduction initiation”. In: Earth Planet. Sci. Lett. 453 (2016), pp. 193–203. doi: 10.1016/j.epsl.2016.08.023.

[81]

Marzieh Baes, Stephan Sobolev, Taras Gerya, and Sascha Brune. “Plume-induced subduction initiation: single-or multi-slab subduction?” In: Geochem. Geophys. Geosyst. 21 (2020), e2019GC008663. doi: 10.1029/2019GC008663.

[82]

Marzieh Baes, Stephan Sobolev, Taras Gerya, Robert Stern, and Sascha Brune. “Plate motion and plume-induced subduction initiation”. In: Gondwana Research 98 (2021), pp. 277–288. doi: 10.1016/j.gr.2021.06.007.

[83]

Marzieh Baes, Stephan V Sobolev, Taras Gerya, and Sascha Brune. “Subduction initiation by plume-plateau interaction: Insights from numerical models”. In: Geochem. Geophys. Geosyst. 21.8 (2020), e2020GC009119. doi: 10.1029/2020GC009119.

[84]

Marzieh Baes, Stephan V Sobolev, and Javier Quinteros. “Subduction initiation in mid-ocean induced by mantle suction flow”. In: Geophy. J. Int. 215.3 (2018), pp. 1515–1522. doi: 10.1093/gji/ggy335.

[85]

Marzieh Baes and SV Sobolev. “Mantle flow as a trigger for subduction initiation: A missing element of the Wilson Cycle concept”. In: Geochem. Geophys. Geosyst. 18.12 (2017), pp. 4469–4486. doi: 10.1002/2017GC006962.

[86]

Alireza Bahadori et al. “The role of gravitational body forces in the development of metamorphic core complexes”. In: Nature Communications 13.1 (2022), pp. 1–19. doi: 10.1038/s41467-022-33361-2.

[87]

Quan Bai and DL Kohlstedt. “High-temperature creep of olivine single crystals, 2. Dislocation structures”. In: Tectonophysics 206.1-2 (1992), pp. 1–29.

[88]

RC Bailey. “Large time step numerical modelling of the flow of Maxwell materials”. In: Geophy. J. Int. 164.2 (2006), pp. 460–466. doi: 10.1111/j.1365-246X.2005.02788.x.

[89]

B. Baitsch-Ghirardello, Taras V. Gerya, and J.-P. Burg. “Geodynamic regimes of intra-oceanic subduction: Implications for arc extension vs. shortening processes”. In: Gondwana Research 25 (2014), pp. 546–560. doi: 10.1016/j.gr.2012.11.003.

[90]

Bettina Baitsch-Ghirardello, Andreas Stracke, James AD Connolly, Ksenia M Nikolaeva, and Taras V Gerya. “Lead transport in intra-oceanic subduction zones: 2D geochemical–thermo-mechanical modeling of isotopic signatures”. In: Lithos 208 (2014), pp. 265–280. doi: 10.1016/j.lithos.2014.09.006.

[91]

Flora Bajolet, Javier Galeano, Francesca Funiciello, Monica Moroni, Ana-Mar´i  a Negredo, and Claudio Faccenna. “Continental delamination: Insights from laboratory models”. In: Geochem. Geophys. Geosyst. 13.2 (2012). doi: 10.1029/2011GC003896.

[92]

R.R. Bakker, M. Frehner, and M. Lupi. “How temperature-dependent elasticity alters host rock/magmatic reservoir models: A case study on the effects of ice-cap unloading on shallow volcanic systems”. In: Earth Planet. Sci. Lett. 456 (2016), pp. 16–25. doi: 10.1016/j. epsl.2016.09.039.

[93]

S Balachandar and David A Yuen. “Three-dimensional fully spectral numerical method for mantle convection with depth-dependent properties”. In: J. Comp. Phys. 113.1 (1994), pp. 62–74. doi: 10.1006/jcph.1994.1118.

[94]

S Balachandar, David A Yuen, and D Reuteler. “Time-dependent three dimensional compressible convection with depth-dependent properties”. In: Geophys. Res. Lett. 19.22 (1992), pp. 2247–2250. doi: 10.1029/92GL02146.

[95]

S Balachandar, David A Yuen, and D Reuteler. “Viscous and adiabatic heating effects in three-dimensional compressible convection at infinite Prandtl number”. In: Physics of Fluids A: Fluid Dynamics 5.11 (1993), pp. 2938–2945. doi: 10.1063/1.858702.

[96]

S Balachandar, David A Yuen, and DM Reuteler. “Localization of toroidal motion and shear heating in 3-D high Rayleigh number convection with temperature-dependent viscosity”. In: Geophys. Res. Lett. 22.4 (1995), pp. 477–480. doi: 10.1029/94GL03046.

[97]

S. Balachandar, D.A. Yuen, D.M. Reuteler, and G.S. Lauer. “Viscous dissipation in three-dimensional convection with temperature-dependent viscosity”. In: Science 267.5201 (1995), pp. 1150–1153. doi: 10.1126/science.267.5201.1150.

[98]

Attila Balazs, Evgueni Burov, Liviu Matenco, Katharina Vogt, Thomas Francois, and Sierd Cloetingh. “Symmetry during the syn-and post-rift evolution of extensional back-arc basins: The role of inherited orogenic structures”. In: Earth Planet. Sci. Lett. 462 (2017), pp. 86–98. doi: 10.1016/j.epsl.2017.01.015.

[99]

Attila Balázs, Taras Gerya, Dave May, and Gábor Tari. “Contrasting transform and passive margin subsidence history and heat flow evolution: Insights from 3D thermo-mechanical modelling”. In: Geological Society, London, Special Publications 524.1 (2022), SP524–2021. doi: 10.1144/SP524-2021-94.

[100]

Attila Balázs et al. “Oblique subduction and mantle flow control on upper plate deformation: 3D geodynamic modeling”. In: Earth Planet. Sci. Lett. 569 (2021), p. 117056. doi: 10. 1016/j.epsl.2021.117056.

[101]

M.D. Ballmer, J van Hunen, G Ito, T.A. Bianco, and P.J. Tackley. “Intraplate volcanism with complex age-distance patterns: A case for small-scale sublithospheric convection”. In: Geochem. Geophys. Geosyst. 10.6 (2009). doi: 10.1029/2009GC002386.

[102]

M.D. Ballmer, J. van Hunen, G. Ito, P.J. Tackley, and T.A. Bianco. “Non-hotspot volcano chains originating from small-scale sublithospheric convection”. In: Geophys. Res. Lett. 34.L23310 (2007). doi: 10.1029/2007GL031636.

[103]

M.D. Ballmer, G. Ito, J. van Hunen, and P.J. Tackley. “Small-scale sublithospheric convection reconcilies geochemistry and geochronology of ’Superplume’ volcanism in the western and south pacific”. In: Earth Planet. Sci. Lett. 290 (2010), pp. 224–232. doi: 10.1016/j.epsl.2009.12.025.

[104]

M.D. Ballmer, G. Ito, J. van Hunen, and P.J. Tackley. “Spatial and temporal variability in Hawaiian hotspot volcanism induced by small-scale convection”. In: Nature Geoscience 4.7 (2011), p. 457. doi: 10.1038/NGEO1187.

[105]

M.D. Ballmer, N.C. Schmerr, T. Nakagawa, and J. Ritsema. “Compositional mantle layering revealed by slab stagnation at ~ 1000-km depth”. In: Science advances 1.11 (2015), e1500815. doi: 10.1126/sciadv.1500815.

[106]

Maxim D Ballmer, Christine Houser, John W Hernlund, Renata M Wentzcovitch, and Kei Hirose. “Persistence of strong silica-enriched domains in the Earth’s lower mantle”. In: Nature Geoscience 10.3 (2017), pp. 236–240. doi: 10.1038/NGEO2898.

[107]

Maxim D Ballmer, Diogo L Lourenço, Kei Hirose, Razvan Caracas, and Ryuichi Nomura. “Reconciling magma-ocean crystallization models with the present-day structure of the Earth’s mantle”. In: Geochem. Geophys. Geosyst. 18.7 (2017), pp. 2785–2806. doi: 10. 1002/2017GC006917.

[108]

Xuewei Bao, David W Eaton, and Bernard Guest. “Plateau uplift in western Canada caused by lithospheric delamination along a craton edge”. In: Nature Geoscience 7.11 (2014), p. 830. doi: 10.1038/ngeo2270.

[109]

N. Barnett-Moore, R. Hassan, N. Flament, and D. Müller. “The deep Earth origin of the Iceland plume and its effects on regional surface uplift and subsidence”. In: Solid Earth 8 (2017), pp. 235–254. doi: 10.5194/se-8-235-2017.

[110]

Terence D Barr and Gregory A Houseman. “Deformation fields around a fault embedded in a non-linear ductile medium”. In: Geophy. J. Int. 125.2 (1996), pp. 473–490. doi: 10.1111/j.1365-246X.1996.tb00012.x.

[111]

Terence D Barr and Gregory A Houseman. “Distribution of deformation around a fault in a non-linear ductile medium”. In: Geophys. Res. Lett. 19.11 (1992), pp. 1145–1148. doi: 10.1029/92GL00863.

[112]

Joseph Barrell. “The strength of the Earth’s crust”. In: The Journal of Geology 22.7 (1914), pp. 655–683. doi: 10.1086/622181.

[113]

TL Barry et al. “Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry”. In: Scientific Reports 7.1 (2017), pp. 1–9. doi: 10.1038/s41598-017-01816-y.

[114]

PJ Barton. “The relationship between seismic velocity and density in the continental crust - a useful constraint?” In: Geophy. J. Int. 87.1 (1986), pp. 195–208.

[115]

Ch. Basile and J. Braun. “The initiation of pull-apart basins and transform continental margins: results from numerical experiments of kinematic partitioning in divergent settings”. In: Terra Nova 28 (2016), pp. 120–127. doi: 10.1111/ter.12198.

[116]

G Bassi. “Relative importance of strain rate and rheology for the mode of continental extension”. In: Geophy. J. Int. 122.1 (1995), pp. 195–210. doi: 10.1111/j.1365- 246X.1995.tb03547.x.

[117]

Gianna Bassi. “Factors controlling the style of continental rifting: insights from numerical modelling”. In: Earth Planet. Sci. Lett. 105.4 (1991), pp. 430–452. doi: 10.1016/0012- 821X(91)90183-I.

[118]

Gianna Bassi, Charlotte E Keen, and Patrick Potter. “Contrasting styles of rifting: Models and examples from the eastern Canadian margin”. In: Tectonics 12.3 (1993), pp. 639–655. doi: 10.1029/93TC00197.

[119]

G.E. Batt and J. Braun. “The tectonic evolution of the Southern Alps, New Zealand: insights from fully thermally coupled dynamical modelling”. In: Geophy. J. Int. 136.2 (1999), pp. 403–420.

[120]

GE Batt and J Braun. “On the thermomechanical evolution of compressional orogens”. In: Geophy. J. Int. 128.2 (1997), pp. 364–382. doi: 10.1111/j.1365-246X.1997.tb01561.x.

[121]

Simon Bauer et al. “TerraNeo—Mantle Convection Beyond a Trillion Degrees of Freedom”. In: Software for Exascale Computing - SPPEXA 2016-2019. Ed. by Hans-Joachim Bungartz, Severin Reiz, Benjamin Uekermann, Philipp Neumann, and Wolfgang E. Nagel. Springer International Publishing, 2020, pp. 569–610. doi: 10.1007/978-3-030-47956-5_19.

[122]

Cyrill Baumann, Taras V Gerya, and James AD Connolly. “Numerical modelling of spontaneous slab breakoff dynamics during continental collision”. In: Geological Society, London, Special Publications 332.1 (2010), pp. 99–114. doi: 10.1144/SP332.7.

[123]

T.S. Baumann, B.J.P. Kaus, and A.A. Popov. “Constraining effective rheology through parallel joint geodynamic inversion”. In: Tectonophysics 631 (2014), pp. 197–211. doi: 10.1016/j.tecto.2014.04.037.

[124]

J.R. Baumgardner. “Three-Dimensional treatment of convective flow in the Earth’s mantle”. In: Journal of Statistical Physics 39.5/6 (1985), pp. 501–511. doi: 10.1007/BF01008348.

[125]

Adam Beall, Åke Fagereng, J Huw Davies, Fanny Garel, and D Rhodri Davies. “Influence of Subduction Zone Dynamics on Interface Shear Stress and Potential Relationship with Seismogenic Behavior”. In: Geochem. Geophys. Geosyst. 22 (2021), e2020GC009267. doi: 10.1029/2020GC009267.

[126]

Adam P Beall, Louis Moresi, and Tim Stern. “Dripping or delamination? A range of mechanisms for removing the lower crust or lithosphere”. In: Geophy. J. Int. 210.2 (2017), pp. 671–692. doi: 10.1093/gji/ggx202.

[127]

AP Beall, Louis Moresi, and Catherine M Cooper. “Formation of cratonic lithosphere during the initiation of plate tectonics”. In: Geology 46.6 (2018), pp. 487–490. doi: 10.1130/ G39943.1.

[128]

C. Beaumont, S. Ellis, and A. Pfiffner. “Dynamics of sediment subduction-accretion at convergent margins: Short-term modes, long-term deformation, and tectonic implications”. In: J. Geophys. Res.: Solid Earth 104.B8 (1999), pp. 17573–17601. doi: 10.1029/ 1999JB900136.

[129]

C. Beaumont, P. Fullsack, and J. Hamilton. “Erosional control of active compressional orogens”. In: Thrust Tectonics 99 (1992), pp. 1–18. doi: 10.1007/978-94-011-3066-0_1.

[130]

C. Beaumont, P. Fullsack, and J. Hamilton. “Styles of crustal deformation in compressional orogens caused by subduction of the underlying lithosphere”. In: Tectonophysics 232 (1994), pp. 119–132. doi: 10.1016/0040-1951(94)90079-5.

[131]

C. Beaumont and S.J. Ings. “Effect of depleted continental lithosphere counterflow and inherited crustal weakness on rifting of the continental lithosphere: General results”. In: J. Geophys. Res.: Solid Earth 117.8 (2012). doi: 10.1029/2012JB009203.

[132]

C. Beaumont, R.A. Jamieson, J.P. Butler, and C.J. Warren. “Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation”. In: Earth Planet. Sci. Lett. 287 (2009), pp. 116–129. doi: 10.1016/j.epsl.2009.08.001.

[133]

C. Beaumont, R.A. Jamieson, M.H. Nguyen, and S. Medvedev. “Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen”. In: J. Geophys. Res.: Solid Earth 109.B06406 (2004). doi: 10.1029/2003JB002809.

[134]

C. Beaumont, P.J. Kamp, J. Hamilton, and P. Fullsack. “The continental collision zone, South Island, New Zealand: comparison of geodynamical models and observations”. In: J. Geophys. Res.: Solid Earth 101 (1996), pp. 3333–3359. doi: 10.1029/95JB02401.

[135]

C. Beaumont, C.E. Keen, and R. Boutilier. “On the evolution of rifted continental margins: comparison of models and observations for the Nova Scotian margin”. In: Geophysical Journal of the Royal Astronomical Society 70.3 (1982), pp. 667–715. doi: 10.1111/j.1365- 246X.1982.tb05979.x.

[136]

C. Beaumont, J.A. Munoz, J. Hamilton, and P. Fullsack. “Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models”. In: J. Geophys. Res.: Solid Earth 105 (2000), pp. 8121–8145. doi: 10.1029/1999JB900390.

[137]

C. Beaumont, M.H. Nguyen, R.A. Jamieson, and S. Ellis. “Crustal flow modes in large hot orogens”. In: Geological Society Special Publication 268 (2006), pp. 91–145. doi: 10. 1144/GSL.SP.2006.268.01.05.

[138]

Christopher Beaumont. “The evolution of sedimentary basins on a viscoelastic lithosphere: theory and examples”. In: Geophy. J. Int. 55.2 (1978), pp. 471–497. doi: 10.1111/j.1365- 246X.1978.tb04283.x.

[139]

Christopher Beaumont and Garry Quinlan. “A geodynamic framework for interpreting crustal-scale seismic-reflectivity patterns in compressional orogens”. In: Geophy. J. Int. 116.3 (1994), pp. 754–783. doi: 10.1111/j.1365-246X.1994.tb03295.x.

[140]

Stéphane J Beaussier, Taras V Gerya, and Jean-Pierre Burg. “Near-ridge initiation of intraoceanic subduction: Effects of inheritance in 3D numerical models of the Wilson Cycle”. In: Tectonophysics 763 (2019), pp. 1–13. doi: 10.1016/j.tecto.2019.04.011.

[141]

T. W. Becker and C. Faccenna. “Subduction Zone Geodynamics”. In: 2009. Chap. A Review of the Role of Subduction Dynamics for Regional and Global Plate Motions, pp. 3–34. doi: 10.1007/978-3-540-87974-9_1.

[142]

T. W. Becker, C. Faccenna, R. J. O’Connell, and D. Giardini. “The development of slabs in the upper mantle: Insights from numerical and laboratory experiments”. In: J. Geophys. Res.: Solid Earth 104.B7 (1999), pp. 15207–15226. doi: 10.1029/1999JB900140.

[143]

T.W. Becker. “On recent seismic tomography for the western United States”. In: Geochem. Geophys. Geosyst. 13.1 (2012), Q01W10. doi: 10.1029/2011GC003977.

[144]

T.W. Becker. “On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces”. In: Geophy. J. Int. 167 (2006), pp. 943–957.

[145]

T.W. Becker and L. Boschi. “A comparison of tomographic and geodynamic mantle models”. In: Geochem. Geophys. Geosyst. 3 (2002). doi: 10.129/2001GC000168.

[146]

T.W. Becker and C. Faccenna. “Mantle conveyor beneath the Tethyan collisional belt”. In: Earth Planet. Sci. Lett. 310 (2011), pp. 453–461. doi: 10.1016/j.epsl.2011.08.021.

[147]

T.W. Becker, V. Schulte-Pelkum, D.K. Blackman, J.B. Kellogg, and R.J. O’Connell. “Mantle flow under the western United States from shear wave splitting”. In: Earth Planet. Sci. Lett. 247 (2006), pp. 235–251. doi: 10.1016/j.epsl.2006.05.010.

[148]

Thorsten W Becker, Clinton P Conrad, Andrew J Schaeffer, and Sergei Lebedev. “Origin of azimuthal seismic anisotropy in oceanic plates and mantle”. In: Earth Planet. Sci. Lett. 401 (2014), pp. 236–250. doi: 10.1016/j.epsl.2014.06.014.

[149]

Thorsten W Becker and Lukas Fuchs. “Generation of Evolving Plate Boundaries and Toroidal Flow From Visco-Plastic Damage-Rheology Mantle Convection and Continents”. In: Geochem. Geophys. Geosyst. 24.12 (2023), e2023GC011179. doi: 10.1029/2023GC011179.

[150]

Thorsten W Becker, James B Kellogg, Göran Ekström, and Richard J O’Connell. “Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global mantle-circulation models”. In: Geophy. J. Int. 155.2 (2003), pp. 696–714. doi: 10.1046/j.1365-246X.2003.02085.x.

[151]

Thorsten W Becker, James B Kellogg, and Richard J O’Connell. “Thermal constraints on the survival of primitive blobs in the lower mantle”. In: Earth Planet. Sci. Lett. 171.3 (1999), pp. 351–365. doi: 10.1016/S0012-821X(99)00160-0.

[152]

Thorsten W Becker, Bogdan Kustowski, and Göran Ekström. “Radial seismic anisotropy as a constraint for upper mantle rheology”. In: Earth Planet. Sci. Lett. 267.1-2 (2008), pp. 213–227. doi: 10.1016/j.epsl.2007.11.038.

[153]

Thorsten W Becker and Sergei Lebedev. “Dynamics of the upper mantle in light of seismic anisotropy”. In: Mantle convection and surface expressions (2021), pp. 257–282. doi: 10. 1002/9781119528609.ch10.

[154]

Thorsten W Becker and Richard J O’Connell. “Predicting plate velocities with mantle circulation models”. In: Geochem. Geophys. Geosyst. 2.12 (2001).

[155]

TW Becker. “Azimuthal seismic anisotropy constrains net rotation of the lithosphere”. In: Geophys. Res. Lett. 35.5 (2008). doi: 10.1029/2007GL032928.

[156]

TW Becker and H Kawakatsu. “On the role of anisotropic viscosity for plate-scale flow”. In: Geophys. Res. Lett. 38.17 (2011). doi: 10.1029/2011GL048584.

[157]

Heather Bedle, Catherine M Cooper, and Carol D Frost. “Nature versus nurture: Preservation and destruction of Archean cratons”. In: Tectonics 40.9 (2021), e2021TC006714. doi: 6714.https://doi.org/10.1029/2021TC006714.

[158]

P van de Beek and Jean Braun. “Numerical modelling of landscape evolution on geological time-scales: A parameter analysis and comparison with the south-eastern highlands of Australia”. In: Basin Research 10.1 (1998), pp. 49–68. doi: 10.1046/j.1365-2117. 1998.00056.x.

[159]

M.D. Behn, J. Lin, and M.T. Zuber. “A continuum mechanics model for normal faulting using a strain-rate softening rheology: implications for thermal and rheological controls on continental and oceanic rifting”. In: Earth Planet. Sci. Lett. 202 (2002), pp. 725–740. doi: 10.1016/S0012-821X(02)00792-6.

[160]

Mark D Behn, Greg Hirth, and James R Elsenbeck II. “Implications of grain size evolution on the seismic structure of the oceanic upper mantle”. In: Earth Planet. Sci. Lett. 282.1-4 (2009), pp. 178–189. doi: 10.1016/j.epsl.2009.03.014.

[161]

Marie Běhounková, Gabriel Tobie, Gaël Choblet, and Ondřej Čadek. “Coupling mantle convection and tidal dissipation: Applications to Enceladus and Earth-like planets”. In: J. Geophys. Res.: Planets 115.E9 (2010). doi: 10.1029/2009JE003564.

[162]

Whitney M Behr, Taras V Gerya, Claudio Cannizzaro, and Robert Blass. “Transient Slow Slip Characteristics of Frictional-Viscous Subduction Megathrust Shear Zones”. In: AGU Advances 2.3 (2021), e2021AV000416. doi: 10.1029/2021AV000416.

[163]

Whitney M Behr, Adam F Holt, Thorsten W Becker, and Claudio Faccenna. “The effects of plate interface rheology on subduction kinematics and dynamics”. In: Geophy. J. Int. 230.2 (2022), pp. 796–812. doi: 10.1093/gji/ggac075.

[164]

Nicolas Bellahsen, Laurent Husson, Julia Autin, Sylvie Leroy, and Elia d’Acremont. “The effect of thermal weakening and buoyancy forces on rift localization: Field evidences from the Gulf of Aden oblique rifting”. In: Tectonophysics 607 (2013), pp. 80–97. doi: 10. 1016/j.tecto.2013.05.042.

[165]

A. Bellas, Sh. Zhong, D. Bercovici, and E. Mulyukova. “Dynamic weakening with grain-damage and implications for slab detachment”. In: Phys. Earth. Planet. Inter. 285 (2018), pp. 76–90. doi: 10.1016/j.pepi.2018.09.001.

[166]

A Bellas-Manley and L Royden. “Basal Mantle Flow Over LLSVPs Explains Differences in Pacific and Indo-Atlantic Hotspot Motions”. In: J. Geophys. Res.: Solid Earth 129.1 (2024), e2023JB027636. doi: 10.1029/2023JB027636.

[167]

Léa Bello, Nicolas Coltice, Tobias Rolf, and Paul J Tackley. “On the predictability limit of convection models of the Earth’s mantle”. In: Geochem. Geophys. Geosyst. 15.6 (2014), pp. 2319–2328. doi: 10.1002/2014GC005254.

[168]

Léa Bello, Nicolas Coltice, Paul J Tackley, R Dietmar Müller, and John Cannon. “Assessing the role of slab rheology in coupled plate-mantle convection models”. In: Earth Planet. Sci. Lett. 430 (2015), pp. 191–201. doi: 10.1016/j.epsl.2015.08.010.

[169]

Z Ben-Avraham, V Lyakhovsky, and M Grasso. “Simulation of collision zone segmentation in the central Mediterranean”. In: Tectonophysics 243.1-2 (1995), pp. 57–68. doi: 10. 1016/0040-1951(94)00191-B.

[170]

Vladimir Benes and Philippe Davy. “Modes of continental lithospheric extension: experimental verification of strain localization processes”. In: Tectonophysics 254.1-2 (1996), pp. 69–87. doi: 10.1016/0040-1951(95)00076-3.

[171]

Nina Benesova and Hana Ciskova. “Effect of post-perovskite rheology on the thermal evolution of the Earth”. In: Phys. Earth. Planet. Inter. 251 (2016), pp. 1–10. doi: 10. 1016/j.pepi.2015.11.004.

[172]

A.K. Bengtson and P.E. van Keken. “Three-dimensional thermal structure of subduction zones: effects of obliquity and curvature”. In: Solid Earth 3 (2012), pp. 365–373. doi: 10.5194/se-3-365-2012.

[173]

A Beniest, A Koptev, and Evgenii Burov. “Numerical models for continental break-up: Implications for the South Atlantic”. In: Earth Planet. Sci. Lett. 461 (2017), pp. 176–189. doi: 10.1016/j.epsl.2016.12.034.

[174]

Anouk Beniest, Ernst Willingshofer, Dimitrios Sokoutis, and William Sassi. “Extending continental lithosphere with lateral strength variations: effects on deformation localization and margin geometries”. In: Frontiers in Earth Science 6 (2018), p. 148. doi: 10.3389/ feart.2018.00148.

[175]

S van Benthem and Rob Govers. “The Caribbean plate: Pulled, pushed, or dragged?” In: J. Geophys. Res.: Solid Earth 115.B10 (2010), B10409. doi: 10.1029/2009JB006950.

[176]

S van Benthem, Rob Govers, and Rinus Wortel. “What drives microplate motion and deformation in the northeastern Caribbean plate boundary region?” In: Tectonics 33 (2014), pp. 850–873. doi: 10.1002/2013TC003402.

[177]

D. Bercovici and E. Mulyukova. “A continuum theory for phase mixing and grain-damage relevant to tectonic plate boundary evolution”. In: Phys. Earth. Planet. Inter. 285 (2018), pp. 23–44. doi: 10.1016/j.pepi.2018.10.005.

[178]

D. Bercovici, E. Mulyukova, and M.D. Long. “A simple toy model for coupled retreat and detachment of subducting slabs”. In: Journal of Geodynamics 129 (2019), pp. 275–289. doi: 10.1016/j.jog.2018.03.002.

[179]

D. Bercovici, G. Schubert, and G.A. Glatzmaier. “Three-dimensional convection of an infinite Prandtl-number compressible fluid in a basally heated spherical shell”. In: J. Fluid Mech. 239 (1992), pp. 683–719. doi: 10.1017/S0022112092004580.

[180]

D. Bercovici, G. Schubert, G.A. Glatzmaier, and A. Zebib. “Three-dimensional thermal convection in a spherical shell”. In: J. Fluid Mech. 206 (1989), pp. 75–104. doi: 10.1017/ S0022112089002235.

[181]

D. Bercovici, G. Schubert, and Yanick Ricard. “Abrupt tectonics and rapid slab detachment with grain damage”. In: Proceedings of the National Academy of Sciences 112.5 (2015), pp. 1287–1291. doi: 10.1073/pnas.1415473112.

[182]

D. Bercovici, G. Schubert, and A. Zebib. “Geoid and topography for infinite Prandtl number convection in a shell”. In: J. Geophys. Res.: Solid Earth 93.B6 (1988), pp. 6430–6436. doi: 10.1029/JB093iB06p06430.

[183]

David Bercovici. “A simple model of plate generation from mantle flow”. In: Geophy. J. Int. 114.3 (1993), pp. 635–650. doi: 10.1111/j.1365-246X.1993.tb06993.x.

[184]

David Bercovici. “A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow”. In: J. Geophys. Res.: Solid Earth 100.B2 (1995), pp. 2013–2030.

[185]

David Bercovici. “Generation of plate tectonics from lithosphere–mantle flow and void–volatile self-lubrication”. In: Earth Planet. Sci. Lett. 154.1-4 (1998), pp. 139–151.

[186]

David Bercovici. “Plate generation in a simple model of lithosphere-mantle flow with dynamic self-lubrication”. In: Earth Planet. Sci. Lett. 144.1-2 (1996), pp. 41–51.

[187]

David Bercovici and Shun-ichiro Karato. “Whole-mantle convection and the transition-zone water filter”. In: Nature 425.6953 (2003), pp. 39–44. doi: 10.1038/nature01918.

[188]

David Bercovici and Yanick Ricard. “Energetics of a two-phase model of lithospheric damage, shear localization and plate-boundary formation”. In: Geophy. J. Int. 152.3 (2003), pp. 581–596.

[189]

David Bercovici and Yanick Ricard. “Generation of plate tectonics with two-phase grain-damage and pinning: Source–sink model and toroidal flow”. In: Earth Planet. Sci. Lett. 365 (2013), pp. 275–288. doi: 10.1016/j.epsl.2013.02.002.

[190]

David Bercovici and Yanick Ricard. “Plate tectonics, damage and inheritance”. In: Nature 508.7497 (2014), pp. 513–516. doi: 10.1038/nature13072.

[191]

David Bercovici, Yanick Ricard, and Gerald Schubert. “A two-phase model for compaction and damage: 1. General theory”. In: J. Geophys. Res.: Solid Earth 106.B5 (2001), pp. 8887–8906.

[192]

David Bercovici, Gerald Schubert, and Paul J Tackley. “On the penetration of the 660 km phase change by mantle downflows”. In: Geophys. Res. Lett. 20.23 (1993), pp. 2599–2602. doi: 10.1029/93GL02691.

[193]

Constantijn J Berends, Heiko Goelzer, Thomas J Reerink, Lennert B Stap, and Roderik SW Van De Wal. “Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0)”. In: Geosci. Model. Dev. 15.14 (2022), pp. 5667–5688. doi: 10.5194/gmd-15-5667- 2022.

[194]

Constantijn J Berends, Heiko Goelzer, and Roderik SW Van De Wal. “The Utrecht Finite Volume Ice-Sheet Model: UFEMISM (version 1.0)”. In: Geosci. Model. Dev. 14.5 (2021), pp. 2443–2470. doi: 10.5194/gmd-14-2443-2021.

[195]

A.P. van den Berg, M.V. De Hoop, D.A. Yuen, A. Duchkov, R.D. van der Hilst, and M.H.G. Jacobs. “Geodynamical modeling and multiscale seismic expression of thermo-chemical heterogeneity and phase transitions in the lowermost mantle”. In: Phys. Earth. Planet. Inter. 180.3-4 (2010), pp. 244–257. doi: 10.1016/j.pepi.2010.02.008.

[196]

A.P. van den Berg, E.S.G. Rainey, and D.A. Yuen. “The combined influences of variable thermal conductivity, temperature- and pressure-dependent viscosity and core-mantle coupling on thermal evolution”. In: Phys. Earth. Planet. Inter. 149.3-4 (2005), pp. 259–278. doi: 10.1016/j.pepi.2004.10.008.

[197]

A.P. van den Berg and D.A. Yuen. “Convectively induced transition in mantle rheological behavior”. In: Geophys. Res. Lett. 22.12 (1995), pp. 1549–1552. doi: 10.1029/95GL01201.

[198]

A.P. van den Berg, D.A. Yuen, M.H.G. Jacobs, and M.V. de Hoop. “Small-scale mineralogical heterogeneity from variations in phase assemblages in the transition zone and D” layer predicted by convection modelling”. In: Journal of Earth Science 22.2 (2011), pp. 160–168. doi: 10.1007/s12583-011-0168-7.

[199]

A.P. van den Berg, D.A. Yuen, and P.E. van Keken. “Effects of depth-variations in Creep Laws on the formation of plates in mantle dynamics”. In: Geophys. Res. Lett. 18.12 (1991), pp. 2197–2200. doi: 10.1029/91GL02573.

[200]

A.P. van den Berg, D.A. Yuen, K. Umemoto, M.H.G. Jacobs, and R.M. Wentzcovitch. “Mass-dependent dynamics of terrestrial exoplanets using ab initio mineral properties”. In: Icarus 317 (2019), pp. 412–426. doi: 10.1016/j.icarus.2018.08.016.

[201]

Arie P van den Berg, Peter E van Keken, and David A Yuen. “The effects of a composite non-Newtonian and Newtonian rheology on mantle convection”. In: Geophy. J. Int. 115.1 (1993), pp. 62–78. doi: 10.1111/j.1365-246X.1993.tb05588.x.

[202]

Arie P van den Berg and David A Yuen. “Is the lower-mantle rheology Newtonian today?” In: Geophys. Res. Lett. 23.16 (1996), pp. 2033–2036. doi: 10.1029/96GL02065.

[203]

H Berner, Hans Ramberg, and Ove Stephansson. “Diapirism theory and experiment”. In: Tectonophysics 15.3 (1972), pp. 197–218.

[204]

A. Bessat, T. Duretz, G. Hetényi, S. Pilet, and S.M. Schmalholz. “Stress and deformation mechanisms at a subduction zone: insights from 2-D thermomechanical numerical modelling”. In: Geophy. J. Int. 221.3 (2020), pp. 1605–1625. doi: 10.1093/gji/ggaa092.

[205]

Annelore Bessat, Sebastien Pilet, Yuri Y Podladchikov, and Stefan M Schmalholz. “Melt migration and chemical differentiation by reactive porosity waves”. In: Geochem. Geophys. Geosyst. 23.2 (2022), e2021GC009963. doi: 10.1029/2021GC009963.

[206]

P.G. Betts, W.G. Mason, and L. Moresi. “The influence of a mantle plume head on the dynamics of a retreating subduction zone”. In: Geology 40.8 (2012), pp. 739–742. doi: 10.1130/G32909.1.

[207]

Peter G Betts, Louis Moresi, Meghan S Miller, and David Willis. “Geodynamics of oceanic plateau and plume head accretion and their role in Phanerozoic orogenic systems of China”. In: Geoscience Frontiers 6.1 (2015), pp. 49–59. doi: 10.1016/j.gsf.2014.07.002.

[208]

R Beucher and RS Huismans. “Morphotectonic Evolution of Passive Margins Undergoing Active Surface Processes: Large-Scale Experiments Using Numerical Models”. In: Geochem. Geophys. Geosyst. 21.5 (2020), e2019GC008884. doi: 10.1029/2019GC008884.

[209]

Romain Beucher et al. “UWGeodynamics: A teaching and research tool for numerical geodynamic modelling”. In: Journal of Open Source Software 4.36 (2019), p. 1136. doi: 10.21105/joss.01136.

[210]

M.J. Beuchert and Y.Y. Podladchikov. “Viscoelastic mantle convection and lithospheric stresses”. In: Geophy. J. Int. 183 (2010), pp. 35–63. doi: 10.1111/j.1365-246X.2010. 04708.x.

[211]

Jilles van den Beukel and Rinus Wortel. “Temperatures and shear stresses in the upper part of a subduction zone”. In: Geophys. Res. Lett. 14.10 (1987), pp. 1057–1060. doi: 10.1029/GL014i010p01057.

[212]

Robert W Bialas and W Roger Buck. “How sediment promotes narrow rifting: Application to the Gulf of California”. In: Tectonics 28.4 (2009). doi: 10.1029/2008TC002394.

[213]

Marco Bianchi and Daniele Pedretti. “An entrogram-based approach to describe spatial heterogeneity with applications to solute transport in porous media”. In: Water Resources Research 54.7 (2018), pp. 4432–4448. doi: 10.1029/2018WR022827.

[214]

T. A. Bianco, C. P. Conrad, and E. I. Smith. “Time dependence of intraplate volcanism caused by shear-driven upwelling of low-viscosity regions within the asthenosphere”. In: J. Geophys. Res.: Solid Earth 116.B11 (2011). doi: 10.1029/2011JB008270.

[215]

James Biemiller, Susan Ellis, Marcel Mizera, Timothy Little, Laura Wallace, and Luc Lavier. “Tectonic inheritance following failed continental subduction: A model for core complex formation in cold, strong lithosphere”. In: Tectonics 38.5 (2019), pp. 1742–1763. doi: 10.1029/2018TC005383.

[216]

Andrew J Biggin et al. “Possible links between long-term geomagnetic variations and whole-mantle convection processes”. In: Nature Geoscience 5.8 (2012), p. 526. doi: 10. 1038/ngeo1521.

[217]

Harmen Bijwaard and Wim Spakman. “Tomographic evidence for a narrow whole mantle plume below Iceland”. In: Earth Planet. Sci. Lett. 166.3-4 (1999), pp. 121–126. doi: 10. 1016/S0012-821X(99)00004-7.

[218]

M.I. Billen and K.M. Arredondo. “Decoupling of plate-asthenosphere motion caused by non-linear viscosity during slab folding in the transition zone”. In: Phys. Earth. Planet. Inter. 281 (2018), pp. 17–30. doi: 10.1016/j.pepi.2018.04.011.

[219]

M.I. Billen and M. Gurnis. “A low wedge in subduction zones”. In: Earth Planet. Sci. Lett. 193 (2001), pp. 227–236.

[220]

M.I. Billen and G. Hirth. “Newtonian versus non-Newtonian upper mantle viscosity: Implications for subduction initiation”. In: Geophys. Res. Lett. 32.L19304 (2005). doi: 10.1029/2005GL023457.

[221]

M.I. Billen and G. Hirth. “Rheologic controls on slab dynamics”. In: Geochem. Geophys. Geosyst. 8.8 (2007). doi: 10.1029/2007GC001597.

[222]

M.I. Billen and M. Jadamec. “Origin of localized fast mantle f low velocity in numerical models of subduction”. In: Geochem. Geophys. Geosyst. 13.1 (2012). doi: 10.1029/ 2011GC003856.

[223]

Magali I Billen. “Deep slab seismicity limited by rate of deformation in the transition zone”. In: Science Advances 6.22 (2020), eaaz7692. doi: 10.1126/sciadv.aaz7692.

[224]

Magali I Billen. “Soaking slabs”. In: Nature Geoscience 2.11 (2009), p. 744. doi: 10. 1038/ngeo674.

[225]

Magali I Billen, Michael Gurnis, and Mark Simons. “Multiscale dynamics of the Tonga-Kermadec subduction zone”. In: Geophy. J. Int. 153.2 (2003), pp. 359–388. doi: 10.1046/j.1365-246X.2003.01915.x.

[226]

Maurice A Biot and Helmer Odé. “Theory of gravity instability with variable overburden and compaction”. In: Geophysics 30.2 (1965), pp. 213–227.

[227]

Francis Birch. “Elasticity and constitution of the Earth’s interior”. In: J. Geophys. Res.: Solid Earth 57.2 (1952), pp. 227–286. doi: 10.1029/JZ057i002p00227.

[228]

P. Bird. “Testing hypotheses on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults”. In: J. Geophys. Res.: Solid Earth 103.B5 (1998), pp. 10, 115–10, 129.

[229]

Peter Bird. “Continental delamination and the Colorado Plateau”. In: J. Geophys. Res.: Solid Earth 84.B13 (1979), pp. 7561–7571. doi: 10.1029/JB084iB13p07561.

[230]

Peter Bird. “Initiation of intracontinental subduction in the Himalaya”. In: J. Geophys. Res.: Solid Earth 83.B10 (1978), pp. 4975–4987.

[231]

Peter Bird. “Thin-plate and thin-shell finite-element programs for forward dynamic modeling of plate deformation and faulting”. In: Computers & Geosciences 25.4 (1999), pp. 383–394.

[232]

Peter Bird and John Baumgardner. “Steady propagation of delamination events”. In: J. Geophys. Res.: Solid Earth 86.B6 (1981), pp. 4891–4903. doi: 10.1029/JB086iB06p04891.

[233]

Peter Bird and Zhen Liu. “Global finite-element model makes a small contribution to intraplate seismic hazard estimation”. In: Bulletin of the Seismological Society of America 89.6 (1999), pp. 1642–1647. doi: 10.1785/BSSA0890061642.

[234]

Peter Bird, Zhen Liu, and William Kurt Rucker. “Stresses that drive the plates from below: Definitions, computational path, model optimization, and error analysis”. In: J. Geophys. Res.: Solid Earth 113.B11 (2008).

[235]

Peter Bird, M Nafi Toksöz, and Norman H Sleep. “Thermal and mechanical models of continent-continent convergence zones”. In: J. Geophys. Res.: Solid Earth 80.32 (1975), pp. 4405–4416. doi: 10.1029/JB080i032p04405.

[236]

BI Birger. “Rheological Model of the Earth’s and the Terrestrial Planets’ Mantles”. In: Computational Seismology and Geodynamics 3 (1996), pp. 1–7.

[237]

D. Bittner and H. Schmeling. “Numerical modelling of melting processes and induced diapirism in the lower crust”. In: Geophy. J. Int. 123 (1995), pp. 59–70. doi: 10.1111/ j.1365-246X.1995.tb06661.x.

[238]

I.F. Blanco-Quintero, T.V. Gerya, A. Garcia-Casco, and A. Castro. “Subduction of young oceanic plates: A numerical study with application to aborted thermal-chemical plumes”. In: Geochem. Geophys. Geosyst. 12.10 (2011). doi: 10.1029/2011GC003717.

[239]

AM Bobrov and AA Baranov. “Thermochemical Mantle Convection with Drifting Deformable Continents: Main Features of Supercontinent Cycle”. In: Pure Appl. Geophys. (2019), pp. 1–21. doi: 10.1007/s00024-019-02164-w.

[240]

AM Bobrova and AA Baranov. “The mantle convection model with non-Newtonian rheology and phase transitions: The flow structure and stress fields”. In: Izvestiya, Physics of the Solid Earth 52.1 (2016), pp. 129–143. doi: 10.1134/S1069351316010031.

[241]

M Bocher, Nicolas Coltice, Alexandre Fournier, and Paul J Tackley. “A sequential data assimilation approach for the joint reconstruction of mantle convection and surface tectonics”. In: Geophy. J. Int. 204.1 (2016), pp. 200–214.

[242]

L. Bodri and B. Bodri. “Flow, stress and temperature in island arc areas”. In: Geophysical & Astrophysical Fluid Dynamics 13.1 (1979), pp. 95–105. doi: 10.1080/ 03091927908243763.

[243]

Ömer F Bodur and Nicolas Flament. “Kimberlite magmatism fed by upwelling above mobile basal mantle structures”. In: Nature Geoscience (2023), pp. 1–7. doi: 10.1038/s41561- 023-01181-8.

[244]

Ömer F Bodur and Patrice F Rey. “The impact of rheological uncertainty on dynamic topography predictions”. In: Solid Earth 10.6 (2019), pp. 2167–2178. doi: 10.5194/se- 10-2167-2019.

[245]

Reinhard Boehler. “Melting temperature of the Earth’s mantle and core: Earth’s thermal structure”. In: Annual Review of Earth and Planetary Sciences 24.1 (1996), pp. 15–40.

[246]

Francesca Boioli et al. “Pure climb creep mechanism drives flow in Earth’s lower mantle”. In: Science advances 3.3 (2017), e1601958. doi: 10.1126/sciadv.1601958.

[247]

Peter Charles Bollada and Timothy Nigel Phillips. “On the mathematical modelling of a compressible viscoelastic fluid”. In: Archive for Rational Mechanics and Analysis 205.1 (2012), pp. 1–26. doi: 10.1007/s00205-012-0496-5.

[248]

Daniela Paz Bolrão et al. “Timescales of chemical equilibrium between the convecting solid mantle and over-/underlying magma oceans”. In: Solid Earth Discussions (2020), pp. 1–22. doi: 10.5194/se-2020-49.

[249]

Marco Bonini, Giacomo Corti, Dimitrios Sokoutis, Gianfranco Vannucci, Paolo Gasperini, and Sierd Cloetingh. “Insights from scaled analogue modelling into the seismotectonics of the Iranian region”. In: Tectonophysics 376.3-4 (2003), pp. 137–149.

[250]

M.-A. Bonnardot, R. Hassani, and E. Tric. “Numerical modelling of lithosphere-asthenosphere interaction in a subduction zone”. In: Earth Planet. Sci. Lett. 272 (2008), pp. 698–708. doi: 10.1016/j.epsl.2008.06.009.

[251]

M.-A. Bonnardot, R. Hassani, E. Tric, E. Ruellan, and M. Regnier. “Effect of margin curvature on plate deformation in a 3-D numerical model of subduction zones”. In: Geophy. J. Int. 173 (2008), pp. 1084–1094. doi: 10.1111/j.1365-246X.2008.03752.x.

[252]

S. Bonnet. “Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide”. In: Nature Geoscience 2 (2009), pp. 766–771. doi: 10.1038/NGEO666.

[253]

Stephane Bonnet and Alain Crave. “Macroscale dynamics of experimental landscapes”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 327–339.

[254]

R.K. Bono, J.A. Tarduno, and H.-P. Bunge. “Hotspot motion caused the Hawaiian-Emperor Bend and LLSVPs are not fixed”. In: Nature Communications 10.1 (2019). doi: 10.1038/ s41467-019-11314-6.

[255]

Paul D Bons et al. “Converging flow and anisotropy cause large-scale folding in Greenland’s ice sheet”. In: Nature Communications 7.1 (2016), p. 11427. doi: 10.1038/ncomms11427.

[256]

K Boonma, A Kumar, D Garc´i    a-Castellanos, I Jiménez-Munt, and M Fernández. “Lithospheric mantle buoyancy: the role of tectonic convergence and mantle composition”. In: Scientific Reports 9.1 (2019), pp. 1–8. doi: 10.1038/s41598-019-54374-w.

[257]

Kittiphon Boonma, Daniel Garc´i  a-Castellanos, Ivone Jiménez-Munt, and Taras Gerya. “Thermomechanical modelling of lithospheric slab tearing and its topographic response”. In: Frontiers in Earth Science 11 (2023), p. 1095229. doi: 10.3389/feart.2023.1095229.

[258]

H. de Boorder, W. Spakman, S.H. White, and M.J.R. Wortel. “Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt”. In: Earth Planet. Sci. Lett. 164 (1998), pp. 569–575. doi: 10.1016/S0012-821X(98)00247-7.

[259]

Xavier Borgeat and Paul J Tackley. “Hadean/Eoarchean tectonics and mantle mixing induced by impacts: a three-dimensional study”. In: Progress in Earth and Planetary Science 9.1 (2022), pp. 1–19. doi: 10.1186/s40645-022-00497-0.

[260]

René de Borst and Thibault Duretz. “On viscoplastic regularisation of strain-softening rocks and soils”. In: International Journal for Numerical and Analytical Methods in Geomechanics 44.6 (2020), pp. 890–903. doi: 10.1002/nag.3046.

[261]

Lapo Boschi, G Ekström, and Bogdan Kustowski. “Multiple resolution surface wave tomography: the Mediterranean basin”. In: Geophy. J. Int. 157.1 (2004), pp. 293–304. doi: 10.1111/j.1365-246X.2004.02194.x.

[262]

Lapo Boschi, Claudio Faccenna, and TW Becker. “Mantle structure and dynamic topography in the Mediterranean Basin”. In: Geophys. Res. Lett. 37.20 (2010). doi: 10.1029/ 2010GL045001.

[263]

AP Boss, CL Angevine, and IS Sacks. “Finite-amplitude models of convection in the early mantle”. In: Phys. Earth. Planet. Inter. 36.3-4 (1984), pp. 328–336. doi: 10.1016/0031- 9201(84)90055-4.

[264]

Andrea B Bossmann and Peter E van Keken. “Dynamics of plumes in a compressible mantle with phase changes: Implications for phase boundary topography”. In: Phys. Earth. Planet. Inter. 224 (2013), pp. 21–31. doi: 10.1016/j.pepi.2013.09.002.

[265]

William Bosworth. “Geometry of propagating continental rifts”. In: Nature 316.6029 (1985), p. 625. doi: 10.1038/316625a0.

[266]

MHP Bott, GD Waghorn, and A Whittaker. “Plate boundary forces at subduction zones and trench-arc compression”. In: Tectonophysics 170.1-2 (1989), pp. 1–15.

[267]

A.D. Bottrill, J. van Hunen, and M.B. Allen. “Insight into collision zone dynamics from topography: numerical modelling results and observations”. In: Solid Earth 3 (2012), pp. 387–399. doi: 10.5194/se-3-387-2012.

[268]

AD Bottrill, Jeroan van Hunen, SJ Cuthbert, Hannes K Brueckner, and MB Allen. “Plate rotation during continental collision and its relationship with the exhumation of UHP metamorphic terranes: Application to the Norwegian Caledonides”. In: Geochem. Geophys. Geosyst. 15.5 (2014), pp. 1766–1782.

[269]

Mathieu Bouffard, Gaël Choblet, Stéphane Labrosse, and Johannes Wicht. “Chemical convection and stratification in the Earth’s outer core”. In: Frontiers in Earth Science 7 (2019), p. 99. doi: 10.3389/feart.2019.00099.

[270]

P. Bouilhol, V. Magni, J. van Hunen, and L. Kaislaniemi. “A numerical approach to melting in warm subduction zones”. In: Earth Planet. Sci. Lett. 411 (2015), pp. 37–44.

[271]

Johannes Bouman et al. “GOCE gravity gradient data for lithospheric modeling”. In: International Journal of Applied Earth Observation and Geoinformation 35 (2015), pp. 16–30.

[272]

D. Boutelier, A. Chemenda, and C. Jorand. “Continental subduction and exhumation of high-pressure rocks: insights from thermo-mechanical laboratory modelling”. In: Earth Planet. Sci. Lett. 222 (2004), pp. 209–216. doi: 10.1016/j.epsl.2004.02.013.

[273]

D.J. Bower, M. Gurnis, and N. Flament. “Assimilating lithosphere and slab history in 4-D Earth models”. In: Phys. Earth. Planet. Inter. 238 (2015), pp. 8–22. doi: 10.1016/j. pepi.2014.10.013.

[274]

D.J. Bower, M. Gurnis, and M. Seton. “Lower mantle structure from paleogeographically constrained dynamic Earth models”. In: Geochem. Geophys. Geosyst. 14.1 (2012), pp. 44–63. doi: 10.1029/2012GC004267.

[275]

D.J. Bower, M. Gurnis, and D. Sun. “Dynamic origins of seismic wavespeed variation in D””. In: Phys. Earth. Planet. Inter. 214 (2013), pp. 74–86. doi: 10.1016/j.pepi.2012.10.004.

[276]

Dan J Bower, Michael Gurnis, Jennifer M Jackson, and Wolfgang Sturhahn. “Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase”. In: Geophys. Res. Lett. 36.10 (2009). doi: 10.1029/2009GL037706.

[277]

Dan J Bower, June K Wicks, Michael Gurnis, and Jennifer M Jackson. “A geodynamic and mineral physics model of a solid-state ultralow-velocity zone”. In: Earth Planet. Sci. Lett. 303.3-4 (2011), pp. 193–202. doi: 10.1016/j.epsl.2010.12.035.

[278]

W.F. Brace and D.L. Kohlstedt. “Limits on lithospheric stress imposed by laboratory experiments”. In: J. Geophys. Res.: Solid Earth 85 (1980), pp. 6248–6252.

[279]

CARLA Braitenberg, MARIA Zadro, J Fang, Y Wang, and HT Hsu. “The gravity and isostatic Moho undulations in Qinghai–Tibet plateau”. In: Journal of Geodynamics 30.5 (2000), pp. 489–505. doi: 10.1016/S0264-3707(00)00004-1.

[280]

J.P. Brandenburg, E.H. Hauri, P.E. van Keken, and C.J. Ballentine. “A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects”. In: Earth Planet. Sci. Lett. 276 (2008), pp. 1–13. doi: 10.1016/ j.epsl.2008.08.027.

[281]

J.P. Brandenburg and P.E. van Keken. “Deep storage of oceanic crust in a vigorously convecting mantle”. In: J. Geophys. Res.: Solid Earth 112.B06403 (2007).

[282]

J.P. Brandenburg and P.E. van Keken. “Methods for thermochemical convection in Earth’s mantle with force-balanced plates”. In: Geochem. Geophys. Geosyst. 8.11 (2007).

[283]

J.M. Branlund, K. Regenauer-Lieb, and D.A. Yuen. “Weak zone formation for initiating subduction from thermo-mechanical feedback of low-temperature plasticity”. In: Earth Planet. Sci. Lett. 190 (2001), pp. 237–250.

[284]

Joy M Branlund, Masanori C Kameyama, David A Yuen, and Yoshiyuki Kaneda. “Effects of temperature-dependent thermal diffusivity on shear instability in a viscoelastic zone: implications for faster ductile faulting and earthquakes in the spinel stability field”. In: Earth Planet. Sci. Lett. 182.2 (2000), pp. 171–185.

[285]

J Braun, Xavier Robert, and T Simon-Labric. “Eroding dynamic topography”. In: Geophys. Res. Lett. 40.8 (2013), pp. 1494–1499. doi: 10.1002/grl.50310.

[286]

J. Braun. “Pecube: a new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography”. In: Computers and Geosciences 29 (2003), pp. 787–794. doi: 10.1016/S0098-3004(03)00052-9.

[287]

J. Braun. “Recent advances and current problems in modelling surface processes and their interaction with crustal deformation”. In: Analogue and Numerical Modelling of Crustal-Scale Processes. Geological Society, London. Special Publications 253 (2006), pp. 307–325. doi: 10.1144/GSL.SP.2006.253.01.16.

[288]

J. Braun and C. Beaumont. Contrasting styles of lithospheric extension: implications for differences between the Basin and Range Province and rifted continental margins. AAPG Special Volumes, 1989, pp. 53–79. doi: xxxx.

[289]

J. Braun and C. Beaumont. “Dynamical models of the role of crustal shear zones in asymmetric continental extension”. In: Earth Planet. Sci. Lett. 93.3-4 (1989), pp. 405–423. doi: 10.1016/0012-821X(89)90039-3.

[290]

J. Braun and M. Sambridge. “Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretisation”. In: Basin Research 9 (1997), pp. 27–52. doi: 10.1046/j.1365-2117.1997.00030.x.

[291]

J. Braun and S.D. Willett. “A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution”. In: Geomorphology 180–181 (2013), pp. 170–179.

[292]

J. Braun and P. Yamato. “Structural evolution of a three-dimensional, finite-width crustal wedge”. In: Tectonophysics 484 (2010), pp. 181–192. doi: 10.1016/j.tecto.2009.08. 032.

[293]

J. Braun et al. “A simple parameterization of strain localization in the ductile regime due to grain-size reduction: a case study for olivine”. In: J. Geophys. Res.: Solid Earth 104 (1999), pp. 25, 167–25, 181. doi: 10.1029/1999JB900214.

[294]

Jean Braun. “The many surface expressions of mantle dynamics”. In: Nature Geoscience 3.12 (2010), p. 825. doi: 10.1038/ngeo1020.

[295]

Jean Braun. “Three-dimensional numerical modeling of compressional orogenies: Thrust geometry and oblique convergence”. In: Geology 21.2 (1993), pp. 153–156. doi: 10.1130/ 0091-7613(1993)021<0153:TDNMOC>2.3.CO;2.

[296]

Jean Braun and Christopher Beaumont. “A physical explanation of the relation between flank uplifts and the breakup unconformity at rifted continental margins”. In: Geology 17.8 (1989), pp. 760–764.

[297]

Jean Braun and Christopher Beaumont. “Styles of continental rifting: results from dynamic models of lithospheric extension”. In: Canadian Society of Petroleum Geologists, Memoir 12 (1987), pp. 241–258.

[298]

Jean Braun and Christopher Beaumont. “Three-dimensional numerical experiments of strain partitioning at oblique plate boundaries: Implications for contrasting tectonic styles in the southern Coast Ranges, California, and central South Island, New Zealand”. In: J. Geophys. Res.: Solid Earth 100.B9 (1995), pp. 18, 059–18, 074. doi: 10.1029/95JB01683.

[299]

Jean Braun and Russell Shaw. “A thin-plate model of Palaeozoic deformation of the Australian lithosphere: implications for understanding the dynamics of intracratonic deformation”. In: Geological Society, London, Special Publications 184.1 (2001), pp. 165–193.

[300]

Jean Braun et al. “Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE”. In: Tectonophysics 524 (2012), pp. 1–28. doi: 10.1016/j.tecto.2011.12.035.

[301]

E. Bredow, B. Steinberger, R. Gassmöller, and J. Dannberg. “How plume-ridge interaction shapes the crustal thickness pattern of the Réunion hotspot track”. In: Geochem. Geophys. Geosyst. (2017). doi: 10.1002/2017GC006875.

[302]

J.-C. de Bremaecker. “Is the oceanic lithosphere elastic or viscous?” In: J. Geophys. Res.: Solid Earth 82.14 (1977), pp. 2001–2004.

[303]

M Breuer and U Hansen. “Turbulent convection in the zero Reynolds number limit”. In: EPL (Europhysics Letters) 86.2 (2009), p. 24004. doi: 10.1209/0295-5075/86/24004.

[304]

M Breuer, A Manglik, J Wicht, T Trümper, H Harder, and U Hansen. “Thermochemically driven convection in a rotating spherical shell”. In: Geophy. J. Int. 183.1 (2010), pp. 150–162. doi: 10.1111/j.1365-246X.2010.04722.x.

[305]

M Breuer, S Wessling, J Schmalzl, and U Hansen. “Effect of inertia in Rayleigh-Bénard convection”. In: Physical Review E 69.2 (2004), p. 026302. doi: 10.1103/PhysRevE.69. 026302.

[306]

Arthur Briaud, Roberto Agrusta, Claudio Faccenna, Francesca Funiciello, and Jeroen van Hunen. “Topographic fingerprint of deep mantle subduction”. In: J. Geophys. Res.: Solid Earth 125 (2020), e2019JB017962. doi: 10.1029/2019JB017962.

[307]

RJ Bridwell and CA Anderson. Thermomechanical models of the Rio Grande rift. Tech. rep. Los Alamos Scientific Lab., NM (USA), 1980.

[308]

RJ Bridwell and C Potzick. “Thermal regimes, mantle diapirs and crustal stresses of continental rifts”. In: Tectonophysics 73.1-3 (1981), pp. 15–32.

[309]

S Brizzi et al. “The role of sediment accretion and buoyancy on subduction dynamics and geometry”. In: Geophys. Res. Lett. 48.20 (2021), e2021GL096266. doi: 10.1029/ 2021GL096266.

[310]

Silvia Brizzi, Iris van Zelst, Francesca Funiciello, Fabio Corbi, and Ylona van Dinther. “How sediment thickness influences subduction dynamics and seismicity”. In: J. Geophys. Res.: Solid Earth 125.8 (2020), e2019JB018964. doi: 10.1029/2019JB018964.

[311]

Taco Broerse, Riccardo Riva, Wim Simons, Rob Govers, and Bert Vermeersen. “Postseismic GRACE and GPS observations indicate a rheology contrast above and below the Sumatra slab”. In: J. Geophys. Res.: Solid Earth 120 (2015), pp. 5343–5361. doi: 10.1002/ 2015JB011951.

[312]

J.-P. Brun. “Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments”. In: Philosopical Transactions of the Royal Society A 357 (1999), pp. 695–712. doi: 10.1098/rsta.1999.0349.

[313]

J.-P. Brun, D. Sokoutis, C. Tirel, F. Gueydan, J. van Den Driessche, and M.-O. Beslier. “Crustal versus mantle core complexes”. In: Tectonophysics 746 (2018), pp. 22–45. doi: 10.1016/j.tecto.2017.09.017.

[314]

Jean-Pierre Brun and Xavier Fort. “Salt tectonics at passive margins: Geology versus models”. In: Marine and Petroleum Geology 28.6 (2011), pp. 1123–1145. doi: 10.1016/ j.marpetgeo.2011.03.004.

[315]

S. Brune. “Evolution of stress and fault patterns in oblique rift systems: 3-D numerical lithospheric-scale experiments from rift to breakup”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 3392–3415. doi: 10.1002/2014GC005446.

[316]

S. Brune and J. Autin. “The rift to break-up evolution of the Gulf of Aden: Insights from 3D numerical lithospheric-scale modelling”. In: Tectonophysics 607 (2013), pp. 65–79. doi: 10.1016/j.tecto.2013.06.029.

[317]

S. Brune, A.A. Popov, and S. Sobolev. “Modeling suggests that oblique extension facilitates rifting and continental break-up”. In: J. Geophys. Res.: Solid Earth 117.B08402 (2012), 10.1029/2011JB008860. doi: 10.1029/2011JB008860.

[318]

S. Brune, A.A. Popov, and S. Sobolev. “Quantifying the thermo-mechanical impact of plume arrival on continental break-up”. In: Tectonophysics 604 (2013), pp. 51–59. doi: 10.1016/j.tecto.2013.02.009.

[319]

Sascha Brune. Modelling continental rift dynamics. habilitation. 2018. doi: 10.25932/ publishup-43236.

[320]

Sascha Brune, Giacomo Corti, and Giorgio Ranalli. “Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression”. In: Tectonics 36.9 (2017), pp. 1767–1786.

[321]

Sascha Brune, Christian Heine, Marta Pérez-Gussinyé, and Stephan V Sobolev. “Rift migration explains continental margin asymmetry and crustal hyper-extension”. In: Nature Communications 5.1 (2014), pp. 1–9. doi: 10.1038/ncomms5014.

[322]

Sascha Brune, Simon E Williams, and R Dietmar Müller. “Oblique rifting: the rule, not the exception”. In: Solid Earth 9.5 (2018), pp. 1187–1206. doi: 10.5194/se-9-1187-2018.

[323]

D. Brunet and D.A. Yuen. “Mantle plumes pinched in the transition zone”. In: Earth Planet. Sci. Lett. 178.1-2 (2000), pp. 13–27. doi: 10.1016/S0012-821X(00)00063-7.

[324]

David Brunet, Philippe Machetel, and David A Yuen. “Slab weakening by the exothermic olivine-spinel phase change”. In: Geophys. Res. Lett. 25.17 (1998), pp. 3231–3234. doi: 10.1029/98GL02253.

[325]

W Roger Buck. “Small-scale convection induced by passive rifting: the cause for uplift of rift shoulders”. In: Earth Planet. Sci. Lett. 77.3-4 (1986), pp. 362–372. doi: 10.1016/0012- 821X(86)90146-9.

[326]

W Roger Buck, Fernando Martinez, Michael S Steckler, and James R Cochran. “Thermal consequences of lithospheric extension: pure and simple”. In: Tectonics 7.2 (1988), pp. 213–234.

[327]

W Roger Buck and EM Parmentier. “Convection beneath young oceanic lithosphere: Implications for thermal structure and gravity”. In: J. Geophys. Res.: Solid Earth 91.B2 (1986), pp. 1961–1974. doi: 10.1029/JB091iB02p01961.

[328]

W Roger Buck and Dimitrios Sokoutis. “Analogue model of gravitational collapse and surface extension during continental convergence”. In: Nature 369.6483 (1994), p. 737. doi: 10.1038/369737a0.

[329]

W.R. Buck. “Modes of Continental Lithospheric Extension”. In: J. Geophys. Res.: Solid Earth 96.B2 (1991), pp. 20, 161–20, 178. doi: 10.1029/91JB01485.

[330]

W.R. Buck, L.L. Lavier, and A.N.B. Poliakov. “How to make a rift wide”. In: Phil. Trans. R. Soc. Lond. A 357 (1999), pp. 671–693.

[331]

W.R. Buck and A.N.B. Poliakov. “Abyssal hills formed by stretching oceanic lithosphere”. In: Nature 392 (1998), pp. 272–275. doi: 10.1038/32636.

[332]

WF Budd and TH Jacka. “A review of ice rheology for ice sheet modelling”. In: Cold Regions Science and Technology 16.2 (1989), pp. 107–144. doi: 10.1016/0165-232X(89)90014-1.

[333]

BA Buffett and TW Becker. “Bending stress and dissipation in subducted lithosphere”. In: J. Geophys. Res.: Solid Earth 117.B5 (2012). doi: 10.1029/2012JB009205.

[334]

Bruce A Buffett. “Plate force due to bending at subduction zones”. In: J. Geophys. Res.: Solid Earth 111.B9 (2006). doi: 10.1029/2006JB004295.

[335]

S. Buiter et al. “The numerical sandbox: comparison of model results for a shortening and an extension experiment”. In: Analogue and Numerical Modelling of Crustal-Scale Processes. Geological Society, London. Special Publications 253 (2006), pp. 29–64.

[336]

S.J.H. Buiter. “A review of brittle compressional wedge models”. In: Tectonophysics 530 (2012), pp. 1–17. doi: 10.1016/j.tecto.2011.12.018.

[337]

S.J.H. Buiter, R. Govers, and M.J.R. Wortel. “A modelling study of vertical surface displacements at convergent plate margins”. In: Geophy. J. Int. 147 (2001), pp. 415–427. doi: 10.1046/j.1365-246X.2001.00545.x.

[338]

S.J.H. Buiter, R. Govers, and M.J.R. Wortel. “Two-dimensional simulations of surface deformation caused by slab detachment”. In: Tectonophysics 354 (2002), pp. 195–210. doi: 10.1016/S0040-1951(02)00336-0.

[339]

S.J.H. Buiter, R.S. Huismans, and C. Beaumont. “Dissipation analysis as a guide to mode selection during crustal extension and implications for the styles of sedimentary basins”. In: J. Geophys. Res.: Solid Earth 113.B06406 (2008), B06406. doi: 10.1029/2007JB005272.

[340]

S.J.H. Buiter and O.A. Pfiffner. “Numerical models of the inversion of half-graben basins”. In: Tectonics 22 (2003). doi: 10.1029/2002TC001417.

[341]

S.J.H. Buiter, O.A. Pfiffner, and C. Beaumont. “Inversion of extensional sedimentary basins: A numerical evaluation of the localisation of shortening”. In: Earth Planet. Sci. Lett. 288 (2009), pp. 492–504. doi: 10.1016/j.epsl.2009.10.011.

[342]

SJH Buiter, MJR Wortel, and R Govers. “The role of subduction in the evolution of the Apennines foreland basin”. In: Tectonophysics 296.3-4 (1998), pp. 249–268. doi: 10. 1016/S0040-1951(98)00158-9.

[343]

Susanne Buiter. “Geodynamics: how plumes help to break plates”. In: Nature 513.7516 (2014), p. 36. doi: 10.1038/513036a.

[344]

Susanne JH Buiter. “Rheology in numerical models of lithosphere deformation”. In: Bollettino della Società geologica italiana 127.2 (2008), pp. 193–198. doi: xxxx.

[345]

Susanne JH Buiter and Trond H Torsvik. “A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures?” In: Gondwana Research 26.2 (2014), pp. 627–653. doi: 10.1016/j.gr.2014.02.007.

[346]

A.L. Bull, M. Domeier, and T.H. Torsvik. “The effect of plate motion history on the longevity of deep mantle heterogeneities”. In: Earth Planet. Sci. Lett. 401 (2014), pp. 172–182. doi: 10.1016/j.epsl.2014.06.008.

[347]

A.L. Bull, A.K. McNamara, T.W. Becker, and J. Ritsema. “Global scale models of the mantle flow field predicted by synthetic tomography models”. In: Phys. Earth. Planet. Inter. 182 (2010), pp. 129–138. doi: 10.1016/j.pepi.2010.03.004.

[348]

Abigail L Bull, Allen K McNamara, and Jeroen Ritsema. “Synthetic tomography of plume clusters and thermochemical piles”. In: Earth Planet. Sci. Lett. 278.3-4 (2009), pp. 152–162. doi: 10.1016/j.epsl.2008.11.018.

[349]

H.-P. Bunge. “Low plume excess temperature and high core heat flux inferred from non-adiabatic geotherms in internally heated mantle circulation models”. In: Phys. Earth. Planet. Inter. 153.1-3 (2005), pp. 3–10. doi: 10.1016/j.pepi.2005.03.017.

[350]

H.-P. Bunge and J.H. Davies. “Tomographic images of a mantle circulation model”. In: Geophys. Res. Lett. 28.1 (2001), pp. 77–80. doi: 10.1029/2000GL011804.

[351]

H.-P. Bunge, Y. Ricard, and J. Matas. “Non-adiabaticity in mantle convection”. In: Geophys. Res. Lett. 28.5 (2001), pp. 879–882. doi: 10.1029/2000GL011864.

[352]

H.-P. Bunge, M. Richards, C. Lithgow-Bertelloni, J.R. Baumgardner, S.P. Grand, and B. Romanowicz. “Time scales and heterogeneous structure in geodynamic Earth models”. In: Science 280 (1998), pp. 91–95.

[353]

H.-P. Bunge, M.A. Richards, and J.R. Baumgardner. “A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode, and endothermic phase change”. In: J. Geophys. Res.: Solid Earth 102.B6 (1997), pp. 11, 991–12, 007. doi: 10.1029/96JB03806.

[354]

H.-P. Bunge, M.A. Richards, and J.R. Baumgardner. “Effect of depth-dependent viscosity on the planform of mantle convection”. In: Nature 379 (1996), pp. 436–438. doi: 10. 1038/379436a0.

[355]

H.-P. Bunge, M.A. Richards, and J.R. Baumgardner. “Mantle-circulation models with sequential data assimilation: Inferring present-day mantle structure from plate-motion histories”. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 360.1800 (2002), pp. 2545–2567. doi: 10.1098/rsta.2002.1080.

[356]

Hans-Peter Bunge and John R Baumgardner. “Mantle convection modeling on parallel virtual machines”. In: Computers in physics 9.2 (1995), pp. 207–215. doi: 10.1063/1. 168525.

[357]

Hans-Peter Bunge, CR Hagelberg, and BJ Travis. “Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography”. In: Geophy. J. Int. 152.2 (2003), pp. 280–301. doi: 10.1046/j.1365-246X.2003.01823.x.

[358]

Hans-Peter Bunge and Mark A Richards. “The origin of large scale structure in mantle convection: effects of plate motions and viscosity stratification”. In: Geophys. Res. Lett. 23.21 (1996), pp. 2987–2990.

[359]

DW Burbank and N Pinter. “Landscape evolution: the interactions of tectonics and surface processes”. In: Basin Research 11.1 (1999), pp. 1–6.

[360]

D.R. Burbridge and J. Braun. “Analogue models of obliquely convergent continental plate boundaries”. In: J. Geophys. Res.: Solid Earth 103.B7 (1998), pp. 15, 221–15, 237. doi: 10.1029/98JB00751.

[361]

Steffi Burchardt, Hemin Koyi, and Harro Schmeling. “The influence of viscosity contrast on the strain pattern and magnitude within and around dense blocks sinking through Newtonian rock salt”. In: Journal of Structural Geology 35 (2012), pp. 102–116. doi: 10.1016/j. jsg.2011.07.007.

[362]

Steffi Burchardt, Hemin Koyi, Harro Schmeling, and Lukas Fuchs. “Sinking of anhydrite blocks within a Newtonian salt diapir: modelling the influence of block aspect ratio and salt stratification”. In: Geophy. J. Int. 188.3 (2012), pp. 763–778. doi: 10.1111/j.1365- 246X.2011.05290.x.

[363]

J-P Burg and Yu Podladchikov. “Lithospheric scale folding: numerical modelling and application to the Himalayan syntaxes”. In: International Journal of Earth Sciences 88.2 (1999), pp. 190–200. doi: 10.1007/s005310050259.

[364]

J.-P. Burg and T.V. Gerya. “Modelling intrusion of mafic and ultramafic magma into the continental crust: numerical methodology and results”. In: Boll. Soc. Geol. It. 127.2 (2008). doi: xxxx.

[365]

J.-P. Burg and S.M. Schmalholz. “Viscous heating allows thrusting to overcome crustal-scale buckling: Numerical investigation with application to the Himalayan syntaxes”. In: Earth Planet. Sci. Lett. 274 (2008), pp. 189–203. doi: 10.1016/j.epsl.2008.07.022.

[366]

J.-P. Burg et al. “Translithospheric Mantle Diapirism: Geological Evidence and Numerical Modelling of the Kondyor Zoned Ultramafic Complex (Russian Far-East)”. In: Journal of Petrology 50.2 (2009). doi: 10.1093/petrology/egn083.

[367]

Jean-Pierre Burg, Boris JP Kaus, and Yuri Yu Podladchikov. “Dome structures in collision orogens: Mechanical investigation of the gravity/compression interplay”. In: Special Papers - Geological Society of America (2004), pp. 47–66. doi: xxxx.

[368]

Peter M Burgess, Michael Gurnis, and Louis Moresi. “Formation of sequences in the cratonic interior of North America by interaction between mantle, eustatic, and stratigraphic processes”. In: Geological Society of America Bulletin 109.12 (1997), pp. 1515–1535. doi: 10.1130/0016-7606(1997)109<1515:FOSITC>2.3.CO;2.

[369]

PM Burgess and LN Moresi. “Modelling rates and distribution of subsidence due to dynamic topography over subducting slabs: is it possible to identify dynamic topography from ancient strata?” In: Basin Research 11.4 (1999), pp. 305–314. doi: 10.1046/j.1365-2117.1999. 00102.x.

[370]

Roland Bürgmann and Georg Dresen. “Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations”. In: Annu. Rev. Earth Planet. Sci. 36 (2008), pp. 531–567. doi: 10.1146/annurev.earth.36.031207.124326.

[371]

Kevin Burke. “Plate tectonics, the Wilson Cycle, and mantle plumes: geodynamics from the top”. In: Annual Review of Earth and Planetary Sciences 39 (2011), pp. 1–29. doi: 10.1146/annurev-earth-040809-152521.

[372]

E.R. Burkett and M.I. Billen. “Dynamics and implications of slab detachment due to ridge-trench collision”. In: J. Geophys. Res.: Solid Earth 114.B12402 (2009). doi: 10. 1029/2009JB006402.

[373]

E.R. Burkett and M.I. Billen. “Three-dimensionality of slab detachment due to ridge-trench collision: Laterally simultaneous boudinage versus tear propagation”. In: Geochem. Geophys. Geosyst. 11.11 (2010). doi: 10.1029/2010GC003286.

[374]

Erin Burkett and Michael Gurnis. “Stalled slab dynamics”. In: Lithosphere 5.1 (2013), pp. 92–97. doi: 10.1130/L249.1.

[375]

E. Burov and S. Cloetingh. “Erosion and rift dynamics: new thermomechanical aspects of post-rift evolution of extensional basins”. In: Earth Planet. Sci. Lett. 150 (1997), pp. 7–26. doi: 10.1016/S0012-821X(97)00069-1.

[376]

E. Burov and S. Cloetingh. “Plume-like upper mantle instabilities drive subduction initiation”. In: Geophys. Res. Lett. 37.L03309 (2010). doi: 10.1029/2009GL041535.

[377]

E. Burov, T. Francois, P. Yamato, and S. Wolf. “Mechanisms of continental subduction and exhumation of HP and UHP rocks”. In: Gondwana Research 25.2 (2014), pp. 464–493. doi: 10.1016/j.gr.2012.09.010.

[378]

E. Burov and T. Gerya. “Asymmetric three-dimensional topography over mantle plumes”. In: Nature 513 (2014). doi: 10.1038/nature13703.

[379]

E. Burov and L. Guillou-Frottier. “The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere”. In: Geophy. J. Int. 161 (2005), pp. 469–490. doi: 10.1111/j.1365-246X.2005.02588.x.

[380]

E. Burov, L. Jolivet, L. Le Pourhiet, and A. Poliakov. “A thermomechanical model of exhumation of high pressure (HP) and ultra-high pressure (UHP) metamorphic rocks in Alpine-type collision belts”. In: Tectonophysics 342 (2001), pp. 113–136. doi: 10.1016/ S0040-1951(01)00158-5.

[381]

E. Burov and A. Poliakov. “Erosion and rheology controls on synrift and postrift evolution: Verifying old and new ideas using a fully coupled numerical model”. In: J. Geophys. Res.: Solid Earth 106.B8 (2001), pp. 16, 461–16, 481. doi: 10.1029/2001JB000433.

[382]

E. Burov and G. Toussaint. “Surface processes and tectonics: Forcing of continental subduction and deep processes”. In: Global and Planetary Change 58 (2007), pp. 141–164.

[383]

E. Burov and P. Yamato. “Continental plate collision, P-T-t-z conditions and unstable vs. stable plate dynamics: Insights from thermo-mechanical modelling”. In: Lithos 103.1-2 (2008), pp. 178–204. doi: 10.1016/j.lithos.2007.09.014.

[384]

E. Burov et al. “Rheological and geodynamic controls on the mechanisms of subduction and HP/UHP exhumation of crustal rocks during continental collision: Insights from numerical models”. In: Tectonophysics 25.2 (2014), pp. 464–493. doi: 10.1016/j.tecto.2014.04. 033.

[385]

E.B. Burov. “The upper crust is softer than dry quartzite”. In: Tectonophysics 361 (2003), pp. 321–326. doi: xxxx.

[386]

EB Burov and Michel Diament. “Flexure of the continental lithosphere with multilayered rheology”. In: Geophy. J. Int. 109.2 (1992), pp. 449–468.

[387]

EB Burov and P Molnar. “Small and large-amplitude gravitational instability of an elastically compressible viscoelastic Maxwell solid overlying an inviscid incompressible fluid: dependence of growth rates on wave number and elastic constants at low Deborah numbers”. In: Earth Planet. Sci. Lett. 275.3-4 (2008), pp. 370–381. doi: 10.1016/j.epsl.2008.08.032.

[388]

EB Burov, AB Watts, et al. “The long-term strength of continental lithosphere: “jelly sandwich” or “crème brûlée”?” In: GSA today 16.1 (2006), p. 4. doi: 10.1130/1052- 5173(2006)016<4:TLTSOC>2.0.CO;2.

[389]

Evgene Burov, Thomas François, Philippe Yamato, and Sylvie Wolf. “Advances and challenges in geotectonic modelling”. In: Bulletin de la Société Géologique de France 185.3 (2014), pp. 147–168. doi: 10.2113/gssgfbull.185.3.147.

[390]

Evgene B Burov and Michel Diament. “The effective elastic thickness (Te) of continental lithosphere: what does it really mean?” In: J. Geophys. Res.: Solid Earth 100.B3 (1995), pp. 3905–3927.

[391]

Evgueni Burov and Sierd Cloetingh. “Controls of mantle plumes and lithospheric folding on modes of intraplate continental tectonics: differences and similarities”. In: Geophy. J. Int. 178.3 (2009), pp. 1691–1722. doi: 10.1111/j.1365-246X.2009.04238.x.

[392]

C. Burstedde et al. “Large-scale adaptive mantle convection simulation”. In: Geophy. J. Int. 192 (2013), pp. 889–906. doi: 10.1093/gji/ggs070.

[393]

F.H. Busse. “Patterns of convection in spherical shells”. In: J. Fluid Mech. 72.1 (1975), pp. 67–85. doi: 10.1017/S0022112075002947.

[394]

F.H. Busse and N. Riahi. “Patterns of convection in spherical shells. Part 2”. In: J. Fluid Mech. 123 (1982), pp. 283–301. doi: 10.1017/S0022112082003061.

[395]

F.H. Busse et al. “3D convection at infinite Prandtl number in Cartesian geometry - a benchmark comparison”. In: Geophysical & Astrophysical Fluid Dynamics 75.1 (1994), pp. 39–59. doi: 10.1080/03091929408203646.

[396]

FH Busse. “High Prandtl number convection”. In: Phys. Earth. Planet. Inter. 19.2 (1979), pp. 149–157. doi: 10.1016/0031-9201(79)90079-7.

[397]

FH Busse. “On the aspect ratios of two-layer mantle convection”. In: Phys. Earth. Planet. Inter. 24.4 (1981), pp. 320–324. doi: 10.1016/0031-9201(81)90119-9.

[398]

Friedrich H Busse and JA Whitehead. “Instabilities of convection rolls in a high Prandtl number fluid”. In: Journal of Fluid Mechanics 47.2 (1971), pp. 305–320. doi: 10.1017/ S0022112071001071.

[399]

J.P. Butler and C. Beaumont. “Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases”. In: Earth Planet. Sci. Lett. 463 (2017), pp. 101–117. doi: 10.1016/j.epsl.2017.01.025.

[400]

J.P. Butler, C. Beaumont, and R.A. Jamieson. “Paradigm lost: Buoyancy thwarted by the strength of the Western Gneiss Region (ultra)high-pressure terrane, Norway”. In: Lithosphere (2015). doi: 10.1130/L426.1.

[401]

J.P. Butler, C. Beaumont, and R.A. Jamieson. “The Alps 1: A working geodynamic model for burial and exhumation of (ultra)high-pressure rocks in Alpine-type orogens”. In: Earth Planet. Sci. Lett. 337-378 (2013), pp. 114–131. doi: 10.1016/j.epsl.2013.06.039.

[402]

J.P. Butler, C. Beaumont, and R.A. Jamieson. “The Alps 2: Controls on crustal subduction and (ultra)high-pressure rock exhumation in Alpine-type orogens”. In: J. Geophys. Res.: Solid Earth 119.7 (2014), pp. 5987–6022. doi: 10.1002/2013JB010799.

[403]

J.P. Butler, C. Veaumont, and R.A. Jamieson. “Crustal emplacement of exhuming (ultra)high-pressure rocks: Will that be pro- or retro-side ?” In: Geology 39 (2011), pp. 635–638. doi: 10.1130/G32166.1.

[404]

Samuel L Butler and Gary T Jarvis. “Stresses induced in continental lithospheres by axisymmetric spherical convection”. In: Geophy. J. Int. 157.3 (2004), pp. 1359–1376. doi: 10.1111/j.1365-246X.2004.02257.x.

[405]

SL Butler, WR Peltier, and SO Costin. “Numerical models of the Earth’s thermal history: Effects of inner-core solidification and core potassium”. In: Phys. Earth. Planet. Inter. 152.1-2 (2005), pp. 22–42. doi: 10.1016/j.pepi.2005.05.005.

[406]

N.P. Butterworth et al. “Geological, tomographic, kinematic and geodynamic constraints on the dynamics of sinking slabs”. In: Journal of Geodynamics 73 (2014), pp. 1–13. doi: 10.1016/j.jog.2013.10.006.

[407]

NP Butterworth, L Quevedo, G Morra, and RD Müller. “Influence of overriding plate geometry and rheology on subduction”. In: Geochem. Geophys. Geosyst. 13.6 (2012). doi: 10.1029/2011GC003968.

[408]

James D Byerlee. “Brittle-ductile transition in rocks”. In: J. Geophys. Res.: Solid Earth 73.14 (1968), pp. 4741–4750. doi: 10.1029/JB073i014p04741.

[409]

O Cadek, DA Yuen, V Steinbach, A Chopelas, and C Matyska. “Lower mantle thermal structure deduced from seismic tomography, mineral physics and numerical modelling”. In: Earth Planet. Sci. Lett. 121.3-4 (1994), pp. 385–402. doi: 10.1016/0012-821X(94)90079- 5.

[410]

O Čadek and AP van den Berg. “Radial profiles of temperature and viscosity in the Earth’s mantle inferred from the geoid and lateral seismic structure”. In: Earth Planet. Sci. Lett. 164.3-4 (1998), pp. 607–615. doi: 10.1016/S0012-821X(98)00244-1.

[411]

Ondřej Čadek, Yanick Ricard, Zdeněk Martinec, and Ctirad Matyska. “Comparison between Newtonian and non-Newtonian flow driven by internal loads”. In: Geophy. J. Int. 112.1 (1993), pp. 103–114.

[412]

C Cadio and J Korenaga. “Resolving the fine-scale density structure of shallow oceanic mantle by Bayesian inversion of localized geoid anomalies”. In: J. Geophys. Res.: Solid Earth 119.4 (2014), pp. 3627–3645. doi: 10.1002/2013JB010840.

[413]

C Cadio, I Panet, A Davaille, M Diament, L Métivier, and O de Viron. “Pacific geoid anomalies revisited in light of thermochemical oscillating domes in the lower mantle”. In: Earth Planet. Sci. Lett. 306.1-2 (2011), pp. 123–135. doi: 10.1016/j.epsl.2011.03.040.

[414]

Cécilia Cadio, Maxim D Ballmer, Isabelle Panet, Michel Diament, and Neil Ribe. “New constraints on the origin of the Hawaiian swell from wavelet analysis of the geoid to topography ratio”. In: Earth Planet. Sci. Lett. 359 (2012), pp. 40–54. doi: 10.1016/j. epsl.2012.10.006.

[415]

Amandine-Marie Cagnioncle, EM Parmentier, and Linda T Elkins-Tanton. “Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries”. In: J. Geophys. Res.: Solid Earth 112.B9 (2007). doi: 10 . 1029 / 2007JB004934.

[416]

Beatrice Cailleau and Onno Oncken. “Past forearc deformation in Nicaragua and coupling at the megathrust interface: Evidence for subduction retreat?” In: Geochem. Geophys. Geosyst. 9.3 (2008). doi: 10.1029/2007GC001754.

[417]

Fabio Cammarano, Paul Tackley, and Lapo Boschi. “Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermochemical models”. In: Geophy. J. Int. 187.3 (2011), pp. 1301–1318. doi: 10.1111/ j.1365-246X.2011.05223.x.

[418]

IH Campbell. “Large igneous provinces and the mantle plume hypothesis”. In: Elements 1.5 (2005), pp. 265–269. doi: xxxx.

[419]

IH Campbell, GF Davies, et al. “Do mantle plumes exist?” In: Episodes 29.3 (2006), p. 162. doi: xxxx.

[420]

IH Campbell and RW Griffiths. “The changing nature of mantle hotspots through time: implications for the chemical evolution of the mantle”. In: The Journal of Geology 100.5 (1992), pp. 497–523. doi: 10.1086/629605.

[421]

IH Campbell, RW Griffiths, and RI Hill. “Melting in an Archaean mantle plume: heads it’s basalts, tails it’s komatiites”. In: Nature 339.6227 (1989), pp. 697–699. doi: 10.1038/ 339697a0.

[422]

Lorenzo G Candioti, Thibault Duretz, Evangelos Moulas, and Stefan M Schmalholz. “Buoyancy versus shear forces in building orogenic wedges”. In: Solid Earth 12.8 (2021), pp. 1749–1775. doi: 10.5194/se-12-1749-2021.

[423]

Lorenzo G Candioti, Thibault Duretz, and Stefan M Schmalholz. “Horizontal force required for subduction initiation at passive margins with constraints from slab detachment”. In: Frontiers in Earth Science 10 (2022), p. 785418. doi: 10.3389/feart.2022.785418.

[424]

Lorenzo G Candioti, Stefan M Schmalholz, and Thibault Duretz. “Impact of upper mantle convection on lithosphere hyperextension and subsequent horizontally forced subduction initiation”. In: Solid Earth 11.6 (2020), pp. 2327–2357. doi: 10.5194/se-11-2327-2020.

[425]

Wenrong Cao, Boris JP Kaus, and Scott Paterson. “Intrusion of granitic magma into the continental crust facilitated by magma pulsing and dike-diapir interactions: Numerical simulations”. In: Tectonics 35.6 (2016), pp. 1575–1594.

[426]

Xianzhi Cao, Nicolas Flament, Ömer F Bodur, and R Dietmar Müller. “The evolution of basal mantle structure in response to supercontinent aggregation and dispersal”. In: Scientific Reports 11.1 (2021), pp. 1–16. doi: 10.1038/s41598-021-02359-z.

[427]

Xianzhi Cao, Nicolas Flament, and R Dietmar Müller. “Coupled evolution of plate tectonics and basal mantle structure”. In: Geochem. Geophys. Geosyst. 22 (2021), e2020GC009244. doi: 10.1029/2020GC009244.

[428]

F.A. Capitanio and M. Faccenda. “Complex mantle flow around heterogeneous subducting oceanic plates”. In: Earth Planet. Sci. Lett. 353-354 (2012), pp. 29–37.

[429]

F.A. Capitanio, C. Faccenna, S. Zlotnik, and D.R. Stegman. “Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline”. In: Nature 480 (2011). doi: 10.1038/nature10596.

[430]

F.A. Capitanio and A. Replumaz. “Subduction and slab breakoff controls on Asian indentation tectonics and Himalayan western syntaxis formation ”. In: Geochem. Geophys. Geosyst. 14.9 (2013). doi: 10.1002/ggge.20171.

[431]

F.A. Capitanio, D.R. Stegman, L.N. Moresi, and W. Sharples. “Upper plate controls on deep subduction, trench migrations and deformations at convergent margins”. In: Tectonophysics 483 (2010), pp. 80–92. doi: 10.1016/j.tecto.2009.08.020.

[432]

FA Capitanio, G Morra, and S Goes. “Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation”. In: Earth Planet. Sci. Lett. 262.1-2 (2007), pp. 284–297. doi: 10.1016/j.epsl.2007.07.039.

[433]

FA Capitanio, G Morra, S Goes, RF Weinberg, and L Moresi. “India–Asia convergence driven by the subduction of the Greater Indian continent”. In: Nature Geoscience 3.2 (2010), p. 136. doi: 10.1038/NGEO725.

[434]

FA Capitanio and Gabriele Morra. “The bending mechanics in a dynamic subduction system: Constraints from numerical modelling and global compilation analysis”. In: Tectonophysics 522 (2012), pp. 224–234. doi: 10.1016/j.tecto.2011.12.003.

[435]

FA Capitanio, O Nebel, PA Cawood, RF Weinberg, and P Chowdhury. “Reconciling thermal regimes and tectonics of the early Earth”. In: Geology 47.10 (2019), pp. 923–927. doi: 10.1130/G46239.1.

[436]

FA Capitanio, O Nebel, PA Cawood, RF Weinberg, and F Clos. “Lithosphere differentiation in the early Earth controls Archean tectonics”. In: Earth Planet. Sci. Lett. 525 (2019), p. 115755. doi: 10.1016/j.epsl.2019.115755.

[437]

FA Capitanio, A Replumaz, and N Riel. “Reconciling subduction dynamics during T ethys closure with large-scale Asian tectonics: Insights from numerical modeling”. In: Geochem. Geophys. Geosyst. 16.3 (2015), pp. 962–982. doi: 10.1002/2014GC005660.

[438]

Fabio A Capitanio. “The dynamics of extrusion tectonics: Insights from numerical modeling”. In: Tectonics 33.12 (2014), pp. 2361–2381. doi: 10.1002/2014TC003688.

[439]

Fabio A Capitanio. “The role of the Miocene-to-Pliocene transition in the Eastern Mediterranean extrusion tectonics: Constraints from numerical modelling”. In: Earth Planet. Sci. Lett. 448 (2016), pp. 122–132. doi: 10.1016/j.epsl.2016.05.006.

[440]

Fabio A Capitanio, Oliver Nebel, and Peter A Cawood. “Thermochemical lithosphere differentiation and the origin of cratonic mantle”. In: Nature 588.7836 (2020), pp. 89–94. doi: 10.1038/s41586-020-2976-3.

[441]

Fabio A Capitanio, Oliver Nebel, Jean-François Moyen, and Peter A Cawood. “Craton Formation in Early Earth Mantle Convection Regimes”. In: J. Geophys. Res.: Solid Earth 127.4 (2022), e2021JB023911. doi: 10.1029/2021JB023911.

[442]

R Carluccio, B Kaus, FA Capitanio, and LN Moresi. “The impact of a very weak and thin upper asthenosphere on subduction motions”. In: Geophys. Res. Lett. 46 (2019), pp. 11, 893–11, 905. doi: 10.1029/2019GL085212.

[443]

E. Carminati, M.J.R. Wortel, W. Spakman, and R. Sabadini. “The role of slab detachment processes in the opening of the western-central Mediterranean basins: some geological and geophysical evidence”. In: Earth Planet. Sci. Lett. 160 (1998), pp. 651–665. doi: 10. 1016/S0012-821X(98)00118-6.

[444]

P Carré, AJF Metherell, and TJ Quinn. “Apropos of “The Gravitational Field of a 111 Tetrahedron””. In: Metrologia 23.2 (1986), p. 119. doi: 10.1088/0026-1394/23/2/007.

[445]

P.J. Carreau. “Rheological Equations from Molecular Network Theories”. In: Transactions of the Society of rheology 16.1 (1972), pp. 99–127. doi: 10.1122/1.549276.

[446]

Neville L Carter and Michael C Tsenn. “Flow properties of continental lithosphere”. In: Tectonophysics 136.1-2 (1987), pp. 27–63. doi: 10.1016/0040-1951(87)90333-7.

[447]

JF Casey and JF Dewey. “Initiation of subduction zones along transform and accreting plate boundaries, triple-junction evolution, and forearc spreading centres – implications for ophiolitic geology and obduction”. In: Geological Society, London, Special Publications 13.1 (1984), pp. 269–290.

[448]

Teodoro Cassola. “Mechanics of forearc basins”. PhD thesis. ETH-Z¨r  ich, 2013.

[449]

S. Castelltort and P. Yamato. “The influence of surface slope on the shape of river basins: Comparison between nature and numerical landscape simulations”. In: Geomorphology 192 (2013), pp. 71–79. doi: 10.1016/j.geomorph.2013.03.022.

[450]

O Castelnau, DK Blackman, and TW Becker. “Numerical simulations of texture development and associated rheological anisotropy in regions of complex mantle flow”. In: Geophys. Res. Lett. 36.12 (2009). doi: 10.1029/2009GL038027.

[451]

A. Castro and T.V. Gerya. “Magmatic implications of mantle wedge plumes: Experimental study”. In: Lithos 103 (2008), pp. 138–148. doi: 10.1016/j.lithos.2007.09.012.

[452]

Antonio Castro, Katharina Vogt, and Taras Gerya. “Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: a test of Taylor’s andesite model”. In: Gondwana Research 23.4 (2013), pp. 1554–1566. doi: 10.1016/j.gr.2012.07.004.

[453]

Bento Cavadas and Sara Aboim. “Using PhET interactive simulation plate tectonics for initial teacher education”. In: Geoscience Communication 4.1 (2021), pp. 43–56. doi: 10. 5194/gc-4-43-2021.

[454]

Nicolas Luca Celli, Sergei Lebedev, Andrew J Schaeffer, and Carmen Gaina. “African cratonic lithosphere carved by mantle plumes”. In: Nature Communications 11.1 (2020), pp. 1–10. doi: 10.1038/s41467-019-13871-2.

[455]

N.G. Cerpa, R. Araya, M. Gerbault, and R. Hassani. “Relationship between slab dip and topography segmentation in an oblique subduction zone: Insights from numerical modeling”. In: Geophys. Res. Lett. 41 (2015), 10.1002/2015GL064047.

[456]

N.G. Cerpa, R. Hassani, M. Gerbault, and J.-H. Prévost. “A fictitious domain method for lithosphere-asthenosphere interaction: Application to periodic slab folding in the upper mantle”. In: Geochem. Geophys. Geosyst. 15.5 (2014), pp. 1852–1877. doi: 10.1002/ 2014GC005241.

[457]

N.G. Cerpa, I. Wada, and C.R. Wilson. “Effects of fluid influx, fluid viscosity, and fluid density on fluid migration in the mantle wedge and their implications for hydrous melting”. In: Geosphere 15.1 (2019), pp. 1–23. doi: 10.1130/GES01660.1.

[458]

N.G. Cerpa, I. Wada, and C.R. Wilson. “Fluid migration in the mantle wedge: Influence of mineral grain size and mantle compaction”. In: J. Geophys. Res.: Solid Earth 122 (2017), pp. 6247–6268. doi: 10.1002/2017JB014046.

[459]

Nestor G Cerpa and Diane Arcay. “Overriding Plate Velocity Control on Surface Topography in 2-D Models of Subduction Zones”. In: Geochem. Geophys. Geosyst. 21.4 (2020), e2019GC008900. doi: 10.1029/2019GC008900.

[460]

Nestor G Cerpa, David W Rees Jones, and Richard F Katz. “Consequences of glacial cycles for magmatism and carbon transport at mid-ocean ridges”. In: Earth Planet. Sci. Lett. 528 (2019), p. 115845. doi: 10.1016/j.epsl.2019.115845.

[461]

Nestor G Cerpa, Karin Sigloch, Fanny Garel, Arnauld Heuret, D Rhodri Davies, and Mitchell G Mihalynuk. “The effect of a weak asthenospheric layer on surface kinematics, subduction dynamics and slab morphology in the lower mantle”. In: J. Geophys. Res.: Solid Earth 127 (2022), e2022JB024494. doi: 10.1029/2022JB024494.

[462]

NG Cerpa, D Arcay, and JA Padrón-Navarta. “Sea-level stability over geological time owing to limited deep subduction of hydrated mantle”. In: Nature Geoscience (2022), pp. 1–6. doi: 10.1038/s41561-022-00924-3.

[463]

Edouard Chalaron, Jean Louis Mugnier, and Georges Mascle. “Control on thrust tectonics in the Himalayan foothills: a view from a numerical model”. In: Tectonophysics 248.1-2 (1995), pp. 139–163.

[464]

Alexander Chamolly and Neil M Ribe. “Fluid mechanics of free subduction on a sphere. Part 1. The axisymmetric case”. In: Journal of Fluid Mechanics 929 (2021). doi: 10.1017/ jfm.2021.871.

[465]

Guo Changsheng, Sun Pengchao, and Wei Dongping. “Geodynamical simulation of the effects of ridge subduction on the scale of the seismogenic zone south of Chile Triple Junction”. In: Acta Seismologica Sinica 45.3 (2023), pp. 1–17. doi: 10.11939/jass.20210192.

[466]

D.S. Chapman. “Thermal gradients in the continental crust”. In: Geological Society, London, Special Publications 24 (1986), pp. 63–70. doi: 10.1144/GSL.SP.1986.024.01.07.

[467]

James B Chapman. “Diapiric relamination of the Orocopia Schist (southwestern US) during low-angle subduction”. In: Geology 49 (2021). doi: 10.1130/G48647.1.

[468]

William M Chapple and Terry E Tullis. “Evaluation of the forces that drive the plates”. In: J. Geophys. Res.: Solid Earth 82.14 (1977), pp. 1967–1984.

[469]

Clement G Chase. “Fluvial landsculpting and the fractal dimension of topography”. In: Geomorphology 5.1-2 (1992), pp. 39–57.

[470]

Clement G Chase. “The geological significance of the geoid”. In: Annual Review of Earth and Planetary Sciences 13.1 (1985), pp. 97–117. doi: 10.1146/annurev.ea.13.050185. 000525.

[471]

Thomas Chauve, Maurine Montagnat, Véronique Dansereau, Pierre Saramito, Kévin Fourteau, and Andrea Tommasi. “A physically-based formulation for texture evolution during dynamic recrystallization. A case study of ice”. In: Comptes Rendus. Mécanique 352.G1 (2024), pp. 99–134. doi: 10.5802/crmeca.243.

[472]

Carlos Alberto Moreno Chaves and Naomi Ussami. “Modeling 3-D density distribution in the mantle from inversion of geoid anomalies: Application to the Yellowstone Province”. In: J. Geophys. Res.: Solid Earth 118.12 (2013), pp. 6328–6351. doi: 10.1002/2013JB010168.

[473]

A Chemenda, S Lallemand, and A Bokun. “Strain partitioning and interplate friction in oblique subduction zones: Constraints provided by experimental modeling”. In: J. Geophys. Res.: Solid Earth 105.B3 (2000), pp. 5567–5581.

[474]

AI Chemenda, R-K Yang, J-F Stephan, EA Konstantinovskaya, and GM Ivanov. “New results from physical modelling of arc–continent collision in Taiwan: evolutionary model”. In: Tectonophysics 333.1-2 (2001), pp. 159–178. doi: 10.1016/S0040-1951(00)00273-0.

[475]

Z Chemia, H Schmeling, and H Koyi. “The effect of the salt viscosity on future evolution of the Gorleben salt diapir, Germany”. In: Tectonophysics 473.3-4 (2009), pp. 446–456. doi: 10.1016/j.tecto.2009.03.027.

[476]

Zurab Chemia, H Koyi, and H Schmeling. “Numerical modelling of rise and fall of a dense layer in salt diapirs”. In: Geophy. J. Int. 172.2 (2008), pp. 798–816. doi: 10.1111/j.1365- 246X.2007.03661.x.

[477]

Fangqin Chen, D Rhodri Davies, Saskia Goes, Lior Suchoy, and Stephan C Kramer. “How slab age and width combine to dictate the dynamics and evolution of subduction systems: A 3-D spherical study”. In: Geochem. Geophys. Geosyst. 23.11 (2022), e2022GC010597.

[478]

Fangqin Chen, D Rhodri Davies, Saskia Goes, Lior Suchoy, and Stephan C Kramer. “The role of slab remnants in modulating free subduction dynamics: A 3-D spherical numerical study”. In: Geochem. Geophys. Geosyst. 25.4 (2024), e2023GC011180. doi: 10.1029/ 2023GC011180.

[479]

Fangqin Chen, D.R. Davies, S. Goes, L. Suchoy, and S.C. Kramer. “Comparing the Dynamics of Free Subduction in Cartesian and Spherical Domains”. In: Geochem. Geophys. Geosyst. 23 (2022), e2022GC010757. doi: 10.1029/2022GC010757.

[480]

J. Chen and S. D. King. “The influence of temperature and depth dependent viscosity on geoid and topography profiles from models of mantle convection”. In: Phys. Earth. Planet. Inter. 106.1-2 (1998), pp. 75–92. doi: 10.1016/S0031-9201(97)00110-6.

[481]

JL Chen, Matt Rodell, CR Wilson, and JS Famiglietti. “Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates”. In: Geophys. Res. Lett. 32.14 (2005). doi: 10.1029/2005GL022964.

[482]

Lin Chen, Taras Gerya, Zhongjie Zhang, Guizhi Zhu, Thibault Duretz, and Wolfgang R Jacoby. “Numerical modeling of eastern Tibetan-type margin: influences of surface processes, lithospheric structure and crustal rheology”. In: Gondwana Research 24.3-4 (2013), pp. 1091–1107. doi: 10.1016/j.gr.2013.01.003.

[483]

Yongshun Chen and W Jason Morgan. “A nonlinear rheology model for mid-ocean ridge axis topography”. In: J. Geophys. Res.: Solid Earth 95.B11 (1990), pp. 17583–17604. doi: 10.1029/JB095iB11p17583.

[484]

Yongshun Chen and W Jason Morgan. “Rift valley/no rift valley transition at mid-ocean ridges”. In: J. Geophys. Res.: Solid Earth 95.B11 (1990), pp. 17571–17581.

[485]

Zhihao Chen, Wouter P Schellart, and João C Duarte. “Quantifying the energy dissipation of overriding plate deformation in three-dimensional subduction models”. In: J. Geophys. Res.: Solid Earth 120.1 (2015), pp. 519–536. doi: 10.1002/2014JB011419.

[486]

Zhihao Chen, Wouter P Schellart, Vincent Strak, and João C Duarte. “Does subduction-induced mantle flow drive backarc extension?” In: Earth Planet. Sci. Lett. 441 (2016), pp. 200–210.

[487]

P. Chenin and C. Beaumont. “Influence of offset weak zones on the development of rift basins: Activation and abandonment during continental extension and breakup”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 1–23. doi: 10.1002/jgrb.50138.

[488]

P. Chenin, S.M. Schmalholz, G. Manatschal, and G.D. Karner. “Necking of the Lithosphere: A Reappraisal of Basic Concepts With Thermo-Mechanical Numerical Modeling”. In: J. Geophys. Res.: Solid Earth 123.6 (2018), pp. 5279–5299. doi: 10.1029/2017JB014155.

[489]

Pauline Chenin, Gianreto Manatschal, Alessandro Decarlis, Stefan M Schmalholz, Thibault Duretz, and Marco Beltrando. “Emersion of distal domains in advanced stages of continental rifting explained by asynchronous crust and mantle necking”. In: Geochem. Geophys. Geosyst. (2019). doi: 10.1029/2019GC008357.

[490]

Pauline Chenin, Stefan M Schmalholz, Gianreto Manatschal, and Thibault Duretz. “Impact of crust–mantle mechanical coupling on the topographic and thermal evolutions during the necking phase of ’magma-poor’ and ’sediment-starved’ rift systems: A numerical modeling study”. In: Tectonophysics (2020), p. 228472. doi: 10.1016/j.tecto.2020.228472.

[491]

Pauline Chenin et al. “Impact of mafic underplating and mantle depletion on subsequent rifting: a numerical modeling study”. In: Tectonics 38.7 (2019), pp. 2185–2207. doi: 10. 1029/2018TC005318.

[492]

M.V. Chertova, W. Spakman, T. Geenen, A.P. van den Berg, and D.J.J. van Hinsbergen. “Underpinning tectonic reconstructions of the western Mediterranean region with dynamic slab evolution from 3-D numerical modeling”. In: J. Geophys. Res.: Solid Earth 119 (2014), 10.1002/ 2014JB011150.

[493]

M.V. Chertova, W. Spakman, and B. Steinberger. “Mantle flow influence on subduction evolution”. In: Earth Planet. Sci. Lett. 489 (2018), pp. 258–266. doi: 10.1016/j.epsl. 2018.02.038.

[494]

MV Chertova, W Spakman, AP van den Berg, and DJJ van Hinsbergen. “Absolute plate motions and regional subduction evolution”. In: Geochem. Geophys. Geosyst. 15.10 (2014), pp. 3780–3792.

[495]

VV Chervov and GG Chernykh. “Numerical Modeling of Convection in the Zone of Spreading and Subduction”. In: Journal of Engineering Thermophysics 28.1 (2019), pp. 14–25.

[496]

Jean Chery, Alain Bonneville, Jean Pierre Vilotte, and Dave Yuen. “Numerical modelling of caldera dynamical behaviour”. In: Geophy. J. Int. 105.2 (1991), pp. 365–379. doi: 10. 1111/j.1365-246X.1991.tb06719.x.

[497]

Jean Chery, Francis Lucazeau, Marc Daignieres, and Jean-Pierre Vilotte. “Large uplift of rift flanks: A genetic link with lithospheric rigidity?” In: Earth Planet. Sci. Lett. 112.1-4 (1992), pp. 195–211. doi: 10.1016/0012-821X(92)90016-O.

[498]

Claudio Chiarabba et al. “Subduction system and flat slab beneath the E astern C ordillera of C olombia”. In: Geochem. Geophys. Geosyst. 17.1 (2016), pp. 16–27.

[499]

S. Chiu-Webster, E.J. Hinch, and J.R. Lister. “Very viscous horizontal convection”. In: J. Fluid Mech. 611 (2008), pp. 395–426.

[500]

G. Choblet. “Modelling thermal convection with large viscosity gradients in one block of the ’cubed sphere’”. In: J. Comp. Phys. 205 (2005), pp. 269–291.

[501]

Gael Choblet, H Amit, and L Husson. “Constraining mantle convection models with palaeomagnetic reversals record and numerical dynamos”. In: Geophy. J. Int. 207.2 (2016), pp. 1165–1184. doi: 10.1093/gji/ggw328.

[502]

E. Choi and K.D. Petersen. “Making Coulomb angle-oriented shear bands in numerical tectonic models”. In: Tectonophysics 657 (2015), pp. 94–101. doi: 10.1016/j.tecto. 2015.06.026.

[503]

Eun-seo Choi and Michael Gurnis. “Thermally induced brittle deformation in oceanic lithosphere and the spacing of fracture zones”. In: Earth Planet. Sci. Lett. 269.1-2 (2008), pp. 259–270.

[504]

Eunseo Choi and W Roger Buck. “Constraints on the strength of faults from the geometry of rider blocks in continental and oceanic core complexes”. In: J. Geophys. Res.: Solid Earth 117.B4 (2012). doi: 10.1029/2011JB008741.

[505]

Eunseo Choi, W Roger Buck, Luc L Lavier, and Kenni Dinesen Petersen. “Using core complex geometry to constrain fault strength”. In: Geophys. Res. Lett. 40.15 (2013), pp. 3863–3867. doi: 10.1002/grl.50732.

[506]

Eunseo Choi, Luc Lavier, and Michael Gurnis. “Thermomechanics of mid-ocean ridge segmentation”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 374–386.

[507]

Eunseo Choi, Leonardo Seeber, Michael S Steckler, and Roger Buck. “One-sided transform basins and “inverted curtains”: Implications for releasing bends along strike-slip faults”. In: Tectonics 30.6 (2011).

[508]

A Chopelas and R Boehler. “Thermal expansivity in the lower mantle”. In: Geophys. Res. Lett. 19.19 (1992), pp. 1983–1986. doi: 10.1029/92GL02144.

[509]

PN Chopra and MS Paterson. “The role of water in the deformation of dunite”. In: J. Geophys. Res.: Solid Earth 89.B9 (1984), pp. 7861–7876. doi: 10.1029/JB089iB09p07861.

[510]

Priyadarshi Chowdhury, Sumit Chakraborty, and Taras V Gerya. “Time can tell: Secular change in metamorphic timescales and the tectonic implications”. In: Gondwana Research 93 (2021), pp. 291–310. doi: 10.1016/j.gr.2021.02.003.

[511]

Priyadarshi Chowdhury, Sumit Chakraborty, Taras V Gerya, Peter A Cawood, and Fabio A Capitanio. “Peel-back controlled lithospheric convergence explains the secular transitions in Archean metamorphism and magmatism”. In: Earth Planet. Sci. Lett. 538 (2020), p. 116224. doi: 10.1016/j.epsl.2020.116224.

[512]

Nikolas I Christensen. “Poisson’s ratio and crustal seismology”. In: J. Geophys. Res.: Solid Earth 101.B2 (1996), pp. 3139–3156. doi: 10.1029/95JB03446.

[513]

R.R. Christensen. “An Eulerian technique for thermomechanical modeling of lithospheric extension”. In: J. Geophys. Res.: Solid Earth 97.B2 (1992), pp. 2015–2036. doi: 10. 1029/91JB02642.

[514]

U Christensen. “Convection in a variable-viscosity fluid: Newtonian versus power-law rheology”. In: Earth Planet. Sci. Lett. 64.1 (1983), pp. 153–162. doi: 10.1016/0012- 821X(83)90060-2.

[515]

U Christensen. “Convection with pressure-and temperature-dependent non-Newtonian rheology”. In: Geophy. J. Int. 77.2 (1984), pp. 343–384. doi: 10.1111/j.1365- 246X.1984.tb01939.x.

[516]

U Christensen. “Mixing by time-dependent convection”. In: Earth Planet. Sci. Lett. 95.3-4 (1989), pp. 382–394. doi: 10.1016/0012-821X(89)90112-X.

[517]

U Christensen, P Olson, and GA Glatzmaier. “Numerical modelling of the geodynamo: a systematic parameter study”. In: Geophy. J. Int. 138.2 (1999), pp. 393–409. doi: 10. 1046/j.1365-246X.1999.00886.x.

[518]

U. Christensen. “Some geodynamical effects of anisotropic viscosity”. In: Geophys. J. R. astr. Soc. 91 (1987), pp. 711–736. doi: 10.1111/j.1365-246X.1987.tb01666.x.

[519]

U. Christensen and H. Harder. “3-D convection with variable viscosity”. In: Geophy. J. Int. 104 (1991), pp. 213–226. doi: 10.1111/j.1365-246X.1991.tb02505.x.

[520]

U.R. Christensen and D.A. Yuen. “Time-dependent convection with non-Newtonian viscosity”. In: J. Geophys. Res.: Solid Earth 94.B1 (1989), pp. 814–820. doi: 10.1029/ JB094iB01p00814.

[521]

Ulrich Christensen. “A numerical model of coupled subcontinental and oceanic convection”. In: Tectonophysics 95.1-2 (1983), pp. 1–23. doi: 10.1016/0040-1951(83)90256-1.

[522]

Ulrich Christensen. “Effects of phase transitions on mantle convection”. In: Annual Review of Earth and Planetary Sciences 23.1 (1995), pp. 65–87. doi: 10.1146/annurev.ea.23. 050195.000433.

[523]

Ulrich Christensen. “Phase boundaries in finite amplitude mantle convection”. In: Geophy. J. Int. 68.2 (1982), pp. 487–497. doi: 10.1111/j.1365-246X.1982.tb04911.x.

[524]

Ulrich R Christensen. “Heat transport by variable viscosity convection and implications for the Earth’s thermal evolution”. In: Phys. Earth. Planet. Inter. 35.4 (1984), pp. 264–282. doi: 10.1016/0031-9201(84)90021-9.

[525]

Ulrich R Christensen. “Models of mantle convection: one or several layers”. In: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 328.1599 (1989), pp. 417–424. doi: 10.1098/rsta.1989.0045.

[526]

Ulrich R Christensen. “The influence of trench migration on slab penetration into the lower mantle”. In: Earth Planet. Sci. Lett. 140.1-4 (1996), pp. 27–39. doi: 10.1016/0012- 821X(96)00023-4.

[527]

Ulrich R Christensen. “Thermal evolution models for the Earth”. In: J. Geophys. Res.: Solid Earth 90.B4 (1985), pp. 2995–3007. doi: 10.1029/JB090iB04p02995.

[528]

Ulrich R Christensen. “Time-dependent convection in elongated Rayleigh-Benard cells”. In: Geophys. Res. Lett. 14.3 (1987), pp. 220–223. doi: 10.1029/GL014i003p00220.

[529]

Ulrich R Christensen and Albrecht W Hofmann. “Segregation of subducted oceanic crust in the convecting mantle”. In: J. Geophys. Res.: Solid Earth 99.B10 (1994), pp. 19867–19884. doi: 10.1029/93JB03403.

[530]

Ulrich R Christensen and David A Yuen. “Layered convection induced by phase transitions”. In: J. Geophys. Res.: Solid Earth 90.B12 (1985), pp. 10291–10300. doi: 10.1029/ JB090iB12p10291.

[531]

H. Ciskova, A. van den Berg, and M. Jacobs. “Impact of compressibility on heat transport characteristics of large terrestrial planets”. In: Phys. Earth. Planet. Inter. 268 (2017), pp. 65–77.

[532]

H. Ciskova, J. van Hunen, A.P. van den Berg, and N.J. Vlaar. “The influence of rheological weakening and yield stress on the interaction of slabs with the 670 km discontinuity”. In: Earth Planet. Sci. Lett. 199 (2002), pp. 447–457. doi: 10.1016/S0012-821X(02)00586-1.

[533]

Robert I Citron et al. “Effects of Heat-Producing Elements on the Stability of Deep Mantle Thermochemical Piles”. In: Geochem. Geophys. Geosyst. 21.4 (2020), e2019GC008895. doi: 10.1029/2019GC008895.

[534]

Hana ČIžková and Ondŕej Čadek. “Effect of a Viscosity Interface at 1000 km Depth on Mantle Circulation”. In: Studia Geophysica et Geodaetica 41 (1997), pp. 297–306. doi: 10.1023/A:1023303001414.

[535]

H. Čížková, A.P. van den Berg, W. Spakman, and Ctirad Matyska. “The viscosity of the earth’s lower mantle inferred from sinking speed of subducted lithosphere”. In: Phys. Earth. Planet. Inter. 200–201 (2012), pp. 56–62. doi: 10.1016/j.pepi.2012.02.010.

[536]

H. Čížková and C.R. Bina. “Effects of mantle and subduction-interface rheologies on slab stagnation and trench rollback”. In: Earth Planet. Sci. Lett. 379 (2013), pp. 95–103. doi: 10.1016/j.epsl.2013.08.011.

[537]

H. Čížková and C.R. Bina. “Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry”. In: Earth Planet. Sci. Lett. 430 (2015), pp. 408–415. doi: 10.1016/j.epsl.2015.07.004.

[538]

H. Čížková, O. Čadek, and A.P. Van Den Berg. “Influence of the load wavelength on the permeability of a viscosity interface in the mantle”. In: Studia Geophysica et Geodaetica 41.1 (1997), pp. 64–72. doi: 10.1023/A:1023388707657.

[539]

H. Čížková, O. Čadek, A.P. Van Den Berg, and N.J. Vlaar. “Can lower mantle slab-like seismic anomalies be explained by thermal coupling between the upper and lower mantles?” In: Geophys. Res. Lett. 26.10 (1999), pp. 1501–1504. doi: 10.1029/1999GL900261.

[540]

Hana Č´i  žková and Craig R Bina. “Linked influences on slab stagnation: Interplay between lower mantle viscosity structure, phase transitions, and plate coupling”. In: Earth Planet. Sci. Lett. 509 (2019), pp. 88–99.

[541]

Hana Č´i   žková, Jeroen van Hunen, and Arie van den Berg. “Stress distribution within subducting slabs and their deformation in the transition zone”. In: Phys. Earth. Planet. Inter. 161.3-4 (2007), pp. 202–214. doi: 10.1016/j.pepi.2007.02.002.

[542]

Marin Kristen Clark and Leigh Handy Royden. “Topographic ooze: Building the eastern margin of Tibet by lower crustal flow”. In: Geology 28.8 (2000), pp. 703–706. doi: 10. 1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2.

[543]

Stuart R Clark, Dave Stegman, and R Dietmar Müller. “Episodicity in back-arc tectonic regimes”. In: Phys. Earth. Planet. Inter. 171.1-4 (2008), pp. 265–279. doi: 10.1016/j. pepi.2008.04.012.

[544]

M Claudius. “Solution of the gravitational poisson equation in spherical coordinates”. In: Computer Physics Communications 27.2 (1982), pp. 119–128. doi: 10.1016/0010- 4655(82)90068-6.

[545]

Nicolas Clausolles, Pauline Collon, and Guillaume Caumon. “Generating variable shapes of salt geobodies from seismic images and prior geological knowledge”. In: Interpretation 7.4 (2019), T829–T841. doi: 10.1190/INT-2019-0032.1.

[546]

P.D. Clift, S. Brune, and J. Quinteros. “Climate changes control offshore crustal structure at South China Sea continental margin”. In: Earth Planet. Sci. Lett. 420 (2015), pp. 66–72. doi: 10.1016/j.epsl.2015.03.032.

[547]

S. Cloetingh, E. Burov, and A. Poliakov. “Lithospehre folding: Primary response to compression? (from central Asia to Paris basin)”. In: Tectonics 18 (1999), pp. 1064–1083.

[548]

S. Cloetingh, R. Wortel, and N.J. Vlaar. “On the Initiation of Subduction Zones”. In: Pure Appl. Geophys. 129.1/2 (1989), pp. 7–25.

[549]

Sierd Cloetingh, Fred Beekman, Peter A Ziegler, Jan-Diederik van Wees, and Dimitrios Sokoutis. “Post-rift compressional reactivation potential of passive margins and extensional basins”. In: Geological Society, London, Special Publications 306.1 (2008), pp. 27–70. doi: 10.1144/SP306.2.

[550]

Sierd Cloetingh and Henk Kooi. “Intraplate stresses and dynamical aspects of rifted basins”. In: Tectonophysics 215.1-2 (1992), pp. 167–185. doi: 10.1016/0040-1951(92)90080-P.

[551]

Sierd Cloetingh, Alexander Koptev, Alessio Lavecchia, István János Kovács, and Fred Beekman. “Fingerprinting secondary mantle plumes”. In: Earth Planet. Sci. Lett. 597 (2022), p. 117819. doi: 10.1016/j.epsl.2022.117819.

[552]

Sierd Cloetingh et al. “Coupled surface to deep Earth processes: Perspectives from TOPO-EUROPE with an emphasis on climate-and energy-related societal challenges”. In: Global and Planetary Change (2023), p. 104140. doi: 10.1016/j.gloplacha.2023. 104140.

[553]

Sierd Cloetingh et al. “Plume-induced sinking of intra-continental lithospheric mantle: An overlooked mechanism of subduction initiation?” In: Geochem. Geophys. Geosyst. (2021), e2020GC009482. doi: 10.1029/2020GC009482.

[554]

Sierd Auke Pieter Leonard Cloetingh, MJR Wortel, and NJ Vlaar. “Evolution of passive continental margins and initiation of subduction zones”. In: Nature 297.5862 (1982), p. 139. doi: 10.1038/297139a0.

[555]

Laura Cobden. Melt mapped inside Earth’s mantle. 2020.

[556]

L. Colli, H.-P. Bunge, and B.S.A. Schuberth. “On retrodictions of global mantle flow with assimilated surface velocities”. In: Geophys. Res. Lett. 42.20 (2015), pp. 8341–8348. doi: 10.1002/2015GL066001.

[557]

L. Colli, S. Ghelichkhan, and H.-P. Bunge. “On the ratio of dynamic topography and gravity anomalies in a dynamic Earth”. In: Geophys. Res. Lett. 43.6 (2016), pp. 2510–2516. doi: 10.1002/2016GL067929.

[558]

L. Colli, S. Ghelichkhan, H.-P. Bunge, and J. Oeser. “Retrodictions of Mid Paleogene mantle flow and dynamic topography in the Atlantic region from compressible high resolution adjoint mantle convection models: Sensitivity to deep mantle viscosity and tomographic input model”. In: Gondwana Research 53 (2018), pp. 252–272. doi: 10.1016/j.gr.2017.04. 027.

[559]

L. Colli et al. “Rapid South Atlantic spreading changes and coeval vertical motion in surrounding continents: Evidence for temporal changes of pressure-driven upper mantle flow”. In: Tectonics 33.7 (2014), pp. 1304–1321. doi: 10.1002/2014TC003612.

[560]

M. Collignon, N. Fernandez, and B.J.P. Kaus. “Influence of surface processes and initial topography on lateral fold growth and fold linkage mode”. In: Tectonics 34 (2015), pp. 1622–1645.

[561]

M. Collignon, B.J.P. Kaus, D.A. May, and N. fernandez. “Influences of surface processes on fold growth during 3-D detachment folding”. In: Geochem. Geophys. Geosyst. 15 (2014). doi: 10.1002/2014GC005450.

[562]

M. Collignon, P. Yamato, S. Castelltort, and B.J.P. Kaus. “Modeling of wind gap formation and development of sedimentary basins during fold growth: application to the Zagros Fold Belt, Iran”. In: Earth Surface Processes and Landforms 41.11 (2016), pp. 1521–1535. doi: 10.1002/esp.3921.

[563]

N Coltice, T Rolf, and PJ Tackley. “Seafloor spreading evolution in response to continental growth”. In: Geology 42.3 (2014), pp. 235–238. doi: 10.1130/G35062.1.

[564]

N. Coltice. “The role of convective mixing in degassing the Earth’s mantle”. In: Earth Planet. Sci. Lett. 234.1-2 (2005), pp. 15–25. doi: 10.1016/j.epsl.2005.02.041.

[565]

N. Coltice, B. R. Phillips, H. Bertrand, Y. Ricard, and P. Rey. “Global warming of the mantle at the origin of flood basalts over supercontinents”. In: Geology 35.5 (2007), p. 391. doi: 10.1130/G23240A.1.

[566]

N. Coltice and Y. Ricard. “Geochemical observations and one layer mantle convection”. In: Earth Planet. Sci. Lett. 174.1-2 (1999), pp. 125–137. doi: 10.1016/S0012-821X(99) 00258-7.

[567]

Nicolas Coltice, Laurent Husson, Claudio Faccenna, and Maëlis Arnould. “What drives tectonic plates?” In: Science Advances 5.10 (2019). doi: 10.1126/sciadv.aax4295.

[568]

Nicolas Coltice and Yanick Ricard. “On the origin of noble gases in mantle plumes”. In: Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 360.1800 (2002), pp. 2633–2648. doi: 10.1098/rsta.2002. 1084.

[569]

Nicolas Coltice, Tobias Rolf, Paul J Tackley, and Stéphane Labrosse. “Dynamic causes of the relation between area and age of the ocean floor”. In: Science 336.6079 (2012), pp. 335–338. doi: 10.1126/science.1219120.

[570]

Nicolas Coltice and J Schmalzl. “Mixing times in the mantle of the early Earth derived from 2-D and 3-D numerical simulations of convection”. In: Geophys. Res. Lett. 33.23 (2006). doi: 10.1029/2006GL027707.

[571]

Nicolas Coltice, Maria Seton, Tobias Rolf, RD Müller, and Paul J Tackley. “Convergence of tectonic reconstructions and mantle convection models for significant fluctuations in seafloor spreading”. In: Earth Planet. Sci. Lett. 383 (2013), pp. 92–100.

[572]

Matthew J Comeau, Claudia Stein, Michael Becken, and Ulrich Hansen. “Geodynamic modeling of lithospheric removal and surface deformation: Application to intraplate uplift in central Mongolia”. In: J. Geophys. Res.: Solid Earth 126.5 (2021), e2020JB021304. doi: 10.1029/2020JB021304.

[573]

JAD Connolly. “The geodynamic equation of state: what and how”. In: Geochem. Geophys. Geosyst. 10.10 (2009). doi: 10.1029/2009GC002540.

[574]

JAD Connolly and Yu Yu Podladchikov. “Compaction-driven fluid flow in viscoelastic rock”. In: Geodinamica Acta 11.2-3 (1998), pp. 55–84.

[575]

C. P. Conrad. “Convective instability of thickening mantle lithosphere”. In: Geophy. J. Int. 143.1 (2000), pp. 52–70. doi: 10.1046/j.1365-246x.2000.00214.x.

[576]

C. P. Conrad. “The solid Earth’s influence on sea level”. In: Geological Society of America Bulletin 125.7-8 (2013), pp. 1027–1052. doi: 10.1130/B30764.1.

[577]

C. P. Conrad and M. D. Behn. “Constraints on lithosphere net rotation and asthenospheric viscosity from global mantle flow models and seismic anisotropy”. In: Geochem. Geophys. Geosyst. 11.5 (2010). doi: 10.1029/2009GC002970.

[578]

C. P. Conrad and B. H. Hager. “Mantle convection with strong subduction zones”. In: Geophy. J. Int. 144.2 (2001), pp. 271–288. doi: 10.1046/j.1365-246x.2001.00321.x.

[579]

C. P. Conrad and L. Husson. “Influence of dynamic topography on sea level and its rate of change”. In: Lithosphere 1.2 (2009), pp. 110–120. doi: 10.1130/L32.1.

[580]

C. P. Conrad and P. Molnar. “Convective instability of a boundary layer with temperature-and strain-rate-dependent viscosity in terms of ’available buoyancy’”. In: Geophy. J. Int. 139.1 (1999), pp. 51–68. doi: 10.1046/j.1365-246X.1999.00896.x.

[581]

C. P. Conrad, B. Wu, E. I. Smith, T. A. Bianco, and A. Tibbetts. “Shear-driven upwelling induced by lateral viscosity variations and asthenospheric shear: A mechanism for intraplate volcanism”. In: Phys. Earth. Planet. Inter. 178.3-4 (2010), pp. 162–175. doi: 10.1016/ j.pepi.2009.10.001.

[582]

C.P. Conrad, M.D. Behn, and P.G. Silver. “Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle”. In: J. Geophys. Res.: Solid Earth 112.B07317 (2007).

[583]

C.P. Conrad and M. Gurnis. “Seismic tomography, surface uplift, and the breakup of Gondwanaland: Integrating mantle convection backwards in time”. In: Geochem. Geophys. Geosyst. 4.3 (2003).

[584]

C.P. Conrad and C. Lithgow-Bertelloni. “Influence of continental roots and asthenosphere on plate-mantle coupling”. In: Geophys. Res. Lett. 33.L05312 (2006). doi: https: //doi.org/10.1029/2005GL025621.

[585]

C.P. Conrad, B. Steinberger, and T.H. Torsvik. “Stability of active mantle upwelling revealed by net characteristics of plate tectonics”. In: Nature 498 (2013), p. 479. doi: 10.1038/ nature12203.

[586]

Clinton P Conrad and Bradford H Hager. “Effects of plate bending and fault strength at subduction zones on plate dynamics”. In: J. Geophys. Res.: Solid Earth 104.B8 (1999), pp. 17551–17571. doi: 10.1029/1999JB900149.

[587]

Clinton P Conrad and Carolina Lithgow-Bertelloni. “How mantle slabs drive plate tectonics”. In: Science 298.5591 (2002), pp. 207–209.

[588]

Clinton P Conrad and Carolina Lithgow-Bertelloni. “The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic”. In: J. Geophys. Res.: Solid Earth 109.B10 (2004). doi: 10.1029/2004JB002991.

[589]

FA Cook and DL Turcotte. “Parameterized convection and the thermal evolution of the Earth”. In: Tectonophysics 75.1-2 (1981), pp. 1–17. doi: 10.1016/0040-1951(81)90205- 5.

[590]

C. M. Cooper and C. P. Conrad. “Does the mantle control the maximum thickness of cratons?” In: Lithosphere 1.2 (2009), pp. 67–72. doi: 10.1130/L40.1.

[591]

C.M. Cooper, L.-N. Moresi, and A. Lenardic. “Effects of continental configuration on mantle heat loss”. In: Geophys. Res. Lett. 40 (2013), pp. 2647–2651. doi: 10.1002/grl.50547.

[592]

Catherine M Cooper, RJ Farrington, and MS Miller. “On the destructive tendencies of cratons”. In: Geology 49.2 (2021), pp. 195–200. doi: 10.1130/G48111.1.

[593]

Catherine M Cooper, Adrian Lenardic, and L Moresi. “Effects of continental insulation and the partitioning of heat producing elements on the Earth’s heat loss”. In: Geophys. Res. Lett. 33.13 (2006). doi: 10.1029/2006GL026291.

[594]

Catherine M Cooper, Adrian Lenardic, and L Moresi. “The thermal structure of stable continental lithosphere within a dynamic mantle”. In: Earth Planet. Sci. Lett. 222.3-4 (2004), pp. 807–817. doi: 10.1016/j.epsl.2004.04.008.

[595]

Catherine M Cooper and Meghan S Miller. “Embracing craton complexity at depth”. In: Elements 20.3 (2024), pp. 187–192. doi: 10.2138/gselements.20.3.187.

[596]

CM Cooper, A Lenardic, A Levander, L Moresi, and K Benn. “Creation and preservation of cratonic lithosphere: seismic constraints and geodynamic models”. In: GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION 164 (2006), p. 75. doi: xxxx.

[597]

CM Cooper and MS Miller. “Craton formation: Internal structure inherited from closing of the early oceans”. In: Lithosphere 6.1 (2014), pp. 35–42. doi: 10.1130/L321.1.

[598]

Patrick Cordier, Sylvie Demouchy, Benoˆi  t Beausir, Vincent Taupin, Fabrice Barou, and Claude Fressengeas. “Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle”. In: Nature 507.7490 (2014), pp. 51–56. doi: 10.1038/nature13043.

[599]

Giacomo Corti. “Control of rift obliquity on the evolution and segmentation of the main Ethiopian rift”. In: Nature Geoscience 1.4 (2008), p. 258. doi: 10.1038/ngeo160.

[600]

Giacomo Corti and Piero Manetti. “Asymmetric rifts due to asymmetric Mohos: An experimental approach”. In: Earth Planet. Sci. Lett. 245.1-2 (2006), pp. 315–329. doi: 10.1016/j.epsl.2006.02.004.

[601]

Giacomo Corti et al. “Transition from continental break-up to punctiform seafloor spreading: How fast, symmetric and magmatic”. In: Geophys. Res. Lett. 30.12 (2003). doi: 10.1029/ 2003GL017374.

[602]

S. Cottaar and B. Buffett. “Convection in the Earth’s inner core”. In: Phys. Earth. Planet. Inter. 198-199 (2012), pp. 67–78. doi: 10.1016/j.pepi.2012.03.008.

[603]

T.J. Coulthard. “Landscape evolution models: a software review”. In: Hydrological processes 15 (2001), pp. 165–173.

[604]

D Coumou, T Driesner, and Christoph A Heinrich. “The structure and dynamics of mid-ocean ridge hydrothermal systems”. In: Science 321.5897 (2008), pp. 1825–1828.

[605]

Vincent Courtillot, Anne Davaille, Jean Besse, and Joann Stock. “Three distinct types of hotspots in the Earth’s mantle”. In: Earth Planet. Sci. Lett. 205.3-4 (2003), pp. 295–308. doi: 10.1016/S0012-821X(02)01048-8.

[606]

Robert C Courtney and Christopher Beaumont. “Thermally-activated creep and flexure of the oceanic lithosphere”. In: Nature 305.5931 (1983), pp. 201–204. doi: 10.1038/ 305201a0.

[607]

Patience A Cowie, John R Underhill, Mark D Behn, Jian Lin, and Caroline E Gill. “Spatio-temporal evolution of strain accumulation derived from multi-scale observations of Late Jurassic rifting in the northern North Sea: A critical test of models for lithospheric extension”. In: Earth Planet. Sci. Lett. 234.3-4 (2005), pp. 401–419. doi: 10.1016/j. epsl.2005.01.039.

[608]

Claire Harvey Craig and Dan McKenzie. “The existence of a thin low-viscosity layer beneath the lithosphere”. In: Earth Planet. Sci. Lett. 78.4 (1986), pp. 420–426.

[609]

F. Crameri and P.J. Tackley. “Spontaneous development of arcuate single-sided subduction in global 3-D mantle convection models with a free surface”. In: J. Geophys. Res.: Solid Earth 119 (2014). doi: 10.1002/2014JB010939.

[610]

F. Crameri and P.J. Tackley. “Subduction initiation from a stagnant lid and global overturn: new insights from numerical models with a free surface”. In: Progress in Earth and Planetary Science 3 (2016).

[611]

F. Crameri, P.J. Tackley, I. Meilick, T.V. Gerya, and B.J.P. Kaus. “A free plate surface and weak oceanic crust produce single-sided subduction on Earth”. In: Geophys. Res. Lett. 39 (2012). doi: 10.1029/2011GL050046.

[612]

Fabio Crameri, Clinton P Conrad, Laurent Montési, and Carolina R Lithgow-Bertelloni. “The dynamic life of an oceanic plate”. In: Tectonophysics 760 (2019), pp. 107–135.

[613]

Fabio Crameri and Carolina Lithgow-Bertelloni. “Abrupt upper-plate tilting during slab-transition-zone collision”. In: Tectonophysics 746 (2018), pp. 199–211. doi: 10.1016/ j.tecto.2017.09.013.

[614]

Fabio Crameri, CR Lithgow-Bertelloni, and Paul J Tackley. “The dynamical control of subduction parameters on surface topography”. In: Geochem. Geophys. Geosyst. 18.4 (2017), pp. 1661–1687. doi: 10.1002/2017GC006821.

[615]

Fabio Crameri and Paul J Tackley. “Parameters controlling dynamically self-consistent plate tectonics and single-sided subduction in global models of mantle convection”. In: J. Geophys. Res.: Solid Earth 120.5 (2015), pp. 3680–3706. doi: 10.1002/2014JB011664.

[616]

Fabio Crameri et al. “A transdisciplinary and community-driven database to unravel subduction zone initiation”. In: Nature Communications 11.1 (2020), pp. 1–14. doi: 10. 1038/s41467-020-17522-9.

[617]

A Crave and Ph Davy. “A stochastic “precipiton” model for simulating erosion/sedimentation dynamics”. In: Computers & Geosciences 27.7 (2001), pp. 815–827. doi: 10.1016/S0098-3004(00)00167-9.

[618]

T. Croissant and J. Braun. “Constraining the stream power law: a novel approach combining a landscape evolution model and an inversion method”. In: Earth Surf. Dynam. 2 (2014), pp. 155–166.

[619]

AJL Crook, SM Willson, JG Yu, and DRJ Owen. “Predictive modelling of structure evolution in sandbox experiments”. In: Journal of Structural Geology 28.5 (2006), pp. 729–744.

[620]

AG Crosby, D McKenzie, and JG Sclater. “The relationship between depth, age and gravity in the oceans”. In: Geophy. J. Int. 166.2 (2006), pp. 553–573.

[621]

Timothy A Cross and Rex H Pilger Jr. “Controls of subduction geometry, location of magmatic arcs, and tectonics of arc and back-arc regions”. In: Geological Society of America Bulletin 93.6 (1982), pp. 545–562.

[622]

S Thomas Crough. “Approximate solutions for the formation of the lithosphere”. In: Phys. Earth. Planet. Inter. 14.4 (1977), pp. 365–377.

[623]

Alexander R Cruden, Mohammad HB Nasseri, and Russell Pysklywec. “Surface topography and internal strain variation in wide hot orogens from three-dimensional analogue and two-dimensional numerical vice models”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 79–104.

[624]

AR Cruden, Hemin Koyi, and H Schmeling. “Diapiric basal entrainment of mafic into felsic magma”. In: Earth Planet. Sci. Lett. 131.3-4 (1995), pp. 321–340. doi: 10.1016/0012- 821X(95)00033-9.

[625]

L. Cruz, J. Malinski, A. Wilson, W.A. Take, and G. Hilley. “Erosional control of kinematics and geometry of fold-and-thrust belts imaged in a physical and numerical sandbox”. In: J. Geophys. Res.: Solid Earth 115.B09404 (2010). doi: 10.1029/2010JB007472.

[626]

L Cserepes and M Rabinowicz. “Gravity and convection in a two-layer mantle”. In: Earth Planet. Sci. Lett. 76.1-2 (1985), pp. 193–207. doi: 10.1016/0012-821X(85)90159-1.

[627]

L Cserepes, M Rabinowicz, and C Rosemberg-Borot. “Three-dimensional infinite Prandtl number convection in one and two layers with implications for the Earth’s gravity field”. In: J. Geophys. Res.: Solid Earth 93.B10 (1988), pp. 12009–12025. doi: 10.1029/ JB093iB10p12009.

[628]

L. Cserepes and D.A. Yuen. “Dynamical consequences of mid-mantle viscosity stratification on mantle flows with an endothermic phase transition”. In: Geophys. Res. Lett. 24.2 (1997), pp. 181–184. doi: 10.1029/96GL03917.

[629]

L. Cserepes and D.A. Yuen. “On the possibility of a second kind of mantle plume”. In: Earth Planet. Sci. Lett. 183.1-2 (2000), pp. 61–71. doi: 10.1016/S0012-821X(00)00265-X.

[630]

Marco Cuffaro, Edie Miglio, Mattia Penati, and Marco Viganò. “Mantle thermal structure at northern Mid-Atlantic Ridge from improved numerical methods and boundary conditions”. In: Geophy. J. Int. 220.2 (2020), pp. 1128–1148. doi: 10.1093/gji/ggz488.

[631]

Qihua Cui and Zhong-Hai Li. “Trench-parallel mid-ocean ridge subduction driven by along-strike transmission of slab pull”. In: Geology (2024). doi: 10.1130/G52355.1.

[632]

Qihua Cui, Zhong-Hai Li, and Mian Liu. “Crustal thickening versus lateral extrusion during India–Asia continental collision: 3-D thermo-mechanical modeling”. In: Tectonophysics 818 (2021), p. 229081. doi: 10.1016/j.tecto.2021.229081.

[633]

W.E.H. Culling. “Analytical theory of erosion”. In: The Journal of Geology 68.3 (1960), pp. 336–344. doi: 10.1086/626663.

[634]

Jezabel Curbelo, Lucia Duarte, Thierry Alboussiere, Fabien Dubuffet, Stéphane Labrosse, and Yanick Ricard. “Numerical solutions of compressible convection with an infinite Prandtl number: comparison of the anelastic and anelastic liquid models with the exact equations”. In: Journal of Fluid Mechanics 873 (2019), pp. 646–687. doi: 10.1017/jfm.2019.420.

[635]

Ivy S Curren and Peter Bird. “Formation and suppression of strike–slip fault systems”. In: Pure Appl. Geophys. 171 (2014), pp. 2899–2918. doi: 10.1007/s00024-014-0826-7.

[636]

Gilda Currenti and Charles A Williams. “Numerical modeling of deformation and stress fields around a magma chamber: Constraints on failure conditions and rheology”. In: Phys. Earth. Planet. Inter. 226 (2014), pp. 14–27. doi: 10.1016/j.pepi.2013.11.003.

[637]

C.A. Currie and C. Beaumont. “Are diamond-bearing Cretaceous kimberlites related to low-angle subduction beneath western North America”. In: Earth Planet. Sci. Lett. 303 (2011), pp. 59–70. doi: 10.1016/j.epsl.2010.12.036.

[638]

C.A. Currie, C. Beaumont, and R.S. Huismans. “The fate of subducted sediments: a case for backarc intrusion and underplating”. In: Geology 35.12 (2007), pp. 1111–1114.

[639]

CA Currie, K Wang, Roy D Hyndman, and Jiangheng He. “The thermal effects of steady-state slab-driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc”. In: Earth Planet. Sci. Lett. 223.1-2 (2004), pp. 35–48. doi: 10.1016/j. epsl.2004.04.020.

[640]

Claire A Currie, Ritske S Huismans, and Christopher Beaumont. “Thinning of continental backarc lithosphere by flow-induced gravitational instability”. In: Earth Planet. Sci. Lett. 269.3-4 (2008), pp. 436–447.

[641]

Claire A Currie and Roy D Hyndman. “The thermal structure of subduction zone back arcs”. In: J. Geophys. Res.: Solid Earth 111.B8 (2006). doi: 10.1029/2005JB004024.

[642]

Mario D’Acquisto, Luca Dal Zilio, Irene Molinari, Edi Kissling, Taras Gerya, and Ylona van Dinther. “Tectonics and seismicity in the Northern Apennines driven by slab retreat and lithospheric delamination”. In: Tectonophysics (2020), p. 228481. doi: 10.1016/j.tecto. 2020.228481.

[643]

R. Daessler and D.A. Yuen. “The effects of phase transition kinetics on subducting slabs”. In: Geophys. Res. Lett. 20.23 (1993), pp. 2603–2606. doi: 10.1029/93GL02811.

[644]

FA Dahlen. “Critical taper model of fold-and-thrust belts and accretionary wedges”. In: Annual Review of Earth and Planetary Sciences 18.1 (1990), pp. 55–99.

[645]

FA Dahlen. “Noncohesive critical Coulomb wedges: An exact solution”. In: J. Geophys. Res.: Solid Earth 89.B12 (1984), pp. 10125–10133.

[646]

FA Dahlen, John Suppe, and Dan Davis. “Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory”. In: J. Geophys. Res.: Solid Earth 89.B12 (1984), pp. 10087–10101.

[647]

Liming Dai et al. “Slab rollback versus delamination: contrasting fates of flat-slab subduction and implications for South China evolution in the Mesozoic”. In: J. Geophys. Res.: Solid Earth (2020), e2019JB019164. doi: 10.1029/2019JB019164.

[648]

Luca Dal Zilio, Ylona van Dinther, Taras Gerya, and Jean-Philippe Avouac. “Bimodal seismicity in the Himalaya controlled by fault friction and geometry”. In: Nature Communications 10.1 (2019), pp. 1–11. doi: 10.1038/s41467-018-07874-8.

[649]

Luca Dal Zilio, Ylona van Dinther, Taras V Gerya, and Casper C Pranger. “Seismic behaviour of mountain belts controlled by plate convergence rate”. In: Earth Planet. Sci. Lett. 482 (2018), pp. 81–92. doi: 10.1016/j.epsl.2017.10.053.

[650]

Luca Dal Zilio, Manuele Faccenda, and Fabio Capitanio. “The role of deep subduction in supercontinent breakup”. In: Tectonophysics 746 (2018), pp. 312–324. doi: 10.1016/j. tecto.2017.03.006.

[651]

Luca Dal Zilio and Taras Gerya. “Subduction earthquake cycles controlled by episodic fluid pressure cycling”. In: Lithos 426 (2022), p. 106800. doi: 10.1016/j.lithos.2022. 106800.

[652]

Luca Dal Zilio, Betti Hegyi, Whitney Behr, and Taras Gerya. “Hydro-mechanical earthquake cycles in a poro-visco-elasto-plastic fluid-bearing fault structure”. In: Tectonophysics 838 (2022), p. 229516. doi: 10.1016/j.tecto.2022.229516.

[653]

Luca Dal Zilio, Nadia Lapusta, Jean-Philippe Avouac, and Taras Gerya. “Subduction earthquake sequences in a non-linear visco-elasto-plastic megathrust”. In: Geophy. J. Int. 229.2 (2022), pp. 1098–1121. doi: 10.1093/gji/ggab521.

[654]

Luca Dal Zilio, Jonas Ruh, and Jean-Philippe Avouac. “Structural evolution of orogenic wedges: Interplay between erosion and weak décollements”. In: Tectonics 39.10 (2020), e2020TC006210. doi: 10.1029/2020TC006210.

[655]

Manon Dalaison and Rhodri Davies. “Lithospheric Thinning by Mantle Plumes”. In: ASEG Extended Abstracts 2016.1 (2016), pp. 1–4.

[656]

S.F. Daly. “The vagaries of variable viscosity convection”. In: Geophys. Res. Lett. 7.10 (1980), pp. 841–844. doi: 10.1029/GL007i010p00841.

[657]

Zhuo Dang, Nan Zhang, Zheng-Xiang Li, Chuan Huang, Christopher J Spencer, and Yebo Liu. “Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up”. In: Communications Earth & Environment 1.1 (2020), pp. 1–11. doi: 10. 1038/s43247-020-00052-z.

[658]

J. Dannberg, Z. Eilon, U. Faul, R. Gassmöller, P. Moulik, and R. Myhill. “The importance of grain size to mantle dynamics and seismological observations”. In: Geochem. Geophys. Geosyst. 18 (2017), pp. 3034–3061. doi: 10.1002/2017GC006944.

[659]

J. Dannberg and R. Gassmöller. “Chemical trends in ocean islands explained by plume-slab interaction”. In: Proceedings of the National Academy of Sciences 115.17 (2018), pp. 4351–4356.

[660]

J. Dannberg and S.V. Sobolev. “Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept”. In: Nature Communications 6.6960 (2015). doi: 10. 1038/ncomms7960.

[661]

Juliane Dannberg. “Dynamics of mantle plumes: Linking scales and coupling physics”. PhD thesis. Universität Potsdam, 2016.

[662]

Juliane Dannberg, Kiran Chotalia, and Rene Gassmöller. “How lowermost mantle viscosity controls the chemical structure of Earth’s deep interior”. In: Communications Earth & Environment 4.1 (2023), p. 493. doi: 10.1038/s43247-023-01153-1.

[663]

Juliane Dannberg, Rene Gassmöller, Ryan Grove, and Timo Heister. “A new formulation for coupled magma/mantle dynamics”. In: Geophy. J. Int. 219.1 (2019), pp. 94–107. doi: 10.1093/gji/ggz190.

[664]

Juliane Dannberg, Rene Gassmöller, Ranpeng Li, Carolina Lithgow-Bertelloni, and Lars Stixrude. “An entropy method for geodynamic modelling of phase transitions: capturing sharp and broad transitions in a multiphase assemblage”. In: Geophy. J. Int. 231.3 (2022), pp. 1833–1849. doi: 10.1093/gji/ggac293.

[665]

Juliane Dannberg, Robert Myhill, René Gassmöller, and Sanne Cottaar. “The morphology, evolution and seismic visibility of partial melt at the core–mantle boundary: implications for ULVZs”. In: Geophy. J. Int. 227.2 (2021), pp. 1028–1059. doi: 10.1093/gji/ggab242.

[666]

Véronique Dansereau, Jérôme Weiss, Pierre Saramito, and Philippe Lattes. “A Maxwell-Elasto-Brittle rheology for sea ice modelling”. In: The Cryosphere 10 (2016), pp. 1339–1359. doi: 10.5194/tc-10-1339-2016.

[667]

Ritabrata Dasgupta and Changyeol Lee. “Lithospheric weakening by a small-scale plume and its geodynamic implications”. In: Earth Planet. Sci. Lett. 626 (2024), p. 118514. doi: 10.1016/j.epsl.2023.118514.

[668]

Ritabrata Dasgupta, Joyjeet Sen, and Nibir Mandal. “Bending curvatures of subducting plates: old versus young slabs”. In: Geophy. J. Int. 225.3 (2021), pp. 1963–1981. doi: 10.1093/gji/ggab070.

[669]

B Daudré and SAPL Cloetingh. “Numerical modelling of salt diapirism: influence of the tectonic regime”. In: Tectonophysics 240.1-4 (1994), pp. 59–79. doi: 10.1016/0040- 1951(94)90264-X.

[670]

O Dauteuil, O Bourgeois, and T Mauduit. “Lithosphere strength controls oceanic transform zone structure: insights from analogue models”. In: Geophy. J. Int. 150.3 (2002), pp. 706–714. doi: 10.1046/j.1365-246X.2002.01736.x.

[671]

A Davaille and B Romanowicz. “Deflating the LLSVPs: bundles of mantle thermochemical plumes rather than thick stagnant ”piles””. In: Tectonics 39 (2020), e2020TC006265. doi: 10.1029/2020TC006265.

[672]

A. Davaille, Ph. Carrez, and P. Cordier. “Fat plumes may reflect the complex rheology of the lower mantle”. In: Geophys. Res. Lett. 45 (2018), 10.1002/2017GL076575.

[673]

A. Davaille, B. Guesclin, A. Massmeyer, and E. Di Giuseppe. “Thermal instabilities in a yield stress fluid: Existence and morphology”. In: Journal of Non-Newtonian Rheology 193 (2013), pp. 144–153.

[674]

Anne Davaille. “Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle”. In: Nature 402.6763 (1999), p. 756. doi: 10.1038/ 45461.

[675]

Anne Davaille, Fabien Girard, and Michael Le Bars. “How to anchor hotspots in a convecting mantle?” In: Earth Planet. Sci. Lett. 203.2 (2002), pp. 621–634.

[676]

Anne Davaille, Angela Limare, Floriane Touitou, Ichiro Kumagai, and Judith Vatteville. “Anatomy of a laminar starting thermal plume at high Prandtl number”. In: Experiments in Fluids 50.2 (2011), pp. 285–300.

[677]

D Rhodri Davies, Saskia Goes, JH Davies, BSA Schuberth, H-P Bunge, and J Ritsema. “Reconciling dynamic and seismic models of Earth’s lower mantle: The dominant role of thermal heterogeneity”. In: Earth Planet. Sci. Lett. 353 (2012), pp. 253–269. doi: 10. 1016/j.epsl.2012.08.016.

[678]

D.R. Davies, J.H. Davies, P.C. Bollada, O. Hassan, K. Morgan, and P. Nithiarasu. “A hierarchical mesh refinement technique for global 3-D spherical mantle convection modelling”. In: Geosci. Model. Dev. 6 (2013), pp. 1095–1107. doi: 10.5194/gmd-6- 1095-2013.

[679]

D.R. Davies et al. “Earth’s multi-scale topographic response to global mantle flow”. In: Nature Geoscience 12.10 (2019), pp. 845–850. doi: 10.1038/s41561-019-0441-4.

[680]

David Rhodri Davies and John Huw Davies. “Thermally-driven mantle plumes reconcile multiple hot-spot observations”. In: Earth Planet. Sci. Lett. 278.1-2 (2009), pp. 50–54. doi: 10.1016/j.epsl.2008.11.027.

[681]

David Rhodri Davies, John Huw Davies, O Hassan, K Morgan, and P Nithiarasu. “Adaptive finite element methods in geodynamics: Convection dominated mid-ocean ridge and subduction zone simulations”. In: International Journal of Numerical Methods for Heat & Fluid Flow 18.7/8 (2008). doi: 10.1108/09615530810899079.

[682]

DR Davies, S Goes, and HCP Lau. “Thermally dominated deep mantle LLSVPs: a review”. In: The Earth’s heterogeneous mantle (2015), pp. 441–477. doi: 10.1007/978-3-319- 15627-9_14.

[683]

DR Davies, Saskia Goes, and Malcolm Sambridge. “On the relationship between volcanic hotspot locations, the reconstructed eruption sites of large igneous provinces and deep mantle seismic structure”. In: Earth Planet. Sci. Lett. 411 (2015), pp. 121–130. doi: 10.1016/ j.epsl.2014.11.052.

[684]

DR Davies, G Le Voci, Saskia Goes, Stephan C Kramer, and Cian R Wilson. “The mantle wedge’s transient 3-D flow regime and thermal structure”. In: Geochem. Geophys. Geosyst. 17.1 (2016), pp. 78–100. doi: 10.1002/2015GC006125.

[685]

G.F. Davies. “Mantle convection model with a dynamic plate: topography, heat flow and gravity anomalies”. In: Geophy. J. Int. 98.3 (1989), pp. 461–464. doi: 10.1111/j.1365- 246X.1989.tb02283.x.

[686]

G.F. Davies. “Mantle plumes, mantle stirring and hotspot chemistry”. In: Earth Planet. Sci. Lett. 99.1-2 (1990), pp. 94–109. doi: 10.1016/0012-821X(90)90073-7.

[687]

G.F. Davies. “Role of the lithosphere in mantle convection”. In: J. Geophys. Res.: Solid Earth 93.B9 (1988), pp. 10451–10466. doi: 10.1029/JB093iB09p10451.

[688]

G.F. Davies. “Thermomechanical erosion of the lithosphere by mantle plumes”. In: J. Geophys. Res.: Solid Earth 99.B8 (1994), pp. 15709–15722. doi: 10.1029/94JB00119.

[689]

G.F. Davies and M.A. Richards. “Mantle convection”. In: The Journal of Geology 100.2 (1992), pp. 151–206. doi: 10.1086/629582.

[690]

Geoffrey F Davies. “Dynamics of the Hadean and Archaean mantle”. In: Developments in Precambrian Geology 15 (2007), pp. 61–73. doi: 10.1016/S0166-2635(07)15023-4.

[691]

Geoffrey F Davies. “Lagging mantle convection, the geoid and mantle structure”. In: Earth and planetary science letters 69.1 (1984), pp. 187–194.

[692]

Geoffrey F Davies. “Mantle convection under simulated plates: effects of heating modes and ridge and trench migration, and implications for the core-mantle boundary, bathymetry, the geoid and Benioff zones”. In: Geophys. J. R. astr. Soc 84.1 (1986), pp. 153–183.

[693]

Geoffrey F Davies. “Viscous mantle flow under moving lithospheric plates and under subduction zones”. In: Geophy. J. Int. 49.3 (1977), pp. 557–563. doi: 10.1111/j.1365- 246X.1977.tb01303.x.

[694]

Geoffrey F Davies and Michael Gurnis. “Interaction of mantle dregs with convection: Lateral heterogeneity at the core-mantle boundary”. In: Geophys. Res. Lett. 13.13 (1986), pp. 1517–1520.

[695]

J Huw Davies and D Rhodri Davies. “Earth’s surface heat flux”. In: Solid Earth 1.1 (2010), pp. 5–24.

[696]

J Huw Davies and Friedhelm von Blanckenburg. “Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens”. In: Earth Planet. Sci. Lett. 129.1-4 (1995), pp. 85–102. doi: 10.1016/0012-821X(94)00237-S.

[697]

J. H. Davies and D. J. Stevenson. “Physical model of source region of subduction zone volcanics”. In: J. Geophys. Res.: Solid Earth 97.B2 (1992), pp. 2037–2070. doi: 10.1029/ 91JB02571.

[698]

J.H. Davies. “Global map of solid Earth surface heat flow”. In: Geochem. Geophys. Geosyst. 14.10 (2013). doi: 10.1002/ggge.20271.

[699]

J.H. Davies and H.-P. Bunge. “Are splash plumes the origin of minor hotspots?” In: Geology 34.5 (2006), pp. 349–352. doi: 10.1130/G22193.1.

[700]

J.H. Davies and H.-P. Bunge. “Seismically ”fast” geodymanic mantle models”. In: Geophys. Res. Lett. 28.1 (2001), pp. 73–76. doi: 10.1029/2000GL011805.

[701]

Federico M Dávila and Carolina Lithgow-Bertelloni. “Dynamic uplift during slab flattening”. In: Earth Planet. Sci. Lett. 425 (2015), pp. 34–43.

[702]

Dan Davis, John Suppe, and FA Dahlen. “Mechanics of fold-and-thrust belts and accretionary wedges”. In: J. Geophys. Res.: Solid Earth 88.B2 (1983), pp. 1153–1172.

[703]

P. Davy and P. Cobbold. “Indentation tectonics in nature and experiment. 1. Central Asia”. In: Bulletin of the Geological Institutions of Uppsala 14 (1988), pp. 143–162.

[704]

P. Davy and P. Cobbold. “Indentation tectonics in nature and experiment. 1. Experiments scaled for gravity”. In: Bulletin of the Geological Institutions of Uppsala 14 (1988), pp. 129–141.

[705]

Ph. Davy and P. Cobbold. “Experiments on shortening of a 4-layer model of the continental lithosphere”. In: Tectonophysics 188 (1991), pp. 1–25. doi: 10.1016/0040-1951(91) 90311-F.

[706]

Philippe Davy and Dimitri Lague. “Fluvial erosion/transport equation of landscape evolution models revisited”. In: J. Geophys. Res.: Earth Surface 114.F3 (2009).

[707]

J De Bresser, J Ter Heege, and C Spiers. “Grain size reduction by dynamic recrystallization: can it result in major rheological weakening?” In: International Journal of Earth Sciences 90.1 (2001), pp. 28–45. doi: 10.1007/s005310000149.

[708]

R De Franco, Rob Govers, and R Wortel. “Nature of the plate contact and subduction zones diversity”. In: Earth Planet. Sci. Lett. 271.1-4 (2008), pp. 245–253. doi: 10.1016/j. epsl.2008.04.019.

[709]

Roberta De Franco, Rob Govers, and Rinus Wortel. “Dynamics of continental collision: influence of the plate contact”. In: Geophy. J. Int. 174.3 (2008), pp. 1101–1120. doi: 10.1111/j.1365-246X.2008.03857.x.

[710]

Albert de Montserrat, Jason P Morgan, and Jörg Hasenclever. “LaCoDe: a Lagrangian two-dimensional thermo-mechanical code for large-strain compressible visco-elastic geodynamical modeling”. In: Tectonophysics 767 (2019), p. 228173. doi: 10.1016/j. tecto.2019.228173.

[711]

J De Smet, AP van den Berg, and NJ Vlaar. “Early formation and long-term stability of continents resulting from decompression melting in a convecting mantle”. In: Tectonophysics 322.1-2 (2000), pp. 19–33.

[712]

JH De Smet, AP van den Berg, and NJ Vlaar. “Stability and growth of continental shields in mantle convection models including recurrent melt production”. In: Tectonophysics 296.1-2 (1998), pp. 15–29.

[713]

Renaud Deguen and Philippe Cardin. “Thermochemical convection in Earth’s inner core”. In: Geophy. J. Int. 187.3 (2011), pp. 1101–1118. doi: 10.1111/j.1365-246X.2011.05222.x.

[714]

Wanda DeLandro-Clarke and Gary T Jarvis. “Numerical models of mantle convection with secular cooling”. In: Geophy. J. Int. 129.1 (1997), pp. 183–193. doi: 10.1111/j.1365- 246X.1997.tb00948.x.

[715]

Charles DeMets, R Go Gordon, DF Argus, and Seth Stein. “Current plate motions”. In: Geophy. J. Int. 101.2 (1990), pp. 425–478.

[716]

Charles DeMets, Richard G Gordon, and Donald F Argus. “Geologically current plate motions”. In: Geophy. J. Int. 181.1 (2010), pp. 1–80.

[717]

Arie P van Den Berg, David A Yuen, and Peter E van Keken. “Rheological transition in mantle convection with a composite temperature-dependent, non-Newtonian and Newtonian rheology”. In: Earth Planet. Sci. Lett. 129.1-4 (1995), pp. 249–260. doi: 10.1016/0012- 821X(94)00246-U.

[718]

Lijun Deng, Ting Yang, Zhongxian Zhao, and Meng Zhou. “Constraining subducting slab viscosity with topography and gravity fields in free-surface mantle convection models”. In: Tectonophysics (2023), p. 230195. doi: 10.1016/j.tecto.2023.230195.

[719]

Carlos A Dengo and John M Logan. “Implications of the mechanical and frictional behavior of serpentinite to seismogenic faulting”. In: J. Geophys. Res.: Solid Earth 86.B11 (1981), pp. 10771–10782.

[720]

Alexander L Densmore, Michael A Ellis, and Robert S Anderson. “Landsliding and the evolution of normal-fault-bounded mountains”. In: J. Geophys. Res.: Solid Earth 103.B7 (1998), pp. 15203–15219.

[721]

Douwe G van Der Meer, Wim Spakman, Douwe JJ van Hinsbergen, Maisha L Amaru, and Trond H Torsvik. “Towards absolute plate motions constrained by lower-mantle slab remnants”. In: Nature Geoscience 3.1 (2010), p. 36. doi: 10.1038/ngeo708.

[722]

Frédéric Deschamps, Laura Cobden, and Paul J Tackley. “The primitive nature of large low shear-wave velocity provinces”. In: Earth Planet. Sci. Lett. 349 (2012), pp. 198–208.

[723]

Frédéric Deschamps, Edouard Kaminski, and Paul J Tackley. “A deep mantle origin for the primitive signature of ocean island basalt”. In: Nature Geoscience 4.12 (2011), pp. 879–882. doi: 10.1038/NGEO1295.

[724]

Frédéric Deschamps and Yang Li. “Core-mantle boundary dynamic topography: influence of post-perovskite viscosity”. In: J. Geophys. Res.: Solid Earth (2019). doi: 10.1029/ 2019JB017859.

[725]

Frédéric Deschamps, Yang Li, and Paul J Tackley. “Large-scale thermo-chemical structure of the deep mantle: observations and models”. In: The Earth’s Heterogeneous Mantle. Springer, 2015, pp. 479–515.

[726]

Frédéric Deschamps, Yves Rogister, and Paul J Tackley. “Constraints on core–mantle boundary topography from models of thermal and thermochemical convection”. In: Geophy. J. Int. 212.1 (2018), pp. 164–188. doi: 10.1093/gji/ggx402.

[727]

Frédéric Deschamps, Roel Snieder, and Jeannot Trampert. “The relative density-to-shear velocity scaling in the uppermost mantle”. In: Phys. Earth. Planet. Inter. 124.3-4 (2001), pp. 193–212. doi: 10.1016/S0031-9201(01)00199-6.

[728]

Frédéric Deschamps and Paul J Tackley. “Searching for models of thermo-chemical convection that explain probabilistic tomography: I. Principles and influence of rheological parameters”. In: Phys. Earth. Planet. Inter. 171.1-4 (2008), pp. 357–373.

[729]

Frédéric Deschamps and Paul J Tackley. “Searching for models of thermo-chemical convection that explain probabilistic tomography. II-Influence of physical and compositional parameters”. In: Phys. Earth. Planet. Inter. 176.1-2 (2009), pp. 1–18.

[730]

Frédéric Deschamps, Paul J Tackley, and Takashi Nakagawa. “Temperature and heat flux scalings for isoviscous thermal convection in spherical geometry”. In: Geophy. J. Int. 182.1 (2010), pp. 137–154. doi: 10.1111/j.1365-246X.2010.04637.x.

[731]

Frédéric Deschamps, Chloé Yao, Paul J Tackley, and C Sanchez-Valle. “High Rayleigh number thermal convection in volumetrically heated spherical shells”. In: J. Geophys. Res.: Planets 117.E9 (2012).

[732]

Matteo Desiderio and Maxim D Ballmer. “Ancient stratified thermochemical piles due to high intrinsic viscosity”. In: Geophys. Res. Lett. 51.14 (2024), e2024GL110006. doi: 10. 1029/2024GL110006.

[733]

Y Deubelbeiss, BJP Kaus, and JAD Connolly. “Direct numerical simulation of two-phase flow: Effective rheology and flow patterns of particle suspensions”. In: Earth Planet. Sci. Lett. 290.1-2 (2010), pp. 1–12. doi: 10.1016/j.epsl.2009.11.041.

[734]

Sambuddha Dhar, Jun Muto, Yusaku Ohta, and Takeshi Iinuma. “Heterogeneous rheology of Japan subduction zone revealed by postseismic deformation of the 2011 Tohoku-oki earthquake”. In: Progress in Earth and Planetary Science 10.1 (2023), pp. 1–27. doi: 10.1186/s40645-023-00539-1.

[735]

E Di Giuseppe, J Van Hunen, F Funiciello, C Faccenna, and D Giardini. “Slab stiffness control of trench motion: Insights from numerical models”. In: Geochem. Geophys. Geosyst. 9.2 (2008). doi: 10.1029/2007GC001776.

[736]

JF Di Leo et al. “Development of texture and seismic anisotropy during the onset of subduction”. In: Geochem. Geophys. Geosyst. 15.1 (2014), pp. 192–212. doi: 10.1002/ 2013GC005032.

[737]

A.E. Svartman Dias, L.L. Lavier, and N.W. Hayman. “Conjugate rifted margins width and asymmetry: The interplay between lithospheric strength and thermomechanical processes”. In: J. Geophys. Res.: Solid Earth 120 (2015), pp. 8672–8700.

[738]

Armin Dielforder and A Hampel. “Force-Balance Analysis of Stress Changes During the Subduction-Collision Transition and Implications for the Rise of Mountain Belts”. In: J. Geophys. Res.: Solid Earth 126.3 (2021), e2020JB020914. doi: 10.1029/2020JB020914.

[739]

Armin Dielforder, Ralf Hetzel, and Onno Oncken. “Megathrust shear force controls mountain height at convergent plate margins”. In: Nature 582.7811 (2020), pp. 225–229. doi: 10. 1038/s41586-020-2340-7.

[740]

Hannah R Dietterich, Einat Lev, Jiangzhi Chen, Jacob A Richardson, and Katharine V Cashman. “Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management”. In: Journal of Applied Volcanology 6.1 (2017), p. 9.

[741]

Alexandre Dimanov and Georg Dresen. “Rheology of synthetic anorthite-diopside aggregates: Implications for ductile shear zones”. In: J. Geophys. Res.: Solid Earth 110.B7 (2005). doi: 10.1029/2004JB003431.

[742]

Y. van Dinther, T.V. Gerya, L.A. Dalguer, F. Corbi, F. Funiciello, and P.M. Mai. “The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 1502–1525. doi: 10.1029/2012JB009479.

[743]

Y. van Dinther, T.V. Gerya, L.A. Dalguer, P.M. Mai, G. Morra, and D. Giardini. “The seismic cycle at subduction thrusts: Insights from seismo-thermo-mechanical models”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 1–20. doi: 10.1002/2013JB010380.

[744]

Y. van Dinther, P.M. Mai, L.A. Dalguer, and T.V. Gerya. “Modeling the seismic cycle in subduction zones: The role and spatiotemporal occurrence of off-megathrust earthquakes”. In: Geophys. Res. Lett. 41 (2014), pp. 1194–1201. doi: 10.1002/2013GL058886.

[745]

Jacqueline E Dixon, Timothy H Dixon, DR Bell, and R Malservisi. “Lateral variation in upper mantle viscosity: role of water”. In: Earth Planet. Sci. Lett. 222.2 (2004), pp. 451–467. doi: 10.1016/j.epsl.2004.03.022.

[746]

John M Dixon. “Finite strain and progressive deformation in models of diapiric structures”. In: Tectonophysics 28.1-2 (1975), pp. 89–124.

[747]

Marie-Pierre Doin and Luce Fleitout. “Flattening of the oceanic topography and geoid: thermal versus dynamic origin”. In: Geophy. J. Int. 143.3 (2000), pp. 582–594. doi: 10. 1046/j.1365-246X.2000.00229.x.

[748]

Marie-Pierre Doin, Luce Fleitout, and Ulrich Christensen. “Mantle convection and stability of depleted and undepleted continental lithosphere”. In: J. Geophys. Res.: Solid Earth 102.B2 (1997), pp. 2771–2787. doi: 10.1029/96JB03271.

[749]

Marie-Pierre Doin and Pierre Henry. “Subduction initiation and continental crust recycling: the roles of rheology and eclogitization”. In: Tectonophysics 342.1-2 (2001), pp. 163–191. doi: 10.1016/S0040-1951(01)00161-5.

[750]

Pavel V Doubrovine, Bernhard Steinberger, and Trond H Torsvik. “A failure to reject: Testing the correlation between large igneous provinces and deep mantle structures with EDF statistics”. In: Geochem. Geophys. Geosyst. 17.3 (2016), pp. 1130–1163.

[751]

Pavel V Doubrovine, Bernhard Steinberger, and Trond H Torsvik. “Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans”. In: J. Geophys. Res.: Solid Earth 117.B9 (2012).

[752]

D.C. Drucker and W. Prager. “Soil mechanics and plastic analysis or limit design”. In: Quarterly of Applied Mathematics 10.2 (1952), pp. 157–165. doi: xxxx.

[753]

Daniel Charles Drucker. “A more fundamental approach to plastic stress-strain relations”. In: Proc. of 1st US National Congress of Applied Mechanics, 1951. 1951, pp. 487–491.

[754]

M. Drury, J. de Smet, H. van Roermund, A. van den Berg, and N. Vlaar. “Emplacement of deep mantle rocks into cratonic lithosphere by convection and diapiric upwelling”. In: Ofioliti 24.1 A (1999), pp. 93–94.

[755]

M.R. Drury, H.L.M. Van Roermund, D.A. Carswell, J.H. De Smet, A.P. Van Den Berg, and N.J. Vlaar. “Emplacement of deep upper-mantle rocks into cratonic lithosphere by convection and diapiric upwelling”. In: Journal of Petrology 42.1 (2001), pp. 131–140.

[756]

Martyn R Drury. “Dynamic recrystallization and strain softening of olivine aggregates in the laboratory and the lithosphere”. In: Geological Society, London, Special Publications 243.1 (2005), pp. 143–158.

[757]

J.C. Duarte, W.P. Schellart, and A.R. Cruden. “Three-dimensions dynamic laboratory modles of subduction with an overriding plate and variable interplate rheology ”. In: Geophy. J. Int. (2013). doi: 10.1093/gji/ggt257.

[758]

Joao C Duarte, Wouter P Schellart, and Filipe M Rosas. “The future of Earth’s oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation”. In: Geological Magazine 155.1 (2018), pp. 45–58. doi: 10 . 1017 / S0016756816000716.

[759]

João C Duarte, Wouter P Schellart, and Alexander R Cruden. “How weak is the subduction zone interface?” In: Geophys. Res. Lett. 42.8 (2015), pp. 2664–2673. doi: 10.1002/ 2014GL062876.

[760]

CP Dubey and VM Tiwari. “Computation of the gravity field and its gradient: Some applications”. In: Computers and Geosciences 88 (2016), pp. 83–96. doi: 10.1016/j. cageo.2015.12.007.

[761]

F Dubuffet, DA Yuen, and M Rabinowicz. “Effects of a realistic mantle thermal conductivity on the patterns of 3-D convection”. In: Earth Planet. Sci. Lett. 171.3 (1999), pp. 401–409. doi: 10.1016/S0012-821X(99)00165-X.

[762]

Fabien Dubuffet and David A Yuen. “A thick pipe-like heat-transfer mechanism in the mantle: Nonlinear coupling between 3-D convection and variable thermal conductivity”. In: Geophys. Res. Lett. 27.1 (2000), pp. 17–20.

[763]

Fabien Dubuffet, David A Yuen, and Emma SG Rainey. “Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity”. In: Nonlinear Processes in Geophysics 9 (2002), pp. 311–323. doi: 10.5194/npg-9-311-2002.

[764]

Fabien Dubuffet, David A Yuen, and Tomo Yanagawa. “Feedback effects of variable thermal conductivity on the cold downwellings in high Rayleigh number convection”. In: Geophys. Res. Lett. 27.18 (2000), pp. 2981–2984.

[765]

Guillaume Duclaux, Ritske S Huismans, and Dave A May. “Rotation, narrowing, and preferential reactivation of brittle structures during oblique rifting”. In: Earth Planet. Sci. Lett. 531 (2020), p. 115952. doi: 10.1016/j.epsl.2019.115952.

[766]

Erik Duesterhoeft, Javier Quinteros, Roland Oberhänsli, Romain Bousquet, and Christian de Capitani. “Relative impact of mantle densification and eclogitization of slabs on subduction dynamics: A numerical thermodynamic/thermokinematic investigation of metamorphic density evolution”. In: Tectonophysics 637 (2014), pp. 20–29. doi: 10.1016/j.tecto. 2014.09.009.

[767]

Caroline Dumoulin, Marie-Pierre Doin, Diane Arcay, and Luce Fleitout. “Onset of small-scale instabilities at the base of the lithosphere: scaling laws and role of pre-existing lithospheric structures”. In: Geophy. J. Int. 160.1 (2005), pp. 344–356.

[768]

Caroline Dumoulin, Marie-Pierre Doin, and Luce Fleitout. “Heat transport in stagnant lid convection with temperature-and pressure-dependent Newtonian or non-Newtonian rheology”. In: J. Geophys. Res.: Solid Earth 104.B6 (1999), pp. 12759–12777. doi: 10. 1029/1999JB900110.

[769]

J.A. Dunbar and D.S. Sawyer. “Three-dimensional dynamical model of continental rift propagation and margin plateau formation”. In: J. Geophys. Res.: Solid Earth 101.B12 (1996), pp. 27, 845–27, 863. doi: 10.1029/96JB01231.

[770]

S. Duprat-Oualid, P. Yamato, and P. Pitra. “Major role of shear heating in intracontinental inverted metamorphism: Inference from a thermo-kinematic parametric study”. In: Tectonophysics 608 (2013), pp. 812–831. doi: 10.1016/j.tecto.2013.07.037.

[771]

S. Duprat-Oualid, P. Yamato, and S.M. Schmalholz. “A dimensional analysis to quantify the thermal budget around lithospheric-scale shear zones”. In: Terra Nova 27.3 (2015), pp. 163–168. doi: 10.1111/ter.12144.

[772]

T. Duretz, Ph. Agard, Ph. Yamato, C. Ducassou, E.B. Burov, and T.V. Gerya. “Thermo-mechanical modeling of the obduction process based on the Oman Ophiolite case”. In: Gondwana Research 32 (2016), pp. 1–10. doi: 10.1016/j.gr.2015.02.002.

[773]

T. Duretz and T.V. Gerya. “Slab detachment during continental collision: Influence of crustal rheology and interaction with lithospheric delamination”. In: Tectonophysics 602 (2013), pp. 124–140. doi: 10.1016/j.tecto.2012.12.024.

[774]

T. Duretz, T.V. Gerya, B.J.P. Kaus, and T.B. Andersen. “Thermomechanical modeling of slab eduction”. In: J. Geophys. Res.: Solid Earth 117.B08411 (2012). doi: 10.1029/ 2012JB009137.

[775]

T. Duretz, T.V. Gerya, and D.A. May. “Numerical modelling of spontaneous slab breakoff and subsequent topographic response”. In: Tectonophysics 502 (2011), pp. 244–256. doi: 10.1016/j.tecto.2010.05.024.

[776]

T. Duretz, T.V. Gerya, and W. Spakman. “Slab detachment in laterally varying subduction zones: 3-D numerical modeling”. In: Geophys. Res. Lett. 41 (2014), pp. 1951–1956. doi: 10.1002/2014GL059472.

[777]

T. Duretz, S.M. Schmalholz, and T.V. Gerya. “Dynamics of slab detachment”. In: Geochem. Geophys. Geosyst. 13.3 (2012). doi: 10.1029/2011GC004024.

[778]

T. Duretz, S.M. Schmalholz, and Y.Y. Podladchikov. “Shear heating-induced strain localization across the scales”. In: Philosophical Magazine 95.28-30 (2015), pp. 3192–3207. doi: 10.1080/14786435.2015.1054327.

[779]

T. Duretz, S.M. Schmalholz, Y.Y. Podladchikov, and D.A. Yuen. “Physics-controlled thickness of shear zones caused by viscous heating: Implications for crustal shear localization”. In: Geophys. Res. Lett. 41 (2014), pp. 4904–4911. doi: 10 . 1002 / 2014GL060438.

[780]

T. Duretz, A. Souche, R. de Borst, and L. Le Pourhiet. “The Benefits of Using a Consistent Tangent Operator for Viscoelastoplastic Computations in Geodynamics”. In: Geochem. Geophys. Geosyst. 19 (2018). doi: 10.1029/2018GC007877.

[781]

Thibault Duretz, Benoit Petri, Geoffrey Mohn, SM Schmalholz, FL Schenker, and Othmar Müntener. “The importance of structural softening for the evolution and architecture of passive margins”. In: Scientific Reports 6.1 (2016), pp. 1–7. doi: 10.1038/srep38704.

[782]

Thibault Duretz, Ludovic Räss, René de Borst, and Tim Hageman. “A comparison of plasticity regularization approaches for geodynamic modeling”. In: Geochem. Geophys. Geosyst. 24.7 (2023), e2022GC010675. doi: 10.1029/2022GC010675.

[783]

Thibault Duretz et al. “Numerical modelling of Cretaceous Pyrenean Rifting: The interaction between mantle exhumation and syn-rift salt tectonics”. In: Basin Research (2019). doi: 10.1111/bre.12389.

[784]

WB Durham and LA Stern. “Rheological properties of water ice—Applications to satellites of the outer planets”. In: Annual Review of Earth and Planetary Sciences 29.1 (2001), pp. 295–330. doi: 10.1146/annurev.earth.29.1.295.

[785]

William B Durham, O Prieto-Ballesteros, DL Goldsby, and JS Kargel. “Rheological and thermal properties of icy materials”. In: Space science reviews 153 (2010), pp. 273–298. doi: 10.1007/s11214-009-9619-1.

[786]

Urmi Dutta, Shamik Sarkar, and Nibir Mandal. “Ballooning versus curling of mantle plumes: views from numerical models”. In: Current Science 104.7 (2013), pp. 893–903. doi: xxxx.

[787]

Thomas Duvernay, D Rhodri Davies, Christopher R Mathews, Angus H Gibson, and Stephan C Kramer. “Linking Intraplate Volcanism to Lithospheric Structure and Asthenospheric Flow”. In: Geochem. Geophys. Geosyst. 22.8 (2021), e2021GC009953. doi: 10.1029/ 2021GC009953.

[788]

Jack Dvorkin, Amos Nur, Gary Mavko, and Zvi Ben-Avraham. “Narrow subducting slabs and the origin of backarc basins”. In: Tectonophysics 227.1-4 (1993), pp. 63–79. doi: 10.1016/0040-1951(93)90087-Z.

[789]

S. Dyksterhuis, P. Rey, R.D. Mueller, and L. Moresi. “Effects of initial weakness on rift architecture”. In: Geological Society, London, Special Publications 282 (2007), pp. 443–455. doi: 10.1144/SP282.18.

[790]

D Dymkova and T Gerya. “Porous fluid flow enables oceanic subduction initiation on Earth”. In: Geophys. Res. Lett. 40.21 (2013), pp. 5671–5676. doi: 10.1002/2013GL057798.

[791]

A.M. Dziewonski and D.L. Anderson. “Preliminary reference Earth model”. In: Phys. Earth. Planet. Inter. 25 (1981), pp. 297–356. doi: 10.1016/0031-9201(81)90046-7.

[792]

Caroline M Eakin, Maureen D Long, Lara S Wagner, Susan L Beck, and Hernando Tavera. “Upper mantle anisotropy beneath Peru from SKS splitting: Constraints on flat slab dynamics and interaction with the Nazca Ridge”. In: Earth Planet. Sci. Lett. 412 (2015), pp. 152–162. doi: 10.1016/j.epsl.2014.12.015.

[793]

J Ebbing, J Bouman, M Fuchs, S Gradmann, and R Haagmans. “Sensitivity of GOCE gravity gradients to crustal thickness and density variations: Case study for the Northeast Atlantic Region”. In: Gravity, Geoid and Height Systems. Springer, 2014, pp. 291–298. doi: 10.1007/978-3-319-10837-7_37.

[794]

Jörg Ebbing et al. “Advancements in satellite gravity gradient data for crustal studies”. In: The Leading Edge 32.8 (2013), pp. 900–906. doi: xxxx.

[795]

C. Ebinger and J. van Wijk. “Roadmap to continental rupture: Is obliquity the route to success?” In: Geology 42.3 (2014), pp. 271–272. doi: 10.1130/focus032014.1.

[796]

Cynthia J Ebinger, Jolante van Wijk, and Derek Keir. “The time scales of continental rifting: Implications for global processes”. In: Geol. Soc. Am. Spec. Pap 500 (2013), pp. 371–396. doi: 10.1130/2013.2500(11).

[797]

SS Egan. “The flexural isostatic response of the lithosphere to extensional tectonics”. In: Tectonophysics 202.2-4 (1992), pp. 291–308. doi: 10.1016/0040-1951(92)90115-M.

[798]

Takao Eguchi, Mizuho Ishida, Kiyoshi Matsubara, Takumi Murakoshi, and Yasuyuki Iwase. “Basic Numerical Simulation of Large-Scale Plume Activity Due to the Circum-Pacific Lithosphere Subduction and Implications for the Elementary Process Associated with the Static-Layered Terrestrial Mantle”. In: Memoirs of the National Defense Academy 57 (2017), pp. 1–10.

[799]

Philipp Eichheimer et al. “Combined numerical and experimental study of microstructure and permeability in porous granular media”. In: Solid Earth 11.3 (2020), pp. 1079–1095. doi: 10.5194/se-2019-199.

[800]

Philipp Eichheimer et al. “Pore-scale permeability prediction for Newtonian and non-Newtonian fluids”. In: Solid Earth 10.5 (2019), pp. 1717–1731. doi: 10.5194/se- 10-1717-2019.

[801]

L. T. Elkins-Tanton. “Continental magmatism, volatile recycling, and a heterogeneous mantle caused by lithospheric gravitational instabilities”. In: J. Geophys. Res.: Solid Earth 112.B3 (2007). doi: 10.1029/2005JB004072.

[802]

L. T. Elkins-Tanton and B. H. Hager. “Melt intrusion as a trigger for lithospheric foundering and the eruption of the Siberian flood basalts”. In: Geophys. Res. Lett. 27.23 (2000), pp. 3937–3940. doi: 10.1029/2000GL011751.

[803]

L. T. Elkins-Tanton, J. A. van Orman, B. H. Hager, and T. L. Grove. “Re-examination of the lunar magma ocean cumulate overturn hypothesis: melting or mixing is required”. In: Earth Planet. Sci. Lett. 196.3-4 (2002), pp. 239–249. doi: 10.1016/S0012-821X(01) 00613-6.

[804]

S. Ellis and C. Beaumont. “Models of convergent boundary tectonics: Implications for the interpretation of Lithoprobe data”. In: Canadian Journal of Earth Sciences 36.10 (1999), pp. 1711–1741. doi: 10.1139/e99-075.

[805]

S. Ellis, C. Beaumont, R.A. Jamieson, and G. Quinlan. “Continental collision including a weak zone: The vise model and its application to the Newfoundland Appalachians”. In: Canadian Journal of Earth Sciences 35.11 (1998), pp. 1323–1346. doi: 10.1139/e97-100.

[806]

S. Ellis, C. Beaumont, and O.A. Pfiffner. “Geodynamic models of crustal-scale episodic tectonic accretion and underplating in subduction zones”. In: J. Geophys. Res.: Solid Earth 104.B7 (1999), pp. 15169–15190. doi: 10.1029/1999JB900071.

[807]

S. Ellis, P. Fullsack, and C. Beaumont. “Oblique convergence of the crust driven by basal forcing: implications for length-scales of deformation and strain partitioning in orogens”. In: Geophy. J. Int. 120 (1995), pp. 24–44. doi: 10.1111/j.1365-246X.1995.tb05909.x.

[808]

S.M. Ellis, T.A. Little, L.M. Wallace, B.R. Hacker, and S.J.H. Buiter. “Feedback between rifting and diapirism can exhume ultrahigh-pressure rocks”. In: Earth Planet. Sci. Lett. 311 (2011), pp. 427–438. doi: 10.1016/j.epsl.2011.09.031.

[809]

Susan Ellis, Francesca Ghisetti, Philip M Barnes, Carolyn Boulton, Åke Fagereng, and Susanne Buiter. “The contemporary force balance in a wide accretionary wedge: numerical models of the southcentral Hikurangi margin of New Zealand”. In: Geophy. J. Int. 219.2 (2019), pp. 776–795. doi: 10.1093/gji/ggz317.

[810]

Kirk Ellsworth and Gerald Schubert. “Numerical models of thermally and mechanically coupled two-layer convection of highly viscous fluids”. In: Geophy. J. Int. 93.2 (1988), pp. 347–363. doi: 10.1111/j.1365-246X.1988.tb02007.x.

[811]

Philip England. “Constraints on extension of continental lithosphere”. In: J. Geophys. Res.: Solid Earth 88.B2 (1983), pp. 1145–1152.

[812]

Philip England and Dan McKenzie. “A thin viscous sheet model for continental deformation”. In: Geophy. J. Int. 70.2 (1982), pp. 295–321. doi: 10.1111/j.1365-246X.1982.tb04969. x.

[813]

Philip England and Peter Molnar. “Surface uplift, uplift of rocks, and exhumation of rocks”. In: Geology 18 (Dec. 1990), pp. 1173–117. doi: 10.1130/0091-7613(1990)018<1173: SUUORA>2.3.CO;2.

[814]

Philip England and Catherine Wilkins. “A simple analytical approximation to the temperature structure in subduction zones”. In: Geophy. J. Int. 159.3 (2004), pp. 1138–1154. doi: 10.1111/j.1365-246X.2004.02419.x.

[815]

Philip C England and Dave A May. “The Global Range of Temperatures on Convergent Plate Interfaces”. In: Geochem. Geophys. Geosyst. 22 (2021), e2021GC009849. doi: 10. 1029/2021GC009849.

[816]

A. Enns, T.W. Becker, and H. Schmeling. “The dynamics of subduction and trench migration for viscosity stratification”. In: Geophy. J. Int. 160 (2005), pp. 761–775. doi: 10.1111/ j.1365-246X.2005.02519.x.

[817]

GS Epstein, CB Condit, RK Stoner, AF Holt, and VE Guevara. “Evolving subduction zone thermal structure drives extensive forearc mantle wedge hydration”. In: AGU Advances 5.4 (2024), e2023AV001121. doi: 10.1029/2023AV001121.

[818]

Z. Erdos, R.S. huismans, and P. van der Beek. “First-order control of syntectonic sedimentation on crustal-scale structure of mountain belts ”. In: J. Geophys. Res.: Solid Earth 120 (2015). doi: 10.1002/2014JB011785.

[819]

Z. Erdos, R.S. huismans, P. van der Beek, and C. Thieulot. “Extensional inheritance and surface processes as controlling factors of mountain belt structure”. In: J. Geophys. Res.: Solid Earth 119 (2014). doi: 10.1002/2014JB011408.

[820]

Zoltán Erdős, Ritske S Huismans, and Claudio Faccenna. “Wide versus narrow back-arc rifting: Control of subduction velocity and convective back-arc thinning”. In: Tectonics (2022), e2021TC007086. doi: 10.1029/2021TC007086.

[821]

Zoltán Erdős, Ritske S Huismans, Claudio Faccenna, and Sebastian G Wolf. “The role of subduction interface and upper plate strength on back-arc extension: application to Mediterranean back-arc basins”. In: Tectonics (2021), e2021TC006795. doi: 10.1029/ 2021TC006795.

[822]

WG Ernst. “Earth’s thermal evolution, mantle convection, and Hadean onset of plate tectonics”. In: Journal of Asian Earth Sciences 145 (2017), pp. 334–348. doi: 10.1016/ j.jseaes.2017.05.037.

[823]

WG Ernst. “Speculations on evolution of the terrestrial lithosphere–asthenosphere system—plumes and plates”. In: Gondwana Research 11.1-2 (2007), pp. 38–49. doi: 10. 1016/j.gr.2006.02.007.

[824]

J. Ernst-Hullermann, H. Harder, and U. Hansen. “Finite volume simulations of dynamos in ellipsoidal planets”. In: Geophy. J. Int. 195.3 (2013), pp. 1395–1405. doi: 10.1093/gji/ ggt303.

[825]

J. Escartin, G. Hirth, and B. Evans. “Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges ”. In: Earth Planet. Sci. Lett. 151 (1997), pp. 181–189. doi: 10.1016/S0012-821X(97)81847-X.

[826]

J. Escartin, G. Hirth, and B. Evans. “Nondilatant brittle deformation of serpentinites: Implications for Mohr-Coulomb theory and the strength of faults”. In: J. Geophys. Res.: Solid Earth 102.B2 (1997), pp. 2897–2913. doi: 10.1029/96JB02792.

[827]

J. Escartin et al. “Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13o20’N and 13o30’N, Mid Atlantic Ridge)”. In: Geochem. Geophys. Geosyst. 18.4 (2017), pp. 1451–1482. doi: 10.1002/2016GC006775.

[828]

Nicolas Espurt et al. “Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling”. In: Tectonics 27.3 (2008). doi: 10.1029/ 2007TC002175.

[829]

Brian Evans and Christopher Goetze. “The temperature variation of hardness of olivine and its implication for polycrystalline yield stress”. In: J. Geophys. Res.: Solid Earth 84.B10 (1979), pp. 5505–5524. doi: 10.1029/JB084iB10p05505.

[830]

D.A.D. Evans. “True polar wander and supercontinents”. In: Tectonophysics 362 (2003), pp. 303–320. doi: 10.1016/S0040-1951(02)00642-X.

[831]

M Evonuk. “Convection in deformed bodies: The effect of equatorial ellipticity on convective behavior”. In: Earth Planet. Sci. Lett. 430 (2015), pp. 249–259. doi: 10.1016/j.epsl. 2015.07.047.

[832]

M Faccenda, G Minelli, and TV Gerya. “Coupled and decoupled regimes of continental collision: numerical modeling”. In: Earth Planet. Sci. Lett. 278.3-4 (2009), pp. 337–349. doi: 10.1016/j.epsl.2008.12.021.

[833]

M. Faccenda. “Mid mantle seismic anisotropy around subduction zones”. In: Phys. Earth. Planet. Inter. 227 (2014), pp. 1–19. doi: 10.1016/j.pepi.2013.11.015.

[834]

M. Faccenda and F.A. Capitanio. “Seismic anisotropy around subduction zones: Insights from three-dimensional modeling of upper mantle deformation and SKS splitting calculations ”. In: Geochem. Geophys. Geosyst. 14.1 (2013). doi: 10.1029/2012GC004451.

[835]

M. Faccenda, T.V. Gerya, and S. Chakraborty. “Styles of post-subduction collisional orogeny: Influence of convergence velocity, crustal rheology and radiogenic heat production”. In: Lithos 103 (2008), pp. 257–287. doi: 10.1016/j.lithos.2007.09.009.

[836]

M. Faccenda, T.V. Gerya, N.S. Mancktelow, and L. Moresi. “Fluid flow during slab unbending and dehydration: Implications for intermediate-depth seismicity, slab weakening and deep water recycling”. In: Geochem. Geophys. Geosyst. 13.1 (2012). doi: 10.1029/ 2011GC003860.

[837]

Manuele Faccenda and Fabio Antonio Capitanio. “Development of mantle seismic anisotropy during subduction-induced 3-D flow”. In: Geophys. Res. Lett. 39.11 (2012). doi: 10.1029/ 2012GL051988.

[838]

Manuele Faccenda, Taras V Gerya, and Luigi Burlini. “Deep slab hydration induced by bending-related variations in tectonic pressure”. In: Nature Geoscience 2.11 (2009), p. 790. doi: 10.1038/ngeo656.

[839]

Manuele Faccenda and Brandon P VanderBeek. “On constraining 3D seismic anisotropy in subduction, mid-ocean-ridge, and plume environments with teleseismic body wave data”. In: Journal of Geodynamics 158 (2023), p. 102003. doi: 10.1016/j.jog.2023.102003.

[840]

C. Faccenna, T. W. Becker, S. Lallemand, Y. Lagabrielle, F. Funiciello, and C. Piromallo. “Subduction-triggered magmatic pulses: A new class of plumes?” In: Earth Planet. Sci. Lett. 299.1-2 (2010), pp. 54–68. doi: 10.1016/j.epsl.2010.08.012.

[841]

C. Faccenna, O. Bellier, J. Martinod, C. Piromallo, and V. Regard. “Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault”. In: Earth Planet. Sci. Lett. 242 (2006), pp. 85–97. doi: 10.1016/j.epsl.2005.11.046.

[842]

Claudio Faccenna and Thorsten W Becker. “Topographic expressions of mantle dynamics in the Mediterranean”. In: Earth-Science Reviews 209 (2020), p. 103327. doi: 10.1016/j. earscirev.2020.103327.

[843]

Claudio Faccenna, Thorsten W Becker, Clinton P Conrad, and Laurent Husson. “Mountain building and mantle dynamics”. In: Tectonics 32.1 (2013), pp. 80–93. doi: 10.1029/ 2012TC003176.

[844]

Claudio Faccenna, Thorsten W Becker, Adam F Holt, and Jean Pierre Brun. “Mountain building, mantle convection, and supercontinents: Holmes (1931) revisited”. In: Earth Planet. Sci. Lett. 564 (2021), p. 116905. doi: 10.1016/j.epsl.2021.116905.

[845]

Claudio Faccenna, Domenico Giardini, Philippe Davy, and Alessio Argentieri. “Initiation of subduction at Atlantic-type margins: Insights from laboratory experiments”. In: J. Geophys. Res.: Solid Earth 104.B2 (1999), pp. 2749–2766. doi: 10.1029/1998JB900072.

[846]

K Fadaie and Giorgio Ranalli. “Rheology of the lithosphere in the East African Rift System”. In: Geophy. J. Int. 102.2 (1990), pp. 445–453. doi: 10.1111/j.1365-246X.1990. tb04476.x.

[847]

Åke Fagereng, Johann FA Diener, Susan Ellis, and Francesca Remitti. Fluid-related deformation processes at the up-and down-dip limits of the subduction thrust seismogenic zone: What do the rocks tell us. Vol. 534. Geol. Soc. Am. Spec. Pap, 2018. doi: 10.1130/ 2018.2534(12).

[848]

GP Farangitakis, PJ Heron, KJW McCaffrey, J van Hunen, and LM Kalnins. “The impact of oblique inheritance and changes in relative plate motion on the development of rift-transform systems”. In: Earth Planet. Sci. Lett. 541 (2020), p. 116277. doi: 10.1016/j.epsl. 2020.116277.

[849]

Mohammad Farhat, Pierre Auclair-Desrotour, Gwenaël Boué, and Jacques Laskar. “The resonant tidal evolution of the Earth-Moon distance”. In: Astronomy & Astrophysics 665 (2022), p. L1. doi: 10.1051/0004-6361/202243445.

[850]

Robert JM Farla, Shun-ichiro Karato, and Zhengyu Cai. “Role of orthopyroxene in rheological weakening of the lithosphere via dynamic recrystallization”. In: Proceedings of the National Academy of Sciences 110.41 (2013), pp. 16355–16360.

[851]

C. G. Farnetani and A. W. Hofmann. “Dynamics and internal structure of a lower mantle plume conduit”. In: Earth Planet. Sci. Lett. 282.1-4 (2009), pp. 314–322. doi: 10.1016/ j.epsl.2009.03.035.

[852]

C. G. Farnetani and M. A. Richards. “Numerical investigations of the mantle plume initiation model for flood basalt events”. In: J. Geophys. Res.: Solid Earth 99.B7 (1994), pp. 13813–13833. doi: 10.1029/94JB00649.

[853]

CG Farnetani and H Samuel. “Beyond the thermal plume paradigm”. In: Geophys. Res. Lett. 32.7 (2005). doi: 10.1029/2005GL022360.

[854]

Cinzia G Farnetani, Bernard Legras, and Paul J Tackley. “Mixing and deformations in mantle plumes”. In: Earth Planet. Sci. Lett. 196.1-2 (2002), pp. 1–15. doi: 10.1016/S0012- 821X(01)00597-0.

[855]

Cinzia G Farnetani and Henri Samuel. “Lagrangian structures and stirring in the Earth’s mantle”. In: Earth Planet. Sci. Lett. 206.3-4 (2003), pp. 335–348. doi: 10.1016/S0012- 821X(02)01085-3.

[856]

Dinzia G Farnetani and Mark A Richards. “Thermal entrainment and melting in mantle plumes”. In: Earth Planet. Sci. Lett. 136.3-4 (1995), pp. 251–267.

[857]

R.J. Farrington, L.-N. Moresi, and F.A. Capitanio. “The role of viscoelasticity in subducting plates”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 4291–4304. doi: 10.1002/ 2014GC005507.

[858]

R.J. Farrington, D.R. Stegman, L.N. Moresi, M. Sandiford, and D.A. May. “Interactions of 3D mantle flow and continental lithosphere near passive margins”. In: Tectonophysics 483 (2010), pp. 20–28. doi: 10.1016/j.tecto.2009.10.008.

[859]

U.H. Faul, J.D. Fitz Gerald, R. J.M. Farlai, R. Ahlefeldt, and I. Jackson. “Dislocation creep of fine-grained olivine”. In: J. Geophys. Res.: Solid Earth 116.B01203, (2011). doi: 10.1029/2009JB007174.

[860]

Ulrich H Faul and Ian Jackson. “Diffusion creep of dry, melt-free olivine”. In: J. Geophys. Res.: Solid Earth 112.B4 (2007). doi: 10.1029/2006JB004586.

[861]

N.P. Fay, R.A. Bennett, J.C. Spinler, and E.D. Humphreys. “Small-scale upper mantle convection and crustal dynamics in southern California”. In: Geochem. Geophys. Geosyst. 9.8 (2008).

[862]

Thomas Fecher, Roland Pail, and Thomas Gruber. “Global gravity field modeling based on GOCE and complementary gravity data”. In: International Journal of Applied Earth Observation and Geoinformation 35 (2015), pp. 120–127. doi: 10.1016/j.jag.2013. 10.005.

[863]

Miloslav Feistauer and V Kučera. “On a robust discontinuous Galerkin technique for the solution of compressible flow”. In: J. Comp. Phys. 224.1 (2007), pp. 208–221. doi: 10. 1016/j.jcp.2007.01.035.

[864]

N. Fernandez and B. Kaus. “Fold interaction and wavelength selection in 3D models of multilayer detachment folding”. In: Tectonophysics 632 (2014), pp. 199–217. doi: 10. 1016/j.tecto.2014.06.013.

[865]

N. Fernandez and B. Kaus. “ Influence of pre-existing salt diapirs on 3D folding patterns ”. In: Tectonophysics 637 (2014), pp. 354–369. doi: 10.1016/j.tecto.2014.10.021.

[866]

N. Fernandez and B. Kaus. “Pattern formation in 3-D numerical models of down-built diapirs initiated by a Rayleigh-Taylor instability”. In: Geophy. J. Int. 202 (2015), pp. 1253–1270. doi: 10.1093/gji/ggv219.

[867]

Carlos Fernández-Garc´i  a, Benjamin Guillaume, and Jean-Pierre Brun. “3D slab breakoff in laboratory experiments”. In: Tectonophysics 773 (2019), p. 228223. doi: 10.1016/j. tecto.2019.228223.

[868]

Javier Fernández-Lozano et al. “Integrated gravity and topography analysis in analog models: Intraplate deformation in Iberia”. In: Tectonics 31.6 (2012).

[869]

Ana MG Ferreira, Manuele Faccenda, William Sturgeon, Sung-Joon Chang, and Lewis Schardong. “Ubiquitous lower-mantle anisotropy beneath subduction zones”. In: Nature Geoscience 12.4 (2019), pp. 301–306. doi: 10.1038/s41561-019-0325-7.

[870]

O. Ferrer, M.P.A. Jackson, E. Roca, and M. Rubinat. “Evolution of salt structures during extension and inversion of the Offshore Parentis Basin (Eastern Bay of Biscay) ”. In: Salt Tectonics, Sediments and Prospectivity. Geological Society, London, Special Publications 363 (2012), pp. 361–379. doi: 10.1144/SP363.16.

[871]

Eleonora Ficini, Luca Dal Zilio, Carlo Doglioni, and TV Gerya. “Horizontal mantle flow controls subduction dynamics”. In: Scientific Reports 7.1 (2017), pp. 1–7. doi: 10.1038/ s41598-017-06551-y.

[872]

C. Fillon, R.S. Huismans, and P. van der Beek. “Syntectonic sedimentation effects on the growth of fold-and-thrust belts ”. In: Geology 41.1 (2013), pp. 83–86. doi: 10.1130/ G33531.1.

[873]

C. Fillon, R.S. Huismans, P. van der Beek, and J.A. Muñoz. “Syntectonic sedimentation controls on the evolution of the southern Pyrenean fold-and-thrust belt: Inferences from coupled tectonic-surface processes models”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 5665–5680. doi: 10.1002/jgrb.50368.

[874]

KD Fischer, T Jahr, and G Jentzsch. “Evolution of the Variscan foreland-basin: modelling the interactions between tectonics and surface processes”. In: Physics and Chemistry of the Earth, Parts A/B/C 29.10 (2004), pp. 665–671.

[875]

Mark P Fischer, Michael R Gross, Terry Engelder, and Roy J Greenfield. “Finite-element analysis of the stress distribution around a pressurized crack in a layered elastic medium: implications for the spacing of fluid-driven joints in bedded sedimentary rock”. In: Tectonophysics 247.1-4 (1995), pp. 49–64. doi: 10.1016/0040-1951(94)00200-S.

[876]

R. Fischer and T. Gerya. “Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach”. In: Journal of Geodynamics 100 (2016), pp. 198–214. doi: 10. 1016/j.jog.2016.03.004.

[877]

N. Flament et al. “Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching”. In: Earth Planet. Sci. Lett. 387 (2014), pp. 107–119. doi: 10.1016/j.epsl.2013.11.017.

[878]

Nicolas Flament. “Present-day dynamic topography and lower-mantle structure from palaeogeographically constrained mantle flow models”. In: Geophy. J. Int. 216.3 (2019), pp. 2158–2182. doi: 10.1093/gji/ggy526.

[879]

Nicolas Flament, O.F. Bodur, S.E. Williams, and A.S. Merdith. “Assembly of the basal mantle structure beneath Africa”. In: Nature 603 (2022), pp. 846–851. doi: 10.1038/ s41586-022-04538-y.

[880]

Nicolas Flament, Michael Gurnis, and R Dietmar Müller. “A review of observations and models of dynamic topography”. In: Lithosphere 5.2 (2013), pp. 189–210. doi: 10.1130/ L245.1.

[881]

L. Fleitout, C. Froidevaux, and D. Yuen. “Active lithospheric thinning”. In: Tectonophysics 132.1-3 (1986), pp. 271–278. doi: 10.1016/0040-1951(86)90037-5.

[882]

L. Fleitout and D.A. Yuen. “Steady state, secondary convection beneath lithospheric plates with temperature- and pressure-dependent viscosity”. In: J. Geophys. Res.: Solid Earth 89.B11 (1984), pp. 9227–9244. doi: 10.1029/JB089iB11p09227.

[883]

Luce Fleitout and Claude Froidevaux. “Tectonic stresses in the lithosphere”. In: Tectonics 2.3 (1983), pp. 315–324. doi: 10.1029/TC002i003p00315.

[884]

Luce Fleitout and Claude Froidevaux. “Tectonics and topography for a lithosphere containing density heterogeneities”. In: Tectonics 1.1 (1982), pp. 21–56. doi: 10 . 1029 / TC001i001p00021.

[885]

Luce Fleitout and David A Yuen. “Secondary convection and the growth of the oceanic lithosphere”. In: Phys. Earth. Planet. Inter. 36.3-4 (1984), pp. 181–212. doi: 10.1016/ 0031-9201(84)90046-3.

[886]

Raymond C Fletcher. “Three-dimensional folding and necking of a power-law layer: are folds cylindrical, and, if so, do we understand why?” In: Tectonophysics 247.1-4 (1995), pp. 65–83. doi: 10.1016/0040-1951(95)00021-E.

[887]

Raymond C Fletcher. “Three-dimensional folding of an embedded viscous layer in pure shear”. In: Journal of Structural Geology 13.1 (1991), pp. 87–96.

[888]

B.J. Foley and T.W. Becker. “Generation of plate-like behavior and mantle heterogeneity from a spherical, viscoplastic convection model”. In: Geochem. Geophys. Geosyst. 10.8 (2009). doi: 10.1029/2009GC002378.

[889]

Bradford J Foley. “The dependence of planetary tectonics on mantle thermal state: applications to early Earth evolution”. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376.2132 (2018), p. 20170409. doi: 10.1098/rsta.2017.0409.

[890]

Bradford J Foley. “Timescale of Short-Term Subduction Episodicity in Convection Models With Grain Damage: Applications to Archean Tectonics”. In: J. Geophys. Res.: Solid Earth 125.12 (2020), e2020JB020478. doi: 10.1029/2020JB020478.

[891]

Bradford J Foley and David Bercovici. “Scaling laws for convection with temperature-dependent viscosity and grain-damage”. In: Geophy. J. Int. 199.1 (2014), pp. 580–603. doi: 10.1093/gji/ggu275.

[892]

Bradford J Foley, David Bercovici, and Linda T Elkins-Tanton. “Initiation of plate tectonics from post-magma ocean thermochemical convection”. In: J. Geophys. Res.: Solid Earth 119.11 (2014), pp. 8538–8561. doi: 10.1002/2014JB011121.

[893]

Bradford J Foley, David Bercovici, and William Landuyt. “The conditions for plate tectonics on super-Earths: inferences from convection models with damage”. In: Earth Planet. Sci. Lett. 331 (2012), pp. 281–290. doi: 10.1016/j.epsl.2012.03.028.

[894]

Bradford J Foley and Hanika Rizo. “Long-term preservation of early formed mantle heterogeneity by mobile lid convection: importance of grainsize evolution”. In: Earth Planet. Sci. Lett. 475 (2017), pp. 94–105. doi: 10.1016/j.epsl.2017.07.031.

[895]

Donald Forsyth and Seiya Uyeda. “On the relative importance of the driving forces of plate motion”. In: Geophy. J. Int. 43.1 (1975), pp. 163–200. doi: 10.1111/j.1365- 246X.1975.tb00631.x.

[896]

Alessandro M Forte and W Richard Peltier. “Plate tectonics and aspherical Earth structure: The importance of poloidal-toroidal coupling”. In: J. Geophys. Res.: Solid Earth 92.B5 (1987), pp. 3645–3679. doi: 10.1029/JB092iB05p03645.

[897]

AM Forte and WR Peltier. “Lateral heterogeneity and the geoid: the importance of the surface kinematic constraints”. In: Mathematical Geophysics: A Survey of Recent Developments in Seismology and Geodynamics. Ed. by N. J. Vlaar, G. Nolet, M. J. R. Wortel, and S. A. P. L. Cloetingh. Springer, 1988, pp. 291–323. doi: 10.1007/978-94- 009-2857-2_13.

[898]

AM Forte, WR Peltier, and AM Dziewonski. “Inferences of mantle viscosity from tectonic plate velocities”. In: Geophys. Res. Lett. 18.9 (1991), pp. 1747–1750.

[899]

Haakon Fossen, Richard A Schultz, Egil Rundhovde, Atle Rotevatn, and Simon J Buckley. “Fault linkage and graben stepovers in the Canyonlands (Utah) and the North Sea Viking Graben, with implications for hydrocarbon migration and accumulation”. In: AAPG bulletin 94.5 (2010), pp. 597–613.

[900]

Haakon Fossen and Basil Tikoff. “The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression-transtension tectonics”. In: Journal of Structural Geology 15.3-5 (1993), pp. 413–422. doi: 10.1016/ 0191-8141(93)90137-Y.

[901]

Gillian R Foulger et al. “Caveats on tomographic images”. In: Terra Nova 25.4 (2013), pp. 259–281. doi: 10.1111/ter.12041.

[902]

GR Foulger. “Plumes, or plate tectonic processes?” In: Astronomy & Geophysics 43.6 (2002), pp. 6–19.

[903]

L. Fourel, S. Goes, and G. Morra. “The role of elasticity in slab bending”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 4507–4525. doi: 10.1002/2014GC005535.

[904]

Matthew Fox, Frédéric Herman, Edi Kissling, and Sean D Willett. “Rapid exhumation in the Western Alps driven by slab detachment and glacial erosion”. In: Geology 43.5 (2015), pp. 379–382. doi: 10.1130/G36411.1.

[905]

R. De Franco, R. Govers, and R. Wortel. “Numerical comparison of different convergent plate contacts: subduction channel and subduction fault”. In: Geophy. J. Int. (2006), 10.1111/j.1365–246X.2006.03498.x.

[906]

T. Francois, E. Burov, P. Agard, and B. Meyer. “Buildup of a dynamically supported orogenic plateau: Numerical modeling of the Zagros/Central Iran case study”. In: Geochem. Geophys. Geosyst. 15 (2014). doi: 10.1002/2013GC005223.

[907]

Thomas François, Evgueni Burov, Bertrand Meyer, and Philippe Agard. “Surface topography as key constraint on thermo-rheological structure of stable cratons”. In: Tectonophysics 602 (2013), pp. 106–123.

[908]

Thomas François, Alexander Koptev, Sierd Cloetingh, Evgueni Burov, and Taras Gerya. “Plume-lithosphere interactions in rifted margin tectonic settings: Inferences from thermo-mechanical modelling”. In: Tectonophysics 746 (2018), pp. 138–154. doi: 10. 1016/j.tecto.2017.11.027.

[909]

Raymond CMW Franssen. “The rheology of synthetic rocksalt in uniaxial compression”. In: Tectonophysics 233.1-2 (1994), pp. 1–40. doi: 10.1016/0040-1951(94)90218-6.

[910]

MRT Fraters and MI Billen. “On the Implementation and Usability of Crystal Preferred Orientation Evolution in Geodynamic Modeling”. In: Geochem. Geophys. Geosyst. 22.10 (2021), e2021GC009846. doi: 10.1029/2021GC009846.

[911]

S. Frederiksen and J. Braun. “Numerical modelling of strain localisation during extension of the continental lithosphere”. In: Earth Planet. Sci. Lett. 188 (2001), pp. 241–251. doi: 10.1016/S0012-821X(01)00323-5.

[912]

Susanne Frederiksen, Søren Bom Nielsen, and Niels Balling. “A numerical dynamic model for the Norwegian–Danish Basin”. In: Tectonophysics 343.3-4 (2001), pp. 165–183.

[913]

Susanne Frederiksen, Søren Bom Nielsen, and Niels Balling. “Post-Permian evolution of the Central North Sea: a numerical model”. In: Tectonophysics 343.3-4 (2001), pp. 185–203. doi: 10.1016/S0040-1951(01)00224-4.

[914]

R. Freeburn, P. Bouilhol, B. Maunder, V. Magni, and J. van Hunen. “Numerical models of the magmatic processes induced by slab breakoff”. In: Earth Planet. Sci. Lett. 478 (2017), pp. 203–213. doi: 10.1016/j.epsl.2017.09.008.

[915]

J Freeman, L Moresi, and DA May. “Thermal convection with a water ice I rheology: Implications for icy satellite evolution”. In: Icarus 180.1 (2006), pp. 251–264. doi: 10. 1016/j.icarus.2005.07.014.

[916]

J. Freeman, L. Moresi, and D.A. May. “Evolution into the stagnant lid convection regime with a non-Newtonian water ice rheology”. In: Geophys. Res. Lett. 31 (2004). doi: 10. 1029/2004GL019798.

[917]

M. Frehner. “3D fold growth rates”. In: Terra Nova 26 (2014), pp. 417–424. doi: 10. 1111/ter.12116.

[918]

Marcel Frehner. “The neutral lines in buckle folds”. In: Journal of Structural Geology 33.10 (2011), pp. 1501–1508.

[919]

Marcel Frehner and Ulrike Exner. “Strain and foliation refraction patterns around buckle folds”. In: Geological Society, London, Special Publications 394.1 (2014), pp. 21–37.

[920]

Marcel Frehner, Ulrike Exner, Neil S Mancktelow, and Djordje Grujic. “The not-so-simple effects of boundary conditions on models of simple shear”. In: Geology 39.8 (2011), pp. 719–722. doi: 10.1130/G31957.1.

[921]

Marcel Frehner, Anna Hui Mee Ling, and Isabelle Gärtner-Roer. “Furrow-and-ridge morphology on rockglaciers explained by gravity-driven buckle folding: A case study from the Murtèl Rockglacier (Switzerland)”. In: Permafrost and Periglacial Processes 26.1 (2015), pp. 57–66. doi: 10.1002/ppp.1831.

[922]

Marcel Frehner and Stefan M Schmalholz. “Numerical simulations of parasitic folding in multilayers”. In: Journal of Structural Geology 28.9 (2006), pp. 1647–1657.

[923]

Marcel Frehner and Timothy Schmid. “Parasitic folds with wrong vergence: How pre-existing geometrical asymmetries can be inherited during multilayer buckle folding”. In: Journal of Structural Geology 87 (2016), pp. 19–29. doi: 10.1016/j.jsg.2016.04.004.

[924]

Scott W French and Barbara Romanowicz. “Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots”. In: Nature 525.7567 (2015), p. 95. doi: 10.1038/ nature14876.

[925]

A.M. Friedrich, H.-P. Bunge, S.M. Rieger, L. Colli, S. Ghelichkhan, and R. Nerlich. “Stratigraphic framework for the plume mode of mantle convection and the analysis of interregional unconformities on geological maps”. In: Gondwana Research 53 (2018), pp. 159–188. doi: 10.1016/j.gr.2017.06.003.

[926]

EH Fritzell, AL Bull, and GE Shephard. “Closure of the Mongol–Okhotsk Ocean: Insights from seismic tomography and numerical modelling”. In: Earth Planet. Sci. Lett. 445 (2016), pp. 1–12.

[927]

C. Froidevaux. “Energy dissipation and geometric structure at spreading plate boundaries”. In: Earth Planet. Sci. Lett. 20 (1973), pp. 419–424. doi: 10.1016/0012-821X(73)90020- 4.

[928]

Hui-Ying Fu and Zhong-Hai Li. “Roles of Continental Mid-Lithosphere Discontinuity in the Craton Instability Under Variable Tectonic Regimes”. In: J. Geophys. Res.: Solid Earth 129.1 (2024), e2023JB028022. doi: 10.1029/2023JB028022.

[929]

L. Fuchs and Th.W. Becker. “Role of strain-dependent weakening memory on the style of mantle convection and plate boundary stability”. In: Geophy. J. Int. 218 (2019), pp. 601–618. doi: 10.1093/gji/ggz167.

[930]

L. Fuchs, H. Koyi, and H. Schmeling. “Numerical modeling of the effect of composite rheology on internal deformation in down-built diapirs”. In: Tectonophysics 646 (2015), pp. 79–95. doi: 10.1016/j.tecto.2015.01.014.

[931]

L. Fuchs and H. Schmeling. “A new numerical method to calculate inhomogeneous and time-dependent large deformation of two-dimensional geodynamic flows with application to diapirism”. In: Geophy. J. Int. 194.2 (2013), pp. 623–639. doi: 10.1093/gji/ggt142.

[932]

L. Fuchs, H. Schmeling, and H. Koyi. “Numerical models of salt diapir formation by down-building: the role of sedimentation rate, viscosity contrast, initial amplitude and wavelength”. In: Geophy. J. Int. 186.2 (2011), pp. 390–400. doi: 10.1111/j.1365- 246X.2011.05058.x.

[933]

Lukas Fuchs and Thorsten W Becker. “Deformation Memory in the Lithosphere: A Comparison of Damage-dependent Weakening and Grain-Size Sensitive Rheologies”. In: J. Geophys. Res.: Solid Earth 126.1 (2021), e2020JB020335. doi: 10.1029/2020JB020335.

[934]

Lukas Fuchs and Thorsten Wolfgang Becker. “On the Role of Rheological Memory for Convection-Driven Plate Reorganizations”. In: Geophys. Res. Lett. 49.18 (2022), e2022GL099574. doi: 10.1029/2022GL099574.

[935]

Lukas Fuchs, Hemin Koyi, and Harro Schmeling. “Numerical modeling on progressive internal deformation in down-built diapirs”. In: Tectonophysics 632 (2014), pp. 111–122. doi: 10. 1016/j.tecto.2014.06.005.

[936]

Hiromi Fujimoto and Yoshibumi Tomoda. “Lithospheric thickness anomaly near the trench and possible driving force of subduction”. In: Tectonophysics 112.1-4 (1985), pp. 103–110. doi: 10.1016/0040-1951(85)90174-X.

[937]

Kunihiro Fujita and Masaki Ogawa. “Basaltic accumulation instability and chaotic plate motion in the earliest mantle inferred from numerical experiments”. In: J. Geophys. Res.: Solid Earth 114.B10 (2009). doi: 10.1029/2008JB006222.

[938]

Yoshio Fukao and Masayuki Obayashi. “Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity”. In: J. Geophys. Res.: Solid Earth 118.11 (2013), pp. 5920–5938. doi: 10.1002/2013JB010466.

[939]

Yoshio Fukao et al. “Numerical Simulation of the Mantle Convection”. In: Annual Report of the Earth Simulator Center April (2005).

[940]

J. Fullea, S. Lebedev, Z. Martinec, and N.L. Celli. “WINTERC-grav: mapping the upper mantle thermochemical heterogeineity from coupled geophysical-petrological inversion of seismic waveforms, heat flow, surface elevation and gravity satellite data”. In: Geophy. J. Int. 226 (2021), pp. 146–191. doi: 10.1093/gji/ggab094.

[941]

Javier Fullea, Juan Rodr´i  guez-González, Mar´i  a Charco, Zdenek Martinec, A Negredo, and Antonio Villaseñor. “Perturbing effects of sub-lithospheric mass anomalies in GOCE gravity gradient and other gravity data modelling: Application to the Atlantic-Mediterranean transition zone”. In: International Journal of Applied Earth Observation and Geoinformation 35 (2015), pp. 54–69. doi: 10.1016/j.jag.2014.02.003.

[942]

Ch.W. Fuller, S.D. Willett, and M.T. Brandon. “Formation of forearc basins and their influence on subduction zone earthquakes”. In: Geology 34.2 (2006), pp. 65–68. doi: 10. 1130/G21828.1.

[943]

F Funiciello, C Faccenna, Arnauld Heuret, Serge Lallemand, Erika Di Giuseppe, and TW Becker. “Trench migration, net rotation and slab–mantle coupling”. In: Earth Planet. Sci. Lett. 271.1-4 (2008), pp. 233–240. doi: 10.1016/j.epsl.2008.04.006.

[944]

F. Funiciello, K. Regenauer-Lieb G. Morra, and D. Giardini. “Dynamics of retreating slabs: 1. Insights from two-dimensional numerical experiments”. In: J. Geophys. Res.: Solid Earth 108.B4 (2003), p. 2206. doi: 10.1029/2001JB000898.

[945]

F. Funiciello, M. Moroni, C. Piromallo, C. Faccenna, A. Cenedese, and H.A. Bui. “Mapping mantle flow during retreating subduction: Laboratory models analyzed by feature tracking”. In: J. Geophys. Res.: Solid Earth 111.B03402 (2006). doi: 10.1029/2005JB003792.

[946]

KP Furlong and Rob Govers. “Ephemeral crustal thickening at a triple junction: The Mendocino crustal conveyor”. In: Geology 27.2 (1999), p. 127. doi: 10.1130/0091- 7613(1999)027<0127:ECTAAT>2.3.CO;2.

[947]

Mikito Furuchi. “Numerical modeling of three dimensional self-gravitating Stokes flow problem with free surface”. In: Procedia Computer Science 4 (2011), pp. 1506–1515. doi: 10.1016/j.procs.2011.04.163.

[948]

M. Furuichi, M. Kameyama, and A. Kageyama. “Three-dimensional Eulerian method for large deformation of viscoelastic fluid: Toward plate-mantle simulation”. In: J. Comp. Phys. 227 (2008), pp. 4977–4997. doi: 10.1016/j.jcp.2008.01.052.

[949]

Yoshitsugu Furukawa. “Depth of the decoupling plate interface and thermal structure under arcs”. In: J. Geophys. Res.: Solid Earth 98.B11 (1993), pp. 20005–20013.

[950]

Carl W Gable, Richard J O’connell, and Bryan J Travis. “Convection in three dimensions with surface plates: Generation of toroidal flow”. In: J. Geophys. Res.: Solid Earth 96.B5 (1991), pp. 8391–8405. doi: 10.1029/90JB02743.

[951]

Sébastien Gac, Ritske S Huismans, Nina SC Simon, Jan Inge Faleide, and Yuri Y Podladchikov. “Effects of lithosphere buckling on subsidence and hydrocarbon maturation: a case-study from the ultra-deep East Barents Sea basin”. In: Earth Planet. Sci. Lett. 407 (2014), pp. 123–133. doi: 10.1016/j.epsl.2014.09.029.

[952]

Sébastien Gac, Ritske S Huismans, Nina SC Simon, Yuri Y Podladchikov, and Jan Inge Faleide. “Formation of intracratonic basins by lithospheric shortening and phase changes: a case study from the ultra-deep East Barents Sea basin”. In: Terra Nova 25.6 (2013), pp. 459–464. doi: 10.1111/ter.12057.

[953]

O Gagliardini et al. “Capabilities and performance of Elmer/Ice, a new-generation ice sheet model”. In: Geosci. Model. Dev. 6.4 (2013), pp. 1299–1318. doi: 10.5194/gmd-6-1299- 2013.

[954]

J. B. Gaherty and B. H. Hager. “Compositional vs. thermal buoyancy and the evolution of subducted lithosphere”. In: Geophys. Res. Lett. 21.2 (1994), pp. 141–144. doi: 10.1029/ 93GL03466.

[955]

AD Gait and JP Lowman. “Effect of lower mantle viscosity on the time-dependence of plate velocities in three-dimensional mantle convection models”. In: Geophys. Res. Lett. 34.21 (2007). doi: 10.1029/2007GL031396.

[956]

AD Gait and JP Lowman. “Time-dependence in mantle convection models featuring dynamically evolving plates”. In: Geophy. J. Int. 171.1 (2007), pp. 463–477. doi: 10. 1111/j.1365-246X.2007.03509.x.

[957]

AD Gait, JP Lowman, and CW Gable. “Time dependence in 3-D mantle convection models featuring evolving plates: Effect of lower mantle viscosity”. In: J. Geophys. Res.: Solid Earth 113.B8 (2008). doi: 10.1029/2007JB005538.

[958]

J. Ganne, M. Gerbault, and S. Block. “Thermo-mechanical modeling of lower crust exhumation – Constraints from the metamorphic record of the Palaeoproterozoic Eburnean orogeny, West African Craton”. In: Precambrian Research 243 (2014), pp. 88–109.

[959]

D Garcia-Castellanos, M Fernàndez, and M Torne. “Numerical modeling of foreland basin formation: a program relating thrusting, flexure, sediment geometry and lithosphere rheology”. In: Computers & Geosciences 23.9 (1997), pp. 993–1003. doi: 10.1016/S0098- 3004(97)00057-5.

[960]

Daniel Garcia-Castellanos. “Interplay between lithospheric flexure and river transport in foreland basins”. In: Basin Research 14.2 (2002), pp. 89–104. doi: 10.1046/j.1365- 2117.2002.00174.x.

[961]

Daniel Garcia-Castellanos and Ivone Jimenez-Munt. “Topographic evolution and climate aridification during continental collision: Insights from computer simulations”. In: PLOS one 10.8 (2015), e0132252. doi: 10.1371/journal.pone.0132252.

[962]

F. Garel, S. Goes, D.R. Davies, J.H. Davies, S.C. Kramer, and C.R. Wilson. “Interaction of subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate”. In: Geochem. Geophys. Geosyst. 15.1739–1765 (2014). doi: 10.1002/2014GC005257.

[963]

Fanny Garel and Catherine Thoraval. “Lithosphere as a constant-velocity plate: Chasing a dynamical LAB in a homogeneous mantle material”. In: Phys. Earth. Planet. Inter. 316 (2021), p. 106710. doi: 10.1016/j.pepi.2021.106710.

[964]

Fanny Garel, Catherine Thoraval, Andréa Tommasi, Sylvie Demouchy, and D Rhodri Davies. “Using thermo-mechanical models of subduction to constrain effective mantle viscosity”. In: Earth Planet. Sci. Lett. 539 (2020), p. 116243. doi: 10.1016/j.epsl.2020.116243.

[965]

Z Garfunkel, CA Anderson, and G Schubert. “Mantle circulation and the lateral migration of subducted slabs”. In: J. Geophys. Res.: Solid Earth 91.B7 (1986), pp. 7205–7223. doi: 10.1029/JB091iB07p07205.

[966]

E.J. Garnero and A.K. McNamara. “Structure and Dynamics of Earth’s Lower Mantle”. In: Science 320 (2008), pp. 626–628. doi: 10.1126/science.1148028.

[967]

E. Garzanti, G. Radeff, and M.G. Malusà. “Slab breakoff: A critical appraisal of a geological theory as applied in space and time”. In: Earth-Science Reviews 177 (2018), pp. 303–319. doi: 10.1016/j.earscirev.2017.11.012.

[968]

R. Gassmöller, J. Dannberg, E. Bredow, B. Steinberger, and T. H. Torsvik. “Major influence of plume-ridge interaction, lithosphere thickness variations, and global mantle flow on hotspot volcanism-The example of Tristan”. In: Geochem. Geophys. Geosyst. 17.4 (2016), pp. 1454–1479. doi: 10.1002/2015GC006177.

[969]

Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Timo Heister, and Robert Myhill. “On formulations of compressible mantle convection”. In: Geophy. J. Int. 221.2 (2020), pp. 1264–1280. doi: 10.1093/gji/ggaa078.

[970]

Pedro J Gea, Flor de Lis Mancilla, Ana M Negredo, and Jeroen van Hunen. “Overriding plate thickness as a controlling factor for trench retreat rates in narrow subduction zones”. In: Geochem. Geophys. Geosyst. 25 (2024), e2023GC011345. doi: 10.1029/2023GC011345.

[971]

DJ Gebhardt and SL Butler. “Linear analysis of melt band formation in a mid-ocean ridge corner flow”. In: Geophys. Res. Lett. 43.8 (2016), pp. 3700–3707. doi: 10.1002/ 2016GL068688.

[972]

L. Gemmer, C. Beaumont, and S. Ings. “Dynamic modelling of passive margin salt tectonics: effects of water loading, sediment properties and sedimentation patterns”. In: Basin Research 17 (2005), pp. 383–402. doi: 10.1111/j.1365-2117.2005.00274.x.

[973]

L. Gemmer, S.J. Ings, S. Medvedev, and C. Beaumont. “Salt tectonics driven by differential sediment loading: stability analysis and finite-element experiments”. In: Basin Research 16 (2004), pp. 199–218. doi: 10.1111/j.1365-2117.2004.00229.x.

[974]

L. Geoffroy, E.B. Burov, and P. Werner. “Volcanic passive margins: another way to break up continents”. In: Scientific Reports 5 (2015). doi: 10.1038/srep14828.

[975]

Gianluca Gerardi, Neil M Ribe, and Paul J Tackley. “Plate bending, energetics of subduction and modeling of mantle convection: A boundary element approach”. In: Earth Planet. Sci. Lett. 515 (2019), pp. 47–57. doi: 10.1016/j.epsl.2019.03.010.

[976]

M. Gerault, T.W. Becker, B.J.P. Kaus, C. Faccenna, L. Moresi, and L. Husson. “The role of slabs and oceanic plate geometry in the net rotation of the lithosphere, trench motions, and slab return flow”. In: Geochem. Geophys. Geosyst. 13.4 (2012), Q04001. doi: 10.1029/ 2011GC003934.

[977]

M. Gérault, L. Husson, M.S. Miller, and E.D. Humphreys. “Flat-slab subduction, topography, and mantle dynamics in southwestern Mexico”. In: Tectonics 34 (2015), 10.1002/2015TC003908.

[978]

M. Gerbault. “Pressure conditions for shear and tensile failure around a circular magma chamber; insight from elasto-plastic modelling”. In: Geological Society, London, Special Publications 367 (2012), pp. 111–130.

[979]

M. Gerbault, F. Cappa, and R. Hassani. “Elasto-plastic and hydromechanical models of failure around an infinitely long magma chamber”. In: Geochem. Geophys. Geosyst. 13.3 (2012). doi: 10.1029/2011GC003917.

[980]

M. Gerbault, F. Davey, and S. Henrys. “Three-dimensional lateral crustal thickening in continental oblique collision: an example from the Southern Alps, New Zealand”. In: Geophy. J. Int. 150 (2002), pp. 770–779.

[981]

M. Gerbault, R. Hassani, C. Novoa Lizama, and A. Souche. “Three-Dimensional Failure Patterns Around an Inflating Magmatic Chamber”. In: Geochem. Geophys. Geosyst. 19 (2018), pp. 749–771. doi: 10.1002/2017GC007174.

[982]

M. Gerbault, S. Henrys, and F. Davey. “Numerical models of lithospheric deformation forming the Southern Alps of New Zealand”. In: J. Geophys. Res.: Solid Earth 108.B7 (2003). doi: 10.1029/2001JB001716.

[983]

M. Gerbault and W. Willingshofer. “Lower crust indentation or horizontal ductile flow during continental collision?” In: Tectonophysics 387 (2004), pp. 169–187. doi: 10.1016/j. tecto.2004.06.012.

[984]

Muriel Gerbault, Eugenii B Burov, Alexei NB Poliakov, and Marc Daignieres. “Do faults trigger folding in the lithosphere?” In: Geophy. J. Int. 26.2 (1999), pp. 271–274. doi: 10.1029/1998GL900293.

[985]

Muriel Gerbault, José Cembrano, C Mpodozis, M Farias, and M Pardo. “Continental margin deformation along the Andean subduction zone: Thermo-mechanical models”. In: Phys. Earth. Planet. Inter. 177.3-4 (2009), pp. 180–205.

[986]

Muriel Gerbault, Julie Schneider, A Reverso-Peila, and Michel Corsini. “Crustal exhumation during ongoing compression in the Variscan Maures-Tanneron Massif, France - Geological and thermo-mechanical aspects”. In: Tectonophysics 746 (2018), pp. 439–458. doi: 10. 1016/j.tecto.2016.12.019.

[987]

Thomas M Gernon et al. “Coevolution of craton margins and interiors during continental break-up”. In: Nature 632.8024 (2024), pp. 327–335. doi: 10.1038/s41586-024-07717-1.

[988]

A Geruo, John Wahr, and Shijie Zhong. “Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada”. In: Geophy. J. Int. 192.2 (2013), pp. 557–572. doi: 10.1093/ gji/ggs030.

[989]

T. Gerya. “Dynamical instability produces transform faults at mid-ocean ridges”. In: Science 329 (2010), pp. 1047–1050.

[990]

T. Gerya and B. Stöckhert. “Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins”. In: Int J Earth Sci (Geol Rundsch) 95 (2006), pp. 250–274.

[991]

T.V. Gerya and J.-P. Burg. “Intrusion of ultramafic magmatic bodies into the continental crust: Numerical simulation”. In: Phys. Earth. Planet. Inter. 160 (2007), pp. 124–142. doi: 10.1016/j.pepi.2006.10.004.

[992]

T.V. Gerya, J.A.D. Connolly, and D.A. Yuen. “Why is terrestrial subduction one-sided ?” In: Geology 36.1 (2008), pp. 43–46. doi: 10.1130/G24060A.1.

[993]

T.V. Gerya, J.A.D. Connolly, D.A. Yuen, W. Gorczyk, and A.M. Capel. “Seismic implications of mantle wedge plumes”. In: Phys. Earth. Planet. Inter. 156 (2006), pp. 59–74. doi: 10.1016/j.pepi.2006.02.005.

[994]

T.V. Gerya, D. Fossati, C. Cantieni, and D. Seward. “Dynamic effects of aseismic ridge subduction: numerical modelling”. In: Eur. J. Mineral 21 (2009), pp. 649–661. doi: 10. 1127/0935-1221/2009/0021-1931.

[995]

T.V. Gerya and F.I. Meilick. “Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts”. In: Journal of Metamorphic Geology 29 (2011), pp. 7–31. doi: 10.1111/j.1525-1314.2010.00904.x.

[996]

T.V. Gerya, L.L. Perchuk, W.V. Maresch, and A.P. Willner. “Inherent gravitational instability of hot continental crust: Implications for doming and diapirism in granulite facies terrains”. In: Geological Society of America 380 (2004), pp. 97–115. doi: xxx.

[997]

T.V. Gerya, R.J. Stern, M.Baes, S.V. Sobolev, and S.A. Whattam. “Plate tectonics on the Earth triggered by plume-induced subduction initiation”. In: Nature 527 (2015), pp. 221–225. doi: 10.1038/nature15752.

[998]

T.V. Gerya, R. Uken, J. Reinhardt, M. Watkeys, W.V. Maresch, and B.M. Clarke. “Cold fingers in a hot magma: Numerical modeling of country-rock diapirs in the Bushveld Complex, South Africa”. In: Geology 31.9 (2003), pp. 753–756. doi: 10.1130/G19566.1.

[999]

T.V. Gerya, D.A. Yuen, and W.V. Maresch. “Thermomechanical modelling of slab detachment”. In: Earth Planet. Sci. Lett. 226 (2004), pp. 101–116. doi: 10.1016/j. epsl.2004.07.022.

[1000]

T.V. Gerya, D.A. Yuen, and E.O.D. Sevre. “Dynamical causes for incipient magma chambers above slabs”. In: Geology 32.1 (2004), pp. 89–92. doi: 10.1130/G20018.1.

[1001]

Taras Gerya. “Geodynamics of the early Earth: Quest for the missing paradigm”. In: Geology 47.10 (2019), pp. 1006–1007.

[1002]

Taras Gerya. “Precambrian geodynamics: concepts and models”. In: Gondwana Research 25.2 (2014), pp. 442–463.

[1003]

Taras Gerya and Evgueni Burov. “Nucleation and evolution of ridge-ridge-ridge triple junctions: Thermomechanical model and geometrical theory”. In: Tectonophysics 746 (2018), pp. 83–105. doi: 10.1016/j.tecto.2017.10.020.

[1004]

Taras V Gerya. “Three-dimensional thermomechanical modeling of oceanic spreading initiation and evolution”. In: Phys. Earth. Planet. Inter. 214 (2013), pp. 35–52.

[1005]

Taras V Gerya, David Bercovici, and Thorsten W Becker. “Dynamic slab segmentation due to brittle–ductile damage in the outer rise”. In: Nature 599.7884 (2021), pp. 245–250. doi: 10.1038/s41586-021-03937-x.

[1006]

Taras V Gerya, Bernhard Stöckhert, and Alexey L Perchuk. “Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation”. In: Tectonics 21.6 (2002), pp. 6–1. doi: 10.1029/2002TC001406.

[1007]

Taras V Gerya, Ronald Uken, Juergen Reinhardt, Michael K Watkeys, Walter V Maresch, and Brendan M Clarke. “”Cold” diapirs triggered by intrusion of the Bushveld Complex: Insight from two-dimensional numerical modeling”. In: Special Papers – Geological Society of America (2004), pp. 117–128.

[1008]

TV Gerya. “Initiation of transform faults at rifted continental margins: 3D petrological-thermomechanical modeling and comparison to the Woodlark Basin”. In: Petrology 21.6 (2013), pp. 550–560.

[1009]

TV Gerya. “Intra-oceanic subduction zones”. In: Arc-continent collision. Springer, 2011, pp. 23–51.

[1010]

TV Gerya. “Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus”. In: Earth Planet. Sci. Lett. 391 (2014), pp. 183–192.

[1011]

TV Gerya, LL Perchuk, and J-P Burg. “Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high-temperature crust–mantle associations in collision belts”. In: Lithos 103.1-2 (2008), pp. 236–256.

[1012]

Klaus Gessner, Chris Wijns, and Louis Moresi. “Significance of strain localization in the lower crust for structural evolution and thermal history of metamorphic core complexes”. In: Tectonics 26.2 (2007).

[1013]

Hom Nath Gharti, Jeroen Tromp, and Stefano Zampini. “Spectral-infinite-element simulations of gravity anomalies”. In: Geophy. J. Int. 215.2 (2018), pp. 1098–1117. doi: 10.1093/gji/ggy324.

[1014]

R.K. Ghazian and S.J.H. Buiter. “A numerical investigation of continental collision styles”. In: Geophy. J. Int. 193 (2013), pp. 1133–1152. doi: 10.1093/gji/ggt068.

[1015]

R.K. Ghazian and S.J.H. Buiter. “Numerical modelling of the role of salt in continental collision: An application to the southeast Zagros fold-and-thrust belt”. In: Tectonophysics 632 (2014), pp. 96–110. doi: 10.1016/j.tecto.2014.06.006.

[1016]

S Ghelichkhan, HP Bunge, and J Oeser. “Global mantle flow retrodictions for the early Cenozoic using an adjoint method: evolving dynamic topographies, deep mantle structures, flow trajectories and sublithospheric stresses”. In: Geophy. J. Int. 226.2 (2021), pp. 1432–1460. doi: 10.1093/gji/ggab108.

[1017]

S. Ghelichkhan and H.-P. Bunge. “The adjoint equations for thermochemical compressible mantle convection: Derivation and verification by twin experiments”. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474.2220 (2018). doi: 10.1098/rspa.2018.0329.

[1018]

S. Ghelichkhan, M. Murböck, L. Colli, R. Pail, and H.-P. Bunge. “On the observability of epeirogenic movement in current and future gravity missions”. In: Gondwana Research 53 (2018), pp. 273–284. doi: 10.1016/j.gr.2017.04.016.

[1019]

Siavash Ghelichkhan and Hans-Peter Bunge. “The compressible adjoint equations in geodynamics: derivation and numerical assessment”. In: GEM-International Journal on Geomathematics 7.1 (2016), pp. 1–30. doi: 10.1007/s13137-016-0080-5.

[1020]

Sanaz R Ghias and Gary T Jarvis. “Mantle convection models with temperature-and depth-dependent thermal expansivity”. In: J. Geophys. Res.: Solid Earth 113.B8 (2008). doi: 10.1029/2007JB005355.

[1021]

Sanaz R Ghias and Gary T Jarvis. “Mantle flow reversals in cylindrical Earth models”. In: Phys. Earth. Planet. Inter. 165.3-4 (2007), pp. 194–207. doi: 10.1016/j.pepi.2007. 09.004.

[1022]

A Ghosh, TW Becker, and ED Humphreys. “Dynamics of the North American continent”. In: Geophy. J. Int. 194.2 (2013), pp. 651–669. doi: 10.1093/gji/ggt151.

[1023]

A Ghosh, WE Holt, and L Wen. “Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics”. In: J. Geophys. Res.: Solid Earth 118.1 (2013), pp. 346–368. doi: 10.1029/2012JB009516.

[1024]

A Ghosh, WE Holt, L Wen, AJ Haines, and LM Flesch. “Joint modeling of lithosphere and mantle dynamics elucidating lithosphere-mantle coupling”. In: Geophys. Res. Lett. 35.16 (2008). doi: 10.1029/2008GL034365.

[1025]

A. Ghosh, T. W. Becker, and S. J. Zhong. “Effects of lateral viscosity variations on the geoid”. In: Geophys. Res. Lett. 37.L01301 (2010). doi: 10.1029/2009GL040426.

[1026]

Attreyee Ghosh and William E Holt. “Plate motions and stresses from global dynamic models”. In: Science 335.6070 (2012), pp. 838–843. doi: 10.1126/science.1214209.

[1027]

Attreyee Ghosh, William E Holt, and Lucy M Flesch. “Contribution of gravitational potential energy differences to the global stress field”. In: Geophy. J. Int. 179.2 (2009), pp. 787–812. doi: 10.1111/j.1365-246X.2009.04326.x.

[1028]

Attreyee Ghosh and Debanjan Pal. “Do lower mantle slabs contribute in generating the Indian Ocean geoid low?” In: Tectonophysics 822 (2022), p. 229176. doi: 10.1016/j. tecto.2021.229176.

[1029]

Attreyee Ghosh, G Thyagarajulu, and Bernhard Steinberger. “The importance of upper mantle heterogeneity in generating the Indian Ocean geoid low”. In: Geophys. Res. Lett. 44.19 (2017), pp. 9707–9715. doi: 10.1002/2017GL075392.

[1030]

Guido M Gianni, Jerem´i  as Likerman, César R Navarrete, Conrado R Gianni, and Sergio Zlotnik. “Ghost-arc geochemical anomaly at a spreading ridge caused by supersized flat subduction”. In: Nature Communications 14.1 (2023), p. 2083. doi: 10.1038/s41467- 023-37799-w.

[1031]

G. Gibert, M. Gerbault, R. Hassani, and E. Tric. “Dependency of slab geometry on absolute velocities and conditions for cyclicity: insights from numerical modelling”. In: Geophy. J. Int. 189 (2012), pp. 747–760. doi: 10.1111/j.1365-246X.2012.05426.x.

[1032]

JA Gil and Maria José Jurado. “Geological interpretation and numerical modelling of salt movement in the Barbastro–Balaguer anticline, southern Pyrenees”. In: Tectonophysics 293.3-4 (1998), pp. 141–155.

[1033]

A.R. Gilchrist, H. Kooi, and C. Beaumont. “Post-Gondwana geomorphic evolution of southwestern Africa: implications for the controls on landscape development from observations and numerical experiments”. In: J. Geophys. Res.: Solid Earth 99.B6 (1994), pp. 12, 211–12, 228. doi: 10.1029/94JB00046.

[1034]

Fabie Gillet-Chaulet, Olivier Gagliardini, Jacques Meyssonnier, Maurine Montagnat, and Olivier Castelnau. “A user-friendly anisotropic flow law for ice-sheet modeling”. In: Journal of glaciology 51.172 (2005), pp. 3–14. doi: 10.3189/172756505781829584.

[1035]

Daniele Giordano, James K Russell, and Donald B Dingwell. “Viscosity of magmatic liquids: a model”. In: Earth Planet. Sci. Lett. 271.1-4 (2008), pp. 123–134. doi: 10.1016/j. epsl.2008.03.038.

[1036]

Carlo Giunchi, Roberto Sabadini, Enzo Boschi, and Paolo Gasperini. “Dynamic models of subduction: geophysical and geological evidence in the Tyrrhenian Sea”. In: Geophy. J. Int. 126.2 (1996), pp. 555–578. doi: 10.1111/j.1365-246X.1996.tb05310.x.

[1037]

G.A. Glatzmaier. “Numerical simulations of mantle convection: Time-dependent, three-dimensional, compressible, spherical shell”. In: Geophysical & Astrophysical Fluid Dynamics 43 (1988), pp. 223–264. doi: 10.1080/03091928808213626.

[1038]

G.C. Gleason and J. Tullis. “A flow law for dislocation creep of quartz aggregates determined with the molten salt cell”. In: Tectonophysics 247 (1995), pp. 1–23.

[1039]

Anne Glerum, Sascha Brune, D Sarah Stamps, and Manfred R Strecker. “Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the East African Rift”. In: Nature Communications 11.1 (2020), pp. 1–15. doi: 10.1038/s41467-020- 16176-x.

[1040]

Anne C Glerum, Sascha Brune, Joseph M Magnall, Philipp Weis, and Sarah A Gleeson. “Geodynamic controls on clastic-dominated base metal deposits”. In: Solid Earth 15.8 (2024), pp. 921–944. doi: 10.5194/se-15-921-2024.

[1041]

Petar Glišović and Alessandro M Forte. “Reconstructing the Cenozoic evolution of the mantle: Implications for mantle plume dynamics under the Pacific and Indian plates”. In: Earth Planet. Sci. Lett. 390 (2014), pp. 146–156. doi: 10.1016/j.epsl.2014.01.010.

[1042]

Petar Glišović, Alessandro M Forte, and Michael W Ammann. “Variations in grain size and viscosity based on vacancy diffusion in minerals, seismic tomography, and geodynamically inferred mantle rheology”. In: Geophy. J. Int. 42.15 (2015), pp. 6278–6286. doi: 10. 1002/2015GL065142.

[1043]

Vincent Godard, R Cattin, and J Lavé. “Numerical modeling of mountain building: Interplay between erosion law and crustal rheology”. In: Geophys. Res. Lett. 31.23 (2004). doi: 10.1029/2004GL021006.

[1044]

Vincent Godard, Jérome Lavé, and Rodolphe Cattin. “Numerical modelling of erosion processes in the Himalayas of Nepal: Effects of spatial variations of rock strength and precipitation”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 341–358. doi: 10.1144/GSL.SP.2006.253.01.18.

[1045]

Heiko Goelzer, Alexander Robinson, Helene Seroussi, and Roderik Sw Van De Wal. “Recent progress in Greenland ice sheet modelling”. In: Current climate change reports 3.4 (2017), pp. 291–302. doi: 10.1007/s40641-017-0073-y.

[1046]

S Goes, JJP Loohuis, MJR Wortel, and Rob Govers. “The effect of plate stresses and shallow mantle temperatures on tectonics of northwestern Europe”. In: Global and Planetary Change 27.1-4 (2000), pp. 23–38.

[1047]

S. Goes, F. Cammarano, and U. Hansen. “Synthetic seismic signature of thermal mantle plumes”. In: Earth Planet. Sci. Lett. 218.3-4 (2004), pp. 403–419. doi: 10.1016/S0012- 821X(03)00680-0.

[1048]

Saskia Goes, FA Capitanio, Gabriele Morra, M Seton, and D Giardini. “Signatures of downgoing plate-buoyancy driven subduction in Cenozoic plate motions”. In: Phys. Earth. Planet. Inter. 184.1-2 (2011), pp. 1–13. doi: 10.1016/j.pepi.2010.10.007.

[1049]

Saskia Goes, Fabio A Capitanio, and Gabriele Morra. “Evidence of lower-mantle slab penetration phases in plate motions”. In: Nature 451.7181 (2008), p. 981. doi: 10.1038/ nature06691.

[1050]

C. Goetze and B. Evans. “Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics”. In: Geophy. J. Int. 59.3 (1979), pp. 463–478.

[1051]

Oguz H. Gogus. “Rifting and subsidence following lithospheric removal in continental back arcs”. In: Geology (2014). doi: 10.1130/G36305.1.

[1052]

Oğuz H Göğüş and Russell N Pysklywec. “Mantle lithosphere delamination driving plateau uplift and synconvergent extension in eastern Anatolia”. In: Geology 36.9 (2008), pp. 723–726. doi: 10.1130/G24982A.1.

[1053]

Oğuz H Göğüş, Russell N Pysklywec, Fabio Corbi, and Claudio Faccenna. “The surface tectonics of mantle lithosphere delamination following ocean lithosphere subduction: Insights from physical-scaled analogue experiments”. In: Geochem. Geophys. Geosyst. 12.5 (2011). doi: 10.1029/2010GC003430.

[1054]

GJ Golabek, TV Gerya, BJP Kaus, R Ziethe, and PJ Tackley. “Rheological controls on the terrestrial core formation mechanism”. In: Geochem. Geophys. Geosyst. 10.11 (2009).

[1055]

Gregor J Golabek, Bernard Bourdon, and Taras V Gerya. “Numerical models of the thermomechanical evolution of planetesimals: Application to the acapulcoite-lodranite parent body”. In: Meteoritics & Planetary Science 49.6 (2014), pp. 1083–1099.

[1056]

Gregor J Golabek, Harro Schmeling, and Paul J Tackley. “Earth’s core formation aided by flow channelling instabilities induced by iron diapirs”. In: Earth Planet. Sci. Lett. 271.1-4 (2008), pp. 24–33.

[1057]

DL Goldsby and DL Kohlstedt. “Superplastic deformation of ice: Experimental observations”. In: J. Geophys. Res.: Solid Earth 106.B6 (2001), pp. 11017–11030. doi: 10.1029/2000JB900336.

[1058]

Natalya Gomez et al. “The influence of realistic 3D mantle viscosity on Antarctica’s contribution to future global sea levels”. In: Science Advances 10.31 (2024), eadn1470. doi: 10.1126/sciadv.adn1470.

[1059]

Júlia Gómez-Romeu, Suzon Jammes, Maxime Ducoux, Rodolphe Lescoutre, Sylvain Calassou, and Emmanuel Masini. “Inverted Magma-rich Versus Magma-poor Rifted Margins: Implications for Early Orogenic Systems”. In: Tektonika 1.1 (2023). doi: 10.55575/ tektonika2023.1.1.12.

[1060]

W Gorczyk, DR Mole, and SJ Barnes. “Plume-lithosphere interaction at craton margins throughout Earth history”. In: Tectonophysics 746 (2018), pp. 678–694. doi: 10.1016/ j.tecto.2017.04.002.

[1061]

W. Gorczyk, T.V. Gerya, J.A.D. Connolly, and D.A. Yuen. “Growth and mixing dynamics of mantle wedge plumes”. In: Geology 35.7 (2007), pp. 587–590. doi: 10.1130/G23485A.1.

[1062]

W. Gorczyk, T.V. Gerya, J.A.D. Connolly, D.A. Yuen, and M. Rudolph. “Large-scale rigid-body rotation in the mantle wedge and its implications for seismic tomography ”. In: Geochem. Geophys. Geosyst. 7.5 (2006), 10.1029/2005GC001075.

[1063]

Weronika Gorczyk, Stéphane Guillot, Taras V Gerya, and Kéiko Hattori. “Asthenospheric upwelling, oceanic slab retreat, and exhumation of UHP mantle rocks: Insights from Greater Antilles”. In: Geophys. Res. Lett. 34.21 (2007).

[1064]

Weronika Gorczyk, Bruce Hobbs, and Taras Gerya. “Initiation of Rayleigh–Taylor instabilities in intra-cratonic settings”. In: Tectonophysics 514 (2012), pp. 146–155.

[1065]

Weronika Gorczyk, Arne P Willner, Taras V Gerya, James AD Connolly, and Jean-Pierre Burg. “Physical controls of magmatic productivity at Pacific-type convergent margins: Numerical modelling”. In: Phys. Earth. Planet. Inter. 163.1-4 (2007), pp. 209–232.

[1066]

Richard G Gordon and Seth Stein. “Global tectonics and space geodesy”. In: Science 256.5055 (1992), pp. 333–342.

[1067]

Jean-Luc Got, Vadim Monteiller, Julien Monteux, Riad Hassani, and Paul Okubo. “Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes”. In: Nature 451.7177 (2008), pp. 453–456. doi: 10.1038/nature06481.

[1068]

R. Goteti, C. Beaumont, and S.J. Ings. “Factors controlling early stage salt tectonics at rifted continental margins and their thermal consequences”. In: J. Geophys. Res.: Solid Earth 117 (2013), pp. 1–31. doi: 10.1002/jgrb.50201.

[1069]

R. Goteti, S.J. Ings, and C. Beaumont. “Development of salt minibasins initiated by sedimentary topographic relief”. In: Earth Planet. Sci. Lett. 339-340 (2012), pp. 103–116. doi: 10.1016/j.epsl.2012.04.045.

[1070]

K-D Gottschaldt, U Walzer, RF Hendel, David Robert Stegman, JR Baumgardner, and H-B Mühlhaus. “Stirring in 3-d spherical models of convection in the Earth’s mantle”. In: Philosophical Magazine 86.21-22 (2006), pp. 3175–3204. doi: 10.1080/ 14786430500197991.

[1071]

Klaus-D Gottschaldt, Uwe Walzer, Dave R Stegman, John R Baumgardner, and Hans B Mühlhaus. “Mantle Dynamics–A Case Study”. In: Advances in Geocomputing. 2009, pp. 139–181. doi: 10.1007/978-3-540-85879-9_5.

[1072]

M. Gouiza and J. Naliboff. “Rheological inheritance controls the formation of segmented rifted margins in cratonic lithosphere”. In: Nature Communications 12 (2021), p. 4653. doi: 10.1038/s41467-021-24945-5.

[1073]

Neil J Goulding, Neil M Ribe, Olivier Castelnau, Andrew M Walker, and James Wookey. “Analytical parametrization of self-consistent polycrystal mechanics: Fast calculation of upper mantle anisotropy”. In: Geophy. J. Int. 203.1 (2015), pp. 334–350. doi: 10.1093/ gji/ggv304.

[1074]

Karine Gouriet et al. “Dislocation dynamics modelling of the power-law breakdown in olivine single crystals: Toward a unified creep law for the upper mantle”. In: Earth Planet. Sci. Lett. 506 (2019), pp. 282–291. doi: 10.1016/j.epsl.2018.10.049.

[1075]

S. Gourvenec. “Bearing capacity under combined loading”. In: 9th Australia New Zealand Conference on Geomechanics, Auckland, New Zealand, 8-11 february 2004. 2004.

[1076]

S. Gourvenec and M. Randolph. “Effect of strength non-homogeneity on the shape of failure envelopes for combined loading of strip and circular foundations on clay”. In: Géotechnique 53 (2003), pp. 575–586.

[1077]

S. Gourvenec, M. Randolph, and O. Kingsnorth. “Undrained bearing capacity of square and rectangular footings”. In: International Journal of Geomechanics 6 (2006), pp. 147–157.

[1078]

R Govers and MJR Wortel. “Initiation of asymmetric extension in continental lithosphere”. In: Tectonophysics 223.1-2 (1993), pp. 75–96. doi: 10.1016/0040-1951(93)90159-H.

[1079]

R Govers, MJR Wortel, SAPL Cloetingh, and CA Stein. “Stress magnitude estimates from earthquakes in oceanic plate interiors”. In: J. Geophys. Res.: Solid Earth 97.B8 (1992), pp. 11749–11759. doi: 10.1029/91JB01797.

[1080]

R. Govers and M.J.R. Wortel. “Extension of stable continental lithosphere and the initiation of lithospheric scale faults”. In: Tectonics 14.4 (1995), pp. 1041–1055.

[1081]

R. Govers and M.J.R. Wortel. “Lithosphere tearing at STEP faults: Response to edges of subduction zones ”. In: Earth Planet. Sci. Lett. 236 (2005), pp. 505–523.

[1082]

R. Govers and M.J.R. Wortel. “Some remarks on the relation between vertical motions of the lithosphere during extension and the necking depth parameter inferred from kinematic modeling studies”. In: J. Geophys. Res.: Solid Earth 104 (1999), pp. 23, 245–23, 253.

[1083]

Rob Govers, K P Furlong, L van de Wiel, M W Herman, and T Broerse. “The Geodetic Signature of the Earthquake Cycle at Subduction Zones: Model Constraints on the Deep Processes”. In: Reviews Of Geophysics 56 (2018), pp. 6–49.

[1084]

Alexia Grabkowiak. “Analyse du géoïde et séparation des sources pour la compréhension de l’organisation verticale des anomalies de masse dans le manteau”. PhD thesis. Institut de Physique du Globe de Paris, 2017.

[1085]

S. Gradmann and C. Beaumont. “Coupled fluid flow and sediment deformation in margin-scale salt-tectonic systems: 2. Layered sediment models and application to the northwestern Gulf of Mexico”. In: Tectonics 31.TC4011 (2012).

[1086]

S. Gradmann and C. Beaumont. “Numerical modelling study of mechanisms of mid-basin salt canopy evolution and their potential applications to the Northwestern Gulf of Mexico”. In: Basin Research 29.4 (2017), pp. 490–520. doi: 10.1111/bre.12186.

[1087]

S. Gradmann, C. Beaumont, and M. Albertz. “Factors controlling the evolution of the Perdido Fold Belt, northwestern Gulf of Mexico, determined from numerical models”. In: Tectonics 28.TC2002 (2009).

[1088]

S. Gradmann, C. Beaumont, and S.J. Ings. “Coupled fluid flow and sediment deformation in margin-scale salt-tectonic systems: 1. Development and application of simple, single-lithology models”. In: Tectonics 31.4 (2012). doi: 10.1029/2011TC003033.

[1089]

Pablo Granado, Jonas B Ruh, Pablo Santolaria, Philipp Strauss, and Josep Anton Muñoz. “Stretching and contraction of extensional basins with pre-rift salt: A numerical modeling approach”. In: Frontiers in Earth Science 9 (2021), p. 648937. doi: 10.3389/feart. 2021.648937.

[1090]

Pablo Granado and Jonas Bruno Ruh. “Numerical modelling of inversion tectonics in fold-and-thrust belts”. In: Tectonophysics 763 (2019), pp. 14–29. doi: 10.1016/j.tecto. 2019.04.033.

[1091]

Glen D Granzow. “A tutorial on adjoint methods and their use for data assimilation in glaciology”. In: Journal of Glaciology 60.221 (2014), pp. 440–446. doi: 10.3189/ 2014JoG13J205.

[1092]

Ronni Grapenthin. “Computer programing for geosciences: Teach your students how to make tools”. In: Eos, Transactions American Geophysical Union 92.50 (2011), pp. 469–470. doi: xxxx.

[1093]

Bernhard Grasemann and Neil S Mancktelow. “Two-dimensional thermal modelling of normal faulting: the Simplon Fault Zone, Central Alps, Switzerland”. In: Tectonophysics 225.3 (1993), pp. 155–165. doi: 10.1016/0040-1951(93)90277-Q.

[1094]

Bernhard Grasemann and Stefan M Schmalholz. “Lateral fold growth and fold linkage”. In: Geology 40.11 (2012), pp. 1039–1042. doi: 10.1130/G33613.1.

[1095]

O. Grasset and E.M. Parmentier. “Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution”. In: J. Geophys. Res.: Solid Earth 103.B8 (1998), pp. 18, 171–18, 181. doi: 10.1029/98JB01492.

[1096]

Fabien Graveleau, J-E Hurtrez, Stéphane Dominguez, and Jacques Malavieille. “A new experimental material for modeling relief dynamics and interactions between tectonics and surface processes”. In: Tectonophysics 513.1-4 (2011), pp. 68–87. doi: 10.1016/j.tecto. 2011.09.029.

[1097]

R. Gray and R.N. Pysklywec. “Geodynamic models of Archean continental collision and the formation of mantle lithosphere keels”. In: Geophys. Res. Lett. 37.L19301 (2010). doi: 10.1029/2010GL043965.

[1098]

R. Gray and R.N. Pysklywec. “Geodynamic models of mature continental collision: Evolution of an orogen from lithospheric subduction to continental retreat/delamination”. In: J. Geophys. Res.: Solid Earth 117.B03408 (2012). doi: 10.1029/2011JB008692.

[1099]

R. Gray and R.N. Pysklywec. “Influence of sediment deposition on deep lithospheric tectonics”. In: Geophys. Res. Lett. 39.L11312 (2012). doi: 10.1029/2012GL051947.

[1100]

R. Gray and R.N. Pysklywec. “Influence of viscosity pressure dependence on deep lithospheric tectonics during continental collision”. In: J. Geophys. Res.: Solid Earth 118 (2013). doi: 10.1002/jgrb.50220.

[1101]

Marianne Greff-Lefftz, Boris Robert, Jean Besse, Dominique Frizon de Lamotte, and Sophie Vicente de Gouveia. “Dynamic topography and lithospheric stresses since 400 M a”. In: Geochem. Geophys. Geosyst. 18.7 (2017), pp. 2673–2700. doi: 10.1002/2017GC006936.

[1102]

Ralf Greve. “Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios”. In: Journal of Climate 10.5 (1997), pp. 901–918. doi: 10.1175/1520-0442(1997)010<0901: AOAPTD>2.0.CO;2.

[1103]

Ralf Greve and Reinhard Calov. “Comparison of numerical schemes for the solution of the ice-thickness equation in a dynamic/thermodynamic ice-sheet model”. In: J. Comp. Phys. 179.2 (2002), pp. 649–664. doi: 10.1006/jcph.2002.7081.

[1104]

Ingo Grevemeyer, Lars H Rüpke, Jason P Morgan, Karthik Iyer, and Colin W Devey. “Extensional tectonics and two-stage crustal accretion at oceanic transform faults”. In: Nature 591.7850 (2021), pp. 402–407. doi: 10.1038/s41586-021-03278-9.

[1105]

WL Griffin et al. “The world turns over: Hadean–Archean crust–mantle evolution”. In: Lithos 189 (2014), pp. 2–15. doi: 10.1016/j.lithos.2013.08.018.

[1106]

Ross W Griffiths and IH Campbell. “On the dynamics of long-lived plume conduits in the convecting mantle”. In: Earth Planet. Sci. Lett. 103.1-4 (1991), pp. 214–227. doi: 10.1016/0012-821X(91)90162-B.

[1107]

Ross W Griffiths and IH Campbell. “Stirring and structure in mantle starting plumes”. In: Earth Planet. Sci. Lett. 99.1-2 (1990), pp. 66–78. doi: 10.1016/0012-821X(90)90071-5.

[1108]

RW Griffiths and IH Campbell. “Interaction of mantle plume heads with the Earth’s surface and onset of small-scale convection”. In: J. Geophys. Res.: Solid Earth 96.B11 (1991), pp. 18295–18310. doi: 10.1029/91JB01897.

[1109]

C Grigné and M Combes. “Thermal History of the Earth: On the Importance of Surface Processes and the Size of Tectonic Plates”. In: Geochem. Geophys. Geosyst. 21.11 (2020), e2020GC009123. doi: 10.1029/2020GC009123.

[1110]

Cécile Grigné, Stéphane Labrosse, and Paul J Tackley. “Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth”. In: J. Geophys. Res.: Solid Earth 110.B3 (2005).

[1111]

Cécile Grigné, Stéphane Labrosse, and PJ Tackley. “Convection under a lid of finite conductivity in wide aspect ratio models: Effect of continents on the wavelength of mantle flow”. In: J. Geophys. Res.: Solid Earth 112.B8 (2007).

[1112]

Cécile Grigné, Stéphane Labrosse, and PJ Tackley. “Convection under a lid of finite conductivity: Heat flux scaling and application to continents”. In: J. Geophys. Res.: Solid Earth 112.B8 (2007).

[1113]

Antoniette Greta Grima and Thorsten W Becker. “The Role of Continental Heterogeneity on the Evolution of Continental Margin Topography at Subduction Zones”. In: Earth Planet. Sci. Lett. 642 (2024), p. 118856. doi: 10.1016/j.epsl.2024.118856.

[1114]

Antoniette Greta Grima, Carolina Lithgow-Bertelloni, and Fabio Crameri. “Orphaning Regimes: The Missing Link Between Flattened and Penetrating Slab Morphologies”. In: Frontiers in Earth Science 8 (2020), p. 374. doi: 10.3389/feart.2020.00374.

[1115]

Ólafur Gudmundsson and Malcolm Sambridge. “A regionalized upper mantle (RUM) seismic model”. In: J. Geophys. Res.: Solid Earth 103.B4 (1998), pp. 7121–7136.

[1116]

JM Guerrero, Julian P Lowman, Frédéric Deschamps, and PJ Tackley. “The Influence of Curvature on Convection in a Temperature-Dependent Viscosity Fluid: Implications for the 2-D and 3-D Modeling of Moons”. In: J. Geophys. Res.: Planets 123.7 (2018), pp. 1863–1880. doi: 10.1029/2017JE005497.

[1117]

JM Guerrero, Julian P Lowman, and Paul J Tackley. “Spurious transitions in convective regime due to viscosity clipping: ramifications for modeling planetary secular cooling”. In: Geochem. Geophys. Geosyst. 20.7 (2019), pp. 3450–3468. doi: 10.1029/2019GC008385.

[1118]

Joshua Martin Guerrero, Frédéric Deschamps, Yang Li, Wen-Pin Hsieh, and Paul James Tackley. “Influence of heterogeneous thermal conductivity on the long-term evolution of the lower-mantle thermochemical structure: implications for primordial reservoirs”. In: Solid Earth 14.2 (2023), pp. 119–135. doi: 10.5194/se-14-119-2023.

[1119]

F. Gueydan, C. Morency, and J.-P. Brun. “Continental rifting as a function of lithosphere mantle strength”. In: Tectonophysics 460 (2008), pp. 83–93. doi: 10.1016/j.tecto. 2008.08.012.

[1120]

Frédéric Gueydan, Yves M Leroy, and Laurent Jolivet. “Mechanics of low-angle extensional shear zones at the brittle-ductile transition”. In: J. Geophys. Res.: Solid Earth 109.B12 (2004). doi: 10.1029/2003JB002806.

[1121]

Frédéric Gueydan, Jacques Précigout, and Laurent GJ Montesi. “Strain weakening enables continental plate tectonics”. In: Tectonophysics 631 (2014), pp. 189–196. doi: /10.1016/ j.tecto.2014.02.005.

[1122]

Laurent Guillou and Claude Jaupart. “On the effect of continents on mantle convection”. In: J. Geophys. Res.: Solid Earth 100.B12 (1995), pp. 24217–24238. doi: 10.1029/95JB02518.

[1123]

L. Guillou-Frottier et al. “Plume-induced dynamic instabilities near cratonic blocks: Implications for P-T-t paths and metallogeny”. In: Global and Planetary Change 90-91 (2012), pp. 37–50. doi: 10.1016/j.gloplacha.2011.10.007.

[1124]

A.J. Gülcher, T.V. Gerya, L.G.J. Montési, and J. Munch. “Corona structures driven by plume-lithosphere interactions and evidence for ongoing plume activity on Venus”. In: Nature Geoscience (2020). doi: 10.1038/s41561-020-0606-1.

[1125]

A.J.P. Gülcher, S.J. Beaussier, and T.V. Gerya. “On the formation of oceanic detachment faults and their influence on intra-oceanic subduction initiation: 3D thermomechanical modeling”. In: Earth Planet. Sci. Lett. 506.10.1016/j.epsl.2018.10.042 (2019), pp. 195–208.

[1126]

Anna Johanna Pia Gülcher, Maxim Dionys Ballmer, and Paul James Tackley. “Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth’s lower mantle”. In: Solid Earth 12.9 (2021), pp. 2087–2107. doi: 10.5194/se-12-2087-2021.

[1127]

Anna JP Gülcher, David J Gebhardt, Maxim D Ballmer, and Paul J Tackley. “Variable dynamic styles of primordial heterogeneity preservation in the Earth’s lower mantle”. In: Earth Planet. Sci. Lett. 536 (2020), p. 116160. doi: 10.1016/j.epsl.2020.116160.

[1128]

Anna JP Gülcher, Gregor J Golabek, Marcel Thielmann, Maxim Dionys Ballmer, and Paul James Tackley. “Narrow, Fast, and “Cool” Mantle Plumes Caused by Strain-Weakening Rheology in Earth’s Lower Mantle”. In: Geochem. Geophys. Geosyst. 23.10 (2022), e2021GC010314. doi: 10.1029/2021GC010314.

[1129]

Erkan Gün, Russell N Pysklywec, Oğuz H Göğüş, and Gültekin Topuz. “Terrane geodynamics: Evolution on the subduction conveyor from pre-collision to post-collision and implications on Tethyan orogeny”. In: Gondwana Research 105 (2022), pp. 399–415. doi: 10.1016/j.gr.2021.09.018.

[1130]

Prasanna M Gunawardana, Priyadarshi Chowdhury, Gabriele Morra, and Peter A Cawood. “Correlating mantle cooling with tectonic transitions on early Earth”. In: Geology XX (2024), p. XX. doi: 10.1130/G51874.1.

[1131]

Prasanna M. Gunawardana, Gabriele Morra, Priyadarshi Chowdhury, and Peter A. Cawood. “Calibrating the Yield Strength of Archean Lithosphere Based on the Volume of Tonalite-Trondhjemite-Granodiorite Crust”. In: Frontiers in Earth Science 8 (2020), p. 401. doi: 10.3389/feart.2020.548724.

[1132]

Changsheng Guo, Pengchao Sun, and Dongping Wei. “Formation conditions of the young flat-slab in the wedge subduction zone”. In: Tectonophysics 868 (2023), p. 230091. doi: 10.1016/j.tecto.2023.230091.

[1133]

M. Gurnis. “Plate-mantle coupling and continental flooding”. In: Geophys. Res. Lett. 17.5 (1990), pp. 623–626. doi: 10.1029/GL017i005p00623.

[1134]

M. Gurnis, C. Hall, and L. Lavier. “Evolving force balance during incipient subduction”. In: Geochem. Geophys. Geosyst. 5.7 (2004), Q07001. doi: 10.1029/2003GC000681.

[1135]

M. Gurnis and T. H. Torsvik. “Rapid drift of large continents during the late Precambrian and Paleozoic: Paleomagnetic constraints and dynamic models”. In: Geology 22.11 (1994), p. 1023. doi: 10.1130/0091-7613(1994)022<1023:RDOLCD>2.3.CO;2.

[1136]

Michael Gurnis. “Depressed continental hypsometry behind oceanic trenches: A clue to subduction controls on sea-level change”. In: Geology 21.1 (1993), pp. 29–32. doi: 10. 1130/0091-7613(1993)021<0029:DCHBOT>2.3.CO;2.

[1137]

Michael Gurnis. “Large-scale mantle convection and the aggregation and dispersal of supercontinents”. In: Nature 332.6166 (1988), pp. 695–699. doi: 10.1038/332695a0.

[1138]

Michael Gurnis. “Phanerozoic marine inundation of continents driven by dynamic topography above subducting slabs”. In: Nature 364.6438 (1993), p. 589. doi: 10.1038/364589a0.

[1139]

Michael Gurnis. “Rapid continental subsidence following the initiation and evolution of subduction”. In: Science 255.5051 (1992), pp. 1556–1558.

[1140]

Michael Gurnis. “Stirring and mixing in the mantle by plate-scale flow: Large persistent blobs and long tendrils coexist”. In: Geophys. Res. Lett. 13.13 (1986), pp. 1474–1477. doi: 10.1029/GL013i013p01474.

[1141]

Michael Gurnis and Geoffrey F Davies. “Mixing in numerical models of mantle convection incorporating plate kinematics”. In: J. Geophys. Res.: Solid Earth 91.B6 (1986), pp. 6375–6395. doi: 10.1029/JB091iB06p06375.

[1142]

Michael Gurnis and Geoffrey F Davies. “Numerical study of high Rayleigh number convection in a medium with depth-dependent viscosity”. In: Geophy. J. Int. 85.3 (1986), pp. 523–541. doi: 10.1111/j.1365-246X.1986.tb04530.x.

[1143]

Michael Gurnis and Geoffrey F Davies. “The effect of depth-dependent viscosity on convective mixing in the mantle and the possible survival of primitive mantle”. In: Geophys. Res. Lett. 13.6 (1986), pp. 541–544. doi: 10.1029/GL013i006p00541.

[1144]

Michael Gurnis, Christophe Eloy, and Shijie Zhong. “Free-surface formulation of mantle convection - II. Implication for subduction-zone observables”. In: Geophy. J. Int. 127.3 (1996), pp. 719–727. doi: 10.1111/j.1365-246X.1996.tb04050.x.

[1145]

Michael Gurnis and Bradford H Hager. “Controls of the structure of subducted slabs”. In: Nature 335.6188 (1988), pp. 317–321. doi: 10.1038/335317a0.

[1146]

Michael Gurnis, Louis Moresi, and R Dietmar Müller. “Models of mantle convection incorporating plate tectonics: The Australian region since the Cretaceous”. In: The history and dynamics of global plate motion, Geophysical monograph 121 (2000).

[1147]

Michael Gurnis, R Dietmar Müller, and Louis Moresi. “Cretaceous vertical motion of Australia and the Australian-Antarctic discordance”. In: Science 279.5356 (1998), pp. 1499–1504.

[1148]

Michael Gurnis et al. “Plate tectonic reconstructions with continuously closing plates”. In: Computers & Geosciences 38.1 (2012), pp. 35–42.

[1149]

M-A Gutscher et al. “Thermal modeling of the SW Ryukyu forearc (Taiwan): Implications for the seismogenic zone and the age of the subducting Philippine Sea Plate (Huatung Basin)”. In: Tectonophysics 692 (2016), pp. 131–142.

[1150]

Zohar Gvirtzman, Claudio Faccenna, and Thorsten W Becker. “Isostasy, flexure, and dynamic topography”. In: Tectonophysics 683 (2016), pp. 255–271. doi: 10.1016/j. tecto.2016.05.041.

[1151]

Roger Haagmans, Christian Siemes, Luca Massotti, Olivier Carraz, and Pierluigi Silvestrin. “ESA’s next-generation gravity mission concepts”. In: International Conference ”Earth’s Gravity Field and Earth Sciences”. 2020. isbn: 0123456789. doi: 10.1007/s12210-020- 00875-0.

[1152]

B.R. Hacker. “Simulation of the metamorphic and deformational history of the metamorphic sole of the Oman ophiolite”. In: J. Geophys. Res.: Solid Earth 95.B4 (1990), pp. 4895–4907.

[1153]

B.R. Hacker. “The role of deformation in the formation of metamorphic gradients: ridge subduction beneath the Oman ophiolite”. In: Tectonics 10.2 (1991), pp. 455–473.

[1154]

B.R. Hackley and T.V. Gerya. “Paradigms, new and old for ultrahigh-pressure tectonism”. In: Tectonophysics 603 (2013), pp. 79–88.

[1155]

W. Hafner. “Stress distributions and faulting”. In: Bulletin of the Geological Society of America 62 (1951), pp. 373–398.

[1156]

B.H. Hager and R.J. O’Connell. “A simple global model of plate dynamics and mantle convection”. In: J. Geophys. Res.: Solid Earth 86.B6 (1981), pp. 4843–4867. doi: 10. 1029/JB086iB06p04843.

[1157]

B.H. Hager and R.J. O’Connell. “Subduction zone dip angles and flow driven by plate motion”. In: Tectonophysics 50 (1978), pp. 111–133. doi: 10.1016/0040-1951(78)90130- 0.

[1158]

B.H. Hager, R.J. O’Connell, and A. Raefsky. “Subduction, back-arc spreading and global mantle flow”. In: Tectonophysics 99 (1983), pp. 165–189. doi: 10.1016/0040-1951(83) 90101-4.

[1159]

Bradford H Hager. “Subducted slabs and the geoid: Constraints on mantle rheology and flow”. In: J. Geophys. Res.: Solid Earth 89.B7 (1984), pp. 6003–6015. doi: 10.1029/ JB089iB07p06003.

[1160]

Bradford H Hager, Robert W Clayton, Mark A Richards, Robert P Comer, and Adam M Dziewonski. “Lower mantle heterogeneity, dynamic topography and the geoid”. In: Nature 313.6003 (1985), p. 541. doi: 10.1038/313541a0.

[1161]

A.J. Hale, K.-D. Gottschaldt, G. Rosenbaum, L. Bourgouin, M. Bauchy, and Hans Mühlhaus. “Dynamics of slab tear faults: Insights from numerical modelling”. In: Tectonophysics 483 (2010), pp. 58–70. doi: 10.1016/j.tecto.2009.05.019.

[1162]

C.E. Hall, M. Gurnis, M. Sdrolias, L.L. Lavier, and R.D. Mueller. “Catastrophic initiation of subduction following forced convergence across fracture zones”. In: Earth Planet. Sci. Lett. 212 (2003), pp. 15–30. doi: 10.1016/S0012-821X(03)00242-5.

[1163]

Chad E Hall and Michael Gurnis. “Strength of fracture zones from their bathymetric and gravitational evolution”. In: J. Geophys. Res.: Solid Earth 110.B1 (2005).

[1164]

Chad E Hall and EM Parmentier. “Influence of grain size evolution on convective instability”. In: Geochem. Geophys. Geosyst. 4.3 (2003). doi: 10.1029/2002GC000308.

[1165]

Paul S Hall and Chris Kincaid. “Diapiric flow at subduction zones: A recipe for rapid transport”. In: Science 292.5526 (2001), pp. 2472–2475. doi: 10.1126/science.1060488.

[1166]

Robert Hall. “The subduction initiation stage of the Wilson cycle”. In: Geological Society, London, Special Publications 470.1 (2019), pp. 415–437. doi: 10.1144/SP470.3.

[1167]

I. Hamdani, E. Aharonov, J.-A. Olive, S. Parez, and Z. Gvirtzman. “Initiating Salt Tectonics by Tilting: Viscous Coupling Between a Tilted Salt Layer and Overlying Brittle Sediment”. In: J. Geophys. Res.: Solid Earth 126 (2021), e2020JB021503. doi: 10 . 1029 / 2020JB021503.

[1168]

James Hamilton-Wright, Stephen Dee, Christina von Nicolai, and Howard Johnson. “Investigating controls on salt movement in extensional settings using finite-element modelling”. In: Petroleum Geoscience 25.3 (2019), pp. 258–271. doi: 10 . 1144 / petgeo2018-119.

[1169]

Andrea Hampel and Ralf Hetzel. “Horizontal surface velocity and strain patterns near thrust and normal faults during the earthquake cycle: The importance of viscoelastic relaxation in the lower crust and implications for interpreting geodetic data”. In: Tectonics 34.4 (2015), pp. 731–752. doi: 10.1002/2014TC003605.

[1170]

Andrea Hampel, Jens Lüke, Thomas Krause, and Ralf Hetzel. “Finite-element modelling of glacial isostatic adjustment (GIA): Use of elastic foundations at material boundaries versus the geometrically non-linear formulation”. In: Computers and Geosciences 122 (2019), pp. 1–14. doi: 10.1016/j.cageo.2018.08.002.

[1171]

Andrea Hampel and Adrian Pfiffner. “Relative importance of trenchward upper plate motion and friction along the plate interface for the topographic evolution of subduction-related mountain belts”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 105–115. doi: 10.1144/GSL.SP.2006.253.01.05.

[1172]

L. Han and M. Gurnis. “How valid are dynamic models of subduction and convection when plate motions are prescribed?” In: Phys. Earth. Planet. Inter. 110.3-4 (1999), pp. 235–246. doi: 10.1016/S0031-9201(98)00156-3.

[1173]

L. Han and A. P. Showman. “Coupled convection and tidal dissipation in Europa’s ice shell”. In: Icarus 207.2 (2010), pp. 834–844. doi: 10.1016/j.icarus.2009.12.028.

[1174]

L. Han and A. P. Showman. “Coupled convection and tidal dissipation in Europa’s ice shell using non-Newtonian grain-size-sensitive (GSS) creep rheology”. In: Icarus 212.1 (2011), pp. 262–267. doi: 10.1016/j.icarus.2010.11.034.

[1175]

J. Handin. “On the Coulomb-Mohr failure criterion”. In: J. Geophys. Res.: Solid Earth 74.22 (1969), p. 5343.

[1176]

D.L. Hansen and S.B. Nielsen. “Does thermal weakening explain basin inversion? Stochastic modelling of the thermal structure beneath sedimentary basins”. In: Earth Planet. Sci. Lett. 198 (2002), pp. 113–127.

[1177]

D.L. Hansen and S.B. Nielsen. “Why rifts invert in compression”. In: Tectonophysics 373 (2003), pp. 5–24.

[1178]

D.L. Hansen, S.B. Nielsen, and H. Lykke-Andersen. “The post-Triassic evolution of the Sorgenfrei-Tornquist Zone - results from thermo-mechanical modelling”. In: Tectonophysics 328 (2000), pp. 245–267.

[1179]

Lars N Hansen, Manuele Faccenda, and Jessica M Warren. “A review of mechanisms generating seismic anisotropy in the upper mantle”. In: Phys. Earth. Planet. Inter. (2021), p. 106662. doi: 10.1016/j.pepi.2021.106662.

[1180]

Lars N Hansen, Mark E Zimmerman, Amanda M Dillman, and David L Kohlstedt. “Strain localization in olivine aggregates at high temperature: A laboratory comparison of constant-strain-rate and constant-stress boundary conditions”. In: Earth Planet. Sci. Lett. 333 (2012), pp. 134–145. doi: 10.1016/j.epsl.2012.04.016.

[1181]

Lars N Hansen et al. “Low-temperature plasticity in olivine: Grain size, strain hardening, and the strength of the lithosphere”. In: J. Geophys. Res.: Solid Earth (2019). doi: 10. 1029/2018JB016736.

[1182]

LN Hansen, ME Zimmerman, and David L Kohlstedt. “Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred orientation”. In: J. Geophys. Res.: Solid Earth 116.B8 (2011). doi: 10.1029/2011JB008220.

[1183]

Samantha E Hansen, Edward J Garnero, Mingming Li, Sang-Heon Shim, and Sebastian Rost. “Globally distributed subducted materials along the Earth’s core-mantle boundary: Implications for ultralow velocity zones”. In: Science Advances 9.14 (2023), eadd4838. doi: 10.1126/sciadv.add4838.

[1184]

U Hansen and A Ebel. “Experiments with a numerical model related to mantle convection: boundary layer behaviour of small-and large scale flows”. In: Phys. Earth. Planet. Inter. 36.3-4 (1984), pp. 374–390. doi: 10.1016/0031-9201(84)90058-X.

[1185]

U Hansen and DA Yuen. “Extended-Boussinesq thermal–chemical convection with moving heat sources and variable viscosity”. In: Earth Planet. Sci. Lett. 176.3-4 (2000), pp. 401–411. doi: 10.1016/S0012-821X(00)00009-1.

[1186]

U. Hansen and A. Ebel. “Numerical and dynamical stability of convection cells in the Rayleigh number range 103-8 105”. In: Annales Geophysicae 2.3 (1984), pp. 291–302. doi: xxxx.

[1187]

U. Hansen and D.A. Yuen. “Effects of depth-dependent thermal expansivity on the interaction of thermal-chemical plumes with a compositional boundary”. In: Phys. Earth. Planet. Inter. 86.1-3 (1994), pp. 205–221. doi: 10.1016/0031-9201(94)05069-4.

[1188]

U. Hansen and D.A. Yuen. “Evolutionary structures in double-diffusive convection in magma chambers”. In: Geophys. Res. Lett. 14.11 (1987), pp. 1099–1102. doi: 10.1029/ GL014i011p01099.

[1189]

U. Hansen and D.A. Yuen. “High Rayleigh number regime of temperature-dependent viscosity convection and the Earth’s early thermal history”. In: Geophys. Res. Lett. 20.20 (1993), pp. 2191–2194. doi: 10.1029/93GL02416.

[1190]

U. Hansen and D.A. Yuen. “Nonlinear physics of double-diffusive convection in geological systems”. In: Earth Science Reviews 29.1-4 (1990), pp. 385–399. doi: 10.1016/0012- 8252(90)90050-6.

[1191]

U. Hansen, D.A. Yuen, and S.E. Kroening. “Mass and Heat Transport in Strongly Time-Dependent Thermal Convection at Infinite Prandtl Number”. In: Geophysical & Astrophysical Fluid Dynamics 63.1-4 (1992), pp. 67–89. doi: 10 . 1080 / 03091929208228278.

[1192]

U. Hansen, D.A. Yuen, and A.V. Malevsky. “Comparison of steady-state and strongly chaotic thermal convection at high Rayleigh number”. In: Physical Review A 46.8 (1992), pp. 4742–4754. doi: 10.1103/PhysRevA.46.4742.

[1193]

Ulrich Hansen and Adolf Ebel. “Time-dependent thermal convection-a possible explanation for a multiscale flow in the Earth’s mantle”. In: Geophy. J. Int. 94.2 (1988), pp. 181–191. doi: 10.1111/j.1365-246X.1988.tb05895.x.

[1194]

Ulrich Hansen and Adolf Ebel. “Time-dependent thermal convection-a possible explanation for a multiscale flow in the Earth’s mantle”. In: Geophy. J. Int. 94.2 (1988), pp. 181–191. doi: 10.1111/j.1365-246X.1988.tb05895.x.

[1195]

Ulrich Hansen and David A Yuen. “Dynamical influences from thermal-chemical instabilities at the core-mantle boundary”. In: Geophys. Res. Lett. 16.7 (1989), pp. 629–632. doi: 10.1029/GL016i007p00629.

[1196]

Ulrich Hansen and David A Yuen. “Numerical simulations of thermal-chemical instabilities at the core–mantle boundary”. In: Nature 334.6179 (1988), p. 237. doi: 10.1038/334237a0.

[1197]

Ulrich Hansen and David A Yuen. “Potential role played by viscous heating in thermal-chemical convection in the outer core”. In: Geochimica et cosmochimica acta 60.7 (1996), pp. 1113–1123. doi: 10.1016/0016-7037(96)00025-7.

[1198]

Ulrich Hansen, David A Yuen, SE Kroening, and TB Larsen. “Dynamical consequences of depth-dependent thermal expansivity and viscosity on mantle circulations and thermal structure”. In: Phys. Earth. Planet. Inter. 77.3-4 (1993), pp. 205–223. doi: 10.1016/0031- 9201(93)90099-U.

[1199]

Ulrich Hansen, David A Yuen, and Sherri E Kroening. “Effects of depth-dependent thermal expansivity on mantle circulations and lateral thermal anomalies”. In: Geophys. Res. Lett. 18.7 (1991), pp. 1261–1264. doi: 10.1029/91GL01288.

[1200]

L. Hanyk, J. Moser, D.A. Yuen, and C. Matyska. “Time-domain approach for the transient responses in stratified viscoelastic Earth models”. In: Geophys. Res. Lett. 22.10 (1995), pp. 1285–1288. doi: 10.1029/95GL01087.

[1201]

H. Harder and U. Hansen. “A finite-volume solution method for thermal convection and dynamo problems in spherical shells”. In: Geophy. J. Int. 161.2 (2005), pp. 522–532. doi: 10.1111/j.1365-246X.2005.02560.x.

[1202]

N. Harmon and D.K. Blackman. “Effects of plate boundary geometry and kinematics on mantle melting beneath the back-arc spreading centers along the Lau Basin”. In: Earth Planet. Sci. Lett. 298.3-4 (2010), pp. 334–346. doi: 10.1016/j.epsl.2010.08.004.

[1203]

JF Harper. “Mantle flow due to internal vertical forces”. In: Phys. Earth. Planet. Inter. 36.3-4 (1984), pp. 285–290.

[1204]

John Frederic Harper. “On the driving forces of plate tectonics”. In: Geophy. J. Int. 40.3 (1975), pp. 465–474.

[1205]

T Mark Harrison. Hadean Earth. Springer, 2020. isbn: 978-3-030-46686-2.

[1206]

E.H. Hartz and Y.Y. Podlachikov. “Toasting the jelly sandwich: The effect of shear heating on lithospheric geotherms and strength ”. In: Geology 36.4 (2008), pp. 331–334.

[1207]

R. Hassan, N. Flament, M. Gurnis, D.J. Bower, and D. Múller. “Provenance of plumes in global convection models”. In: Geochem. Geophys. Geosyst. 16 (2015), pp. 1465–1489. doi: 10.1002/2015GC005751.

[1208]

R. Hassani and J. Chéry. “Anelasticity explains topography associated with Basin and Range normal faulting”. In: Geology 24.12 (1996), pp. 1095–1098. doi: 10.1130/0091- 7613(1996)024<1095:AETAWB>2.3.CO;2.

[1209]

R. Hassani, D. Jongmans, and Jean Chéry. “Study of plate deformation and stress in subduction processes using two-dimensional numerical models”. In: J. Geophys. Res.: Solid Earth 102.B8 (1997), pp. 17, 951–17, 96. doi: 10.1029/97JB01354.

[1210]

Denis Hatzfeld and Peter Molnar. “Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications”. In: Reviews of Geophysics 48.2 (2010).

[1211]

G. Hauke, A. Landaberea, I. Garmendia, and J. Canales. “A segregated method for compressible flow computation. Part I: isothermal compressible flows”. In: Int. J. Num. Meth. Fluids 47 (2005), pp. 271–323.

[1212]

G. Hauke, A. Landaberea, I. Garmendia, and J. Canales. “A segregated method for compressible flow computation. Part II: General divariant compressible flows”. In: Int. J. Num. Meth. Fluids 49 (2005), pp. 183–209.

[1213]

G.P. Hayes, D.J. Wald, and R.L. Johnson. “Slab1.0: A three-dimensional model of global subduction zone geometries”. In: J. Geophys. Res.: Solid Earth 117.B01302 (2012).

[1214]

G.P. Hayes et al. “Slab2, a comprehensive subduction zone geometry model”. In: Science 362.6410 (2018), pp. 58–61. doi: 10.1126/science.aat4723.

[1215]

Lijuan He. “Influence of lithosphere-asthenosphere interaction on the overriding lithosphere in a subduction zone: Numerical modeling”. In: Geochem. Geophys. Geosyst. 13.2 (2012). doi: 10.1029/2011GC003909.

[1216]

L. B. Hebert, P. Antoshechkina, P. Asimow, and M. Gurnis. “Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics”. In: Earth Planet. Sci. Lett. 278.3-4 (2009), pp. 243–256. doi: 10.1016/j.epsl.2008.12.013.

[1217]

B. Heck and K. Seitz. “A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling”. In: J. Geodesy 81 (2007), pp. 121–136. doi: 10.1007/s00190-006-0094-0.

[1218]

Esther L Heckenbach, Sascha Brune, Anne C Glerum, and Judith Bott. “Is there a Speed Limit for the Thermal Steady-State Assumption in Continental Rifts?” In: Geochem. Geophys. Geosyst. 22.3 (2021), e2020GC009577. doi: 10.1029/2020GC009577.

[1219]

Esther L Heckenbach et al. 3D interaction of tectonics with surface processes explains fault network evolution of the Dead Sea Fault. Tech. rep. 2024, pp. 33–51. doi: 10.55575/ tektonika2024.2.2.75.

[1220]

Navid Hedjazian, Fanny Garel, D Rhodri Davies, and Edouard Kaminski. “Age-independent seismic anisotropy under oceanic plates explained by strain history in the asthenosphere”. In: Earth Planet. Sci. Lett. 460 (2017), pp. 135–142. doi: 10.1016/j.epsl.2016.12.004.

[1221]

Mahdi Heidari, Maria A Nikolinakou, Peter B Flemings, and Michael R Hudec. “A simplified stress analysis of rising salt domes”. In: Basin Research 29.3 (2017), pp. 363–376. doi: 10.1111/bre.12181.

[1222]

D. Kurfea
¯    nd O. Heidbach. “CASQUS: a new simulation tool for coupled 3D finite element modeling of tectonic and surface processes based on ABAQUS and CASCADE”. In: Computers and Geosciences 35 (2009), pp. 1959–1967. doi: 10.1016/j.cageo.2008. 10.019.

[1223]

Oliver Heidbach et al. “Plate boundary forces are not enough: Second-and third-order stress patterns highlighted in the World Stress Map database”. In: Tectonics 26.6 (2007). doi: 10.1029/2007TC002133.

[1224]

Erin Heilman and Thorsten W Becker. “Plume-Slab Interactions Can Shut Off Subduction”. In: Geophys. Res. Lett. 49.13 (2022), e2022GL099286. doi: 10.1029/2022GL099286.

[1225]

C. Heine and S. Brune. “Oblique rifting of the Equatorial Atlantic: Why there is no Saharan Atlantic Ocean”. In: Geology 42.3 (2014), pp. 211–214.

[1226]

Christian Helanow and Josefin Ahlkrona. “Stabilized equal low-order finite elements in ice sheet modeling–accuracy and robustness”. In: Computational Geosciences 22.4 (2018), pp. 951–974. doi: 10.1007/s10596-017-9713-5.

[1227]

George R Helffrich, Seth Stein, and Bernard J Wood. “Subduction zone thermal structure and mineralogy and their relationship to seismic wave reflections and conversions at the slab/mantle interface”. In: J. Geophys. Res.: Solid Earth 94.B1 (1989), pp. 753–763. doi: 10.1029/JB094iB01p00753.

[1228]

Matthew W Herman, Kevin P Furlong, and Rob Govers. “The Accumulation of Slip Deficit in Subduction Zones in the Absence of Mechanical Coupling: Implications for the Behavior of Megathrust Earthquakes”. In: J. Geophys. Res.: Solid Earth 123.9 (2018), pp. 8260–8278. doi: 10.1029/2018JB016336.

[1229]

Matthew W Herman and Rob Govers. “Stress evolution during the megathrust earthquake cycle and its role in triggering extensional deformation in subduction zones”. In: Earth Planet. Sci. Lett. 544 (2020), p. 116379. doi: 10.1016/j.epsl.2020.116379.

[1230]

K.J. Bathe, ed. Three-dimensional spherical shell convection at infinite Prandtl number using the ’cubed sphere’ method. Proceedings Second MIT Conference on Compurational Fluid and Solid Mechanics June 17-20, 2003. 2003, pp. 931–933. doi: xxxx.

[1231]

John W Hernlund, David J Stevenson, and Paul J Tackley. “Buoyant melting instabilities beneath extending lithosphere: 2. Linear analysis”. In: J. Geophys. Res.: Solid Earth 113.B4 (2008). doi: 10.1029/2006JB004863.

[1232]

John W Hernlund and Paul J Tackley. “Some dynamical consequences of partial melting in Earth’s deep mantle”. In: Phys. Earth. Planet. Inter. 162.1-2 (2007), pp. 149–163. doi: 10.1016/j.pepi.2007.04.005.

[1233]

John W Hernlund, Paul J Tackley, and David J Stevenson. “Buoyant melting instabilities beneath extending lithosphere: 1. Numerical models”. In: J. Geophys. Res.: Solid Earth 113.B4 (2008). doi: 10.1029/2006JB004862.

[1234]

John W Hernlund, Christine Thomas, and Paul J Tackley. “A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle”. In: Nature 434.7035 (2005), p. 882. doi: 10.1038/nature03472.

[1235]

John William Hernlund and Irene Bonati. “Modeling Ultralow Velocity Zones as a Thin Chemically Distinct Dense Layer at the Core-Mantle Boundary”. In: J. Geophys. Res.: Solid Earth (2019). doi: 10.1029/2018JB017218.

[1236]

Philip J Heron and Julian P Lowman. “The effects of supercontinent size and thermal insulation on the formation of mantle plumes”. In: Tectonophysics 510.1-2 (2011), pp. 28–38. doi: 10.1016/j.tecto.2011.07.002.

[1237]

Philip J Heron and Julian P Lowman. “The impact of Rayleigh number on assessing the significance of supercontinent insulation”. In: J. Geophys. Res.: Solid Earth 119.1 (2014), pp. 711–733.

[1238]

Philip J Heron, Julian P Lowman, and Claudia Stein. “Influences on the positioning of mantle plumes following supercontinent formation”. In: J. Geophys. Res.: Solid Earth 120.5 (2015), pp. 3628–3648. doi: 10.1002/2014JB011727.

[1239]

Philip J Heron, J Brendan Murphy, R Damian Nance, and RN Pysklywec. “Pannotia’s mantle signature: the quest for supercontinent identification”. In: Geological Society, London, Special Publications 503.1 (2020), pp. 41–61. doi: 10.1144/SP503-2020-7.

[1240]

Philip J Heron, Russell N Pysklywec, and Randell Stephenson. “Exploring the theory of plate tectonics: the role of mantle lithosphere structure”. In: Geological Society, London, Special Publications 470.1 (2019), pp. 137–155. doi: 10.1144/SP470.7.

[1241]

Philip J Heron, Russell N Pysklywec, and Randell Stephenson. “Identifying mantle lithosphere inheritance in controlling intraplate orogenesis”. In: J. Geophys. Res.: Solid Earth 121.9 (2016), pp. 6966–6987. doi: 10.1002/2016JB013460.

[1242]

Philip J Heron, Russell N Pysklywec, and Randell Stephenson. “Lasting mantle scars lead to perennial plate tectonics”. In: Nature Communications 7.1 (2016), pp. 1–7. doi: 10. 1038/ncomms11834.

[1243]

Philip J Heron et al. “Segmentation of rifts through structural inheritance: Creation of the Davis Strait”. In: Tectonics 38.7 (2019), pp. 2411–2430. doi: 10.1029/2019TC005578.

[1244]

Philip J Heron et al. “The role of subduction in the formation of Pangean oceanic large igneous provinces”. In: Geological Society, London, Special Publications 542.1 (2024), SP542–2023. doi: 10.1144/SP542-2023-12.

[1245]

PJ Heron and JP Lowman. “Thermal response of the mantle following the formation of a “super-plate””. In: Geophys. Res. Lett. 37.22 (2010). doi: 10.1029/2010GL045136.

[1246]

Robert Herrendörfer, Ylona van Dinther, Taras Gerya, and Luis Angel Dalguer. “Earthquake supercycle in subduction zones controlled by the width of the seismogenic zone”. In: Nature Geoscience 8.6 (2015), p. 471. doi: 10.1038/NGEO2427.

[1247]

Robert Herrendörfer, Taras Gerya, and Ylona van Dinther. “An Invariant Rate-and State-Dependent Friction Formulation for Viscoeastoplastic Earthquake Cycle Simulations”. In: J. Geophys. Res.: Solid Earth 123.6 (2018), pp. 5018–5051. doi: 10 . 1029 / 2017JB015225.

[1248]

H.J. Herrmann, A.N.B. Poliakov, and F. Tzschichholz. “Examples of fractals in rock mechanics”. In: Size-Scale Effects in the Failure Mechanisms of Materials and Structures (1996). Ed. by A. Carpinteri, p. 58.

[1249]

Solenn Hertgen, Philippe Yamato, Benjamin Guillaume, Valentina Magni, Nicholas Schliffke, and Jeroen van Hunen. “Influence of the thickness of the overriding plate on convergence zone dynamics”. In: Geochem. Geophys. Geosyst. 21.2 (2020), e2019GC008678. doi: 10. 1029/2019GC008678.

[1250]

Marco Herwegh, T Poulet, Ali Karrech, and Klaus Regenauer-Lieb. “From transient to steady state deformation and grain size: A thermodynamic approach using elasto-visco-plastic numerical modeling”. In: J. Geophys. Res.: Solid Earth 119.2 (2014), pp. 900–918. doi: 10.1002/2013JB010701.

[1251]

György Hetényi et al. “Density distribution of the India plate beneath the Tibetan plateau: Geophysical and petrological constraints on the kinetics of lower-crustal eclogitization”. In: Earth Planet. Sci. Lett. 264.1-2 (2007), pp. 226–244. doi: 10.1016/j.epsl.2007.09.036.

[1252]

Ralf Hetzel and Andrea Hampel. “Slip rate variations on normal faults during glacial–interglacial changes in surface loads”. In: Nature 435.7038 (2005), pp. 81–84. doi: 10.1038/nature03562.

[1253]

J.M. Hewitt, D.P. McKenzie, and N.O. Weiss. “Dissipative heating in convective flows”. In: J. Fluid Mech. 68.4 (1975), pp. 721–738. doi: 10.1017/S002211207500119X.

[1254]

B.H. Heyn, C.P. Conrad, and R.G. Tronnes. “Stabilizing Effect of Compositional Viscosity Contrasts on Thermochemical Piles”. In: Geophys. Res. Lett. 45 (2018), pp. 7523–7532. doi: 10.1029/2018GL078799.

[1255]

Björn H Heyn and Clinton P Conrad. “On the relation between basal erosion of the lithosphere and surface heat flux for continental plume tracks”. In: Geophys. Res. Lett. 49.7 (2022), e2022GL098003. doi: 10.1029/2022GL098003.

[1256]

Björn H Heyn, Clinton P Conrad, and Reidar G Trønnes. “Core-mantle boundary topography and its relation to the viscosity structure of the lowermost mantle”. In: Earth Planet. Sci. Lett. 543 (2020), p. 116358. doi: 10.1016/j.epsl.2020.116358.

[1257]

Björn H Heyn, Clinton P Conrad, and Reidar G Trønnes. “How thermochemical piles can (periodically) generate plumes at their edges”. In: J. Geophys. Res.: Solid Earth 125.6 (2020), e2019JB018726. doi: 10.1029/2019JB018726.

[1258]

Björn H Heyn, Grace E Shephard, and Clinton P Conrad. “Prolonged multi-phase magmatism due to plume-lithosphere interaction as applied to the High Arctic Large Igneous Province”. In: Geochem. Geophys. Geosyst. 25.6 (2024), e2023GC011380. doi: 10.1029/ 2023GC011380.

[1259]

C.A. Hier Majumder, D.A. Yuen, E.O. Sevre, J.M. Boggs, and S.Y. Bergeron. “Finite Prandtl number 2-D convection at high Rayleigh numbers”. In: Electronic Geosciences 7 (2002). doi: 10.1007/S10069-002-0004-4.

[1260]

Christoph F Hieronymus. “Control on seafloor spreading geometries by stress-and strain-induced lithospheric weakening”. In: Earth Planet. Sci. Lett. 222.1 (2004), pp. 177–189.

[1261]

N. Hilairet et al. “High-Pressure creep of Serpentine, interseismic deformation, and initiation of subduction”. In: Science 318 (2007), pp. 1910–1913.

[1262]

RI Hill, IH Campbell, GF Davies, and RW Griffiths. “Mantle plumes and continental tectonics”. In: Science 256.5054 (1992), pp. 186–193. doi: 10.1126/science.256.5054. 186.

[1263]

Rob D van der Hilst and Hrafnkell Kárason. “Compositional heterogeneity in the bottom 1000 kilometers of Earth’s mantle: Toward a hybrid convection model”. In: Science 283.5409 (1999), pp. 1885–1888. doi: 10.1126/science.283.5409.188.

[1264]

J.M. Hines and M.I. Billen. “Sensitivity of the short- to intermediate-wavelength geoid to rheologic structure in subduction zones”. In: J. Geophys. Res.: Solid Earth 117.B05410 (2012). doi: 10.1029/2011JB008978.

[1265]

D. J. J. van Hinsbergen, B. Steinberger, P. V. Doubrovine, and R. Gassmöller. “Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision”. In: J. Geophys. Res.: Solid Earth 116.B6 (2011). doi: 10.1029/2010JB008051.

[1266]

Douwe JJ van Hinsbergen et al. “A record of plume-induced plate rotation triggering seafloor spreading and subduction initiation”. In: (2021). doi: 10.1038/s41561-021-00780-7.

[1267]

Douwe JJ van Hinsbergen et al. “Dynamics of intraoceanic subduction initiation: 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions”. In: Geochem. Geophys. Geosyst. 16.6 (2015), pp. 1771–1785. doi: 10.1002/2015GC005745.

[1268]

Kei Hirose, John Brodholt, Thorne Lay, David A Yuen, et al. “An Introduction to Post-Perovskite: The Last Mantle Phase Transition”. In: GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION 174 (2007), p. 1.

[1269]

Kei Hirose, Ryosuke Sinmyo, and John Hernlund. “Perovskite in Earth’s deep interior”. In: Science 358.6364 (2017), pp. 734–738. doi: 10.1126/science.aam8561.

[1270]

Christian Hirt, SJ Claessens, Michael Kuhn, and WE Featherstone. “Kilometer-resolution gravity field of Mars: MGM2011”. In: Planetary and Space Science 67.1 (2012), pp. 147–154. doi: 10.1016/j.pss.2012.02.006.

[1271]

G. Hirth and D. L. Kohlstedt. “Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere”. In: Earth Planet. Sci. Lett. 144 (1996), pp. 93–108. doi: 10.1016/0012-821X(96)00154-9.

[1272]

G. Hirth and D.L. Kohlstedt. “Rheology of the upper mantle and the mantle wedge: A view from the experimentalists”. In: in Inside the Subduction Factory, ed. J. Eiler, Geophysical Monograph American Geophysical Union, Washington, D.C. 138 (2003), pp. 83–105.

[1273]

Greg Hirth. “Laboratory constraints on the rheology of the upper mantle”. In: Reviews in Mineralogy and Geochemistry 51.1 (2002), pp. 97–120.

[1274]

Greg Hirth, Christian Teyssier, and James W Dunlap. “An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks”. In: International Journal of Earth Sciences 90.1 (2001), pp. 77–87. doi: 10.1007/ s005310000152.

[1275]

NRA Hoffman and DP McKenzie. “The destruction of geochemical heterogeneities by differential fluid motions during mantle convection”. In: Geophy. J. Int. 82.2 (1985), pp. 163–206. doi: 10.1111/j.1365-246X.1985.tb05134.x.

[1276]

Mark Hoggard, Jacqueline Austermann, Cody Randel, and Simon Stephenson. “Observational estimates of dynamic topography through space and time”. In: Mantle convection and surface expressions (2021), pp. 371–411. doi: 10.1002/9781119528609. ch15.

[1277]

Mark James Hoggard, N White, and David Al-Attar. “Global dynamic topography observations reveal limited influence of large-scale mantle flow”. In: Nature Geoscience 9.6 (2016), p. 456. doi: 10.1038/NGEO2709.

[1278]

T. Höink and A. Lenardic. “Three-dimensional mantle convection simulations with a low-viscosity asthenosphere and the relationship between heat flow and the horizontal length scale of convection”. In: Geophys. Res. Lett. 35.L10304 (2008).

[1279]

T. Höink, A. Lenardic, and A.M. Jellinek. “Earth’s thermal evolution with multiple convection modes: A Monte-Carlo approach”. In: Phys. Earth. Planet. Inter. 221 (2013), pp. 22–26.

[1280]

T. Höink, A. Lenardic, and M. Richards. “Depth-dependent viscosity and mantle stress amplification: implications for the role of the asthenosphere in maintaining plate tectonics: Asthenosphere and mantle stress amplification”. In: Geophy. J. Int. 191.1 (2012), pp. 30–41. doi: 10.1111/j.1365-246X.2012.05621.x.

[1281]

T. Höink, J. Schmalzl, and U. Hansen. “Dynamics of metal-silicate separation in a terrestrial magma ocean”. In: Geochem. Geophys. Geosyst. 7.9 (2006). doi: 10.1029/2006GC001268.

[1282]

T. Höink, J. Schmalzl, and U. Hansen. “Formation of compositional structures by sedimentation in vigorous convection”. In: Phys. Earth. Planet. Inter. 153.1-3 (2005), pp. 11–20. doi: 10.1016/j.pepi.2005.03.014.

[1283]

Tobias Höink and Adrian Lenardic. “Long wavelength convection, Poiseuille-Couette flow in the low-viscosity asthenosphere and the strength of plate margins”. In: Geophy. J. Int. 180.1 (2010), pp. 23–33. doi: 10.1111/j.1365-246X.2009.04404.x.

[1284]

John C Holden and Peter Vogt. “Graphic solutions to problems of plumacy”. In: Eos, Transactions American Geophysical Union 58.7 (1977), pp. 573–580. doi: 10.1029/ EO058i007p00573.

[1285]

Andrew Hollyday, Jacqueline Austermann, Andrew Lloyd, Mark Hoggard, Fred Richards, and Alessio Rovere. “A revised estimate of early Pliocene global mean sea level using geodynamic models of the Patagonian slab window”. In: Geochem. Geophys. Geosyst. 24 (2023), e2022GC010648. doi: 10.1029/2022GC010648.

[1286]

A.F. Holt, T.W. Becker, and B.A. Buffett. “Trench migration and overriding plate stress in dynamic subduction models”. In: Geophy. J. Int. 201 (2015), pp. 172–192. doi: 10.1093/ gji/ggv011.

[1287]

Adam F Holt. “The topographic signature of mantle pressure build-up beneath subducting plates: A numerical modeling study”. In: Geophys. Res. Lett. 49 (2022), e2022GL100330. doi: 10.1029/2022GL100330.

[1288]

Adam F Holt and Thorsten W Becker. “The effect of a power-law mantle viscosity on trench retreat rate”. In: Geophy. J. Int. 208 (2017), pp. 491–507. doi: 10.1093/gji/ggw392.

[1289]

Adam F Holt, Bruce A Buffett, and Thorsten W Becker. “Overriding plate thickness control on subducting plate curvature”. In: Geophys. Res. Lett. 42.10 (2015), pp. 3802–3810. doi: 10.1002/2015GL063834.

[1290]

Adam F Holt and Cailey Brown Condit. “Slab temperature evolution over the lifetime of a subduction zone”. In: Geochem. Geophys. Geosyst. (2021), e2020GC009476. doi: 10. 1029/2020GC009476.

[1291]

S Honda. “A possible role of weak zone at plate margin on secular mantle cooling”. In: Geophys. Res. Lett. 24.22 (1997), pp. 2861–2864.

[1292]

S Honda. “Local Rayleigh and Nusselt Numbers for Cartesian convection with temperature-dependent viscosity”. In: Geophys. Res. Lett. 23.18 (1996), pp. 2445–2448.

[1293]

S. Honda. “Strength of slab inferred from the seismic tomography and geologic history around the Japanese Islands”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 1333–1347.

[1294]

S. Honda, S. Balachandar, D.A. Yuen, and D. Reuteler. “Three-dimensional mantle dynamics with an endothermic phase transition”. In: Geophys. Res. Lett. 20.3 (1993), pp. 221–224. doi: 10.1029/92GL02976.

[1295]

S. Honda, D.A. Yuen, S. Balachandar, and D. Reuteler. “Three-dimensional instabilities of mantle convection with multiple phase transitions”. In: Science 259.5099 (1993), pp. 1308–1311. doi: 10.1126/science.259.5099.1308.

[1296]

Satoru Honda. “Thermal structure beneath Tohoku, northeast Japan”. In: Tectonophysics 112.1-4 (1985), pp. 69–102. doi: 10.1016/0040-1951(85)90173-8.

[1297]

Satoru Honda, Taras Gerya, and Guizhi Zhu. “A simple three-dimensional model of thermo–chemical convection in the mantle wedge”. In: Earth Planet. Sci. Lett. 290.3-4 (2010), pp. 311–318. doi: 10.1016/j.epsl.2009.12.027.

[1298]

K. Hosseini, K.J. Matthews, K. Sigloch, G.E. Shephard, M. Domeier, and Maria Tsekhmistrenko. “SubMachine: Web-Based Tools for Exploring Seismic Tomography and Other Models of Earth’s Deep Interior”. In: Geochem. Geophys. Geosyst. 19 (2018), pp. 1464–1483. doi: 10.1029/2018GC007431.

[1299]

G. Houseman and P. England. “A dynamical model of lithosphere extension and sedimentary basin formation”. In: J. Geophys. Res.: Solid Earth 91.B1 (1986), pp. 719–729. doi: 10. 1029/JB091iB01p00719.

[1300]

G.A. Houseman and P. Molnar. “Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere”. In: Geophys. J. Int. 128 (1997), pp. 125–150.

[1301]

GA Houseman. “The thermal structure of mantle plumes: axisymmetric or triple-junction?” In: Geophy. J. Int. 102.1 (1990), pp. 15–24. doi: 10.1111/j.1365-246X.1990.tb00527.x.

[1302]

Greg Houseman. “Large aspect ratio convection cells in the upper mantle”. In: Geophy. J. Int. 75.2 (1983), pp. 309–334.

[1303]

Greg Houseman and Dan P McKenzie. “Numerical experiments on the onset of convective instability in the Earth’s mantle”. In: Geophy. J. Int. 68.1 (1982), pp. 133–164.

[1304]

Greg A Houseman, D Po McKenzie, and Peter Molnar. “Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts”. In: J. Geophys. Res.: Solid Earth 86.B7 (1981), pp. 6115–6132. doi: 10.1029/ JB086iB07p06115.

[1305]

Gregory Houseman and Philip England. “Finite strain calculations of continental deformation: 1. Method and general results for convergent zones”. In: J. Geophys. Res.: Solid Earth 91.B3 (1986), pp. 3651–3663. doi: 10.1029/JB091iB03p03651.

[1306]

Gregory Houseman and Peter Molnar. “Mechanisms of lithospheric rejuvenation associated with continental orogeny”. In: Geological Society, London, Special Publications 184.1 (2001), pp. 13–38.

[1307]

Gregory A Houseman. “The deep structure of ocean ridges in a convecting mantle”. In: Earth Planet. Sci. Lett. 64.2 (1983), pp. 283–294.

[1308]

Gregory A Houseman and David Gubbins. “Deformation of subducted oceanic lithosphere”. In: Geophy. J. Int. 131.3 (1997), pp. 535–551. doi: 10.1111/j.1365-246X.1997. tb06598.x.

[1309]

Gregory A Houseman, Emily A Neil, and Monica D Kohler. “Lithospheric instability beneath the Transverse Ranges of California”. In: J. Geophys. Res.: Solid Earth 105.B7 (2000), pp. 16237–16250. doi: 10.1029/2000JB900118.

[1310]

C Houser, JW Hernlund, J Valencia-Cardona, and RM Wentzcovitch. “Discriminating lower mantle composition”. In: Phys. Earth. Planet. Inter. 308 (2020), p. 106552. doi: 10. 1016/j.pepi.2020.106552.

[1311]

Alan D Howard. “A detachment-limited model of drainage basin evolution”. In: Water resources research 30.7 (1994), pp. 2261–2285. doi: 10.1029/94WR00757.

[1312]

S.M. Howell, J.-A. Olive, G. Ito, M.D. Behn, J. Escartin, and B. Kaus. “Seafloor expression of oceanic detachment faulting reflects gradients in mid-ocean ridge magma supply”. In: Earth Planet. Sci. Lett. 516 (2019), pp. 176–189. doi: 10.1016/j.epsl.2019.04.001.

[1313]

Albert T Hsui. “Numerical simulation of finite-amplitude thermal convection with large viscosity variation in axisymmetric spherical geometry: effect of mechanical boundary conditions”. In: Tectonophysics 50.2-3 (1978), pp. 147–162. doi: 10.1016/0040- 1951(78)90132-4.

[1314]

Albert T Hsui, Tang Xiao-Ming, and M Nafi Toksöz. “On the dip angle of subducting plates”. In: Tectonophysics 179.3-4 (1990), pp. 163–175.

[1315]

AT Hsui, DL Turcotte, and KE Torrance. “Finite-amplitude thermal convection within a self-gravitating fluid sphere”. In: Geophysical Fluid Dynamics 3.1 (1972), pp. 35–44. doi: 10.1080/03091927208236073.

[1316]

Jiashun Hu, Lijun Liu, Armando Hermosillo, and Quan Zhou. “Simulation of late Cenozoic South American flat-slab subduction using geodynamic models with data assimilation”. In: Earth Planet. Sci. Lett. 438 (2016), pp. 1–13. doi: 10.1016/j.epsl.2016.01.011.

[1317]

JiaShun Hu, LiJun Liu, and Quan Zhou. “Reproducing past subduction and mantle flow using high-resolution global convection models”. In: Earth and Planetary Physics 2.3 (2018), pp. 189–207. doi: 10.26464/epp2018019.

[1318]

Chuan Huang et al. “Modeling the Inception of Supercontinent Breakup: Stress State and the Importance of Orogens”. In: Geochem. Geophys. Geosyst. 20.11 (2019), pp. 4830–4848. doi: 10.1029/2019GC008538.

[1319]

J. Huang and G. F. Davies. “Geochemical processing in a three-dimensional regional spherical shell model of mantle convection”. In: Geochem. Geophys. Geosyst. 8.11 (2007). doi: 10.1029/2007GC001625.

[1320]

Jinshui Huang and Geoffrey F Davies. “Stirring in three-dimensional mantle convection models and implications for geochemistry: Passive tracers”. In: Geochem. Geophys. Geosyst. 8.3 (2007). doi: 10.1029/2006GC001312.

[1321]

Min Huang, Yang Li, and Liang Zhao. “Effects of thermal, compositional and rheological properties on the long-term evolution of large thermochemical piles of primordial material in the deep mantle”. In: Science China Earth Sciences 65 (2022), pp. 1–12. doi: 10.1007/ s11430-021-9950-7.

[1322]

Pengpeng Huangfu, Yuejun Wang, Peter A Cawood, Zhong-Hai Li, Weiming Fan, and Taras V Gerya. “Thermo-mechanical controls of flat subduction: Insights from numerical modeling”. In: Gondwana Research 40 (2016), pp. 170–183. doi: 10.1016/j.gr.2016. 08.012.

[1323]

PengPeng Huangfu, YueJun Wang, WeiMing Fan, ZhongHai Li, and YongZhi Zhou. “Dynamics of unstable continental subduction: Insights from numerical modeling”. In: Science China Earth Sciences 60 (2017), pp. 218–234. doi: 10.1007/s11430-016-5014-6.

[1324]

Pengpeng Huangfu, Yuejun Wang, Zhonghai Li, Weiming Fan, and Yan Zhang. “Effects of crustal eclogitization on plate subduction/collision dynamics: Implications for India-Asia collision”. In: Journal of Earth Science 27 (2016), pp. 727–739. doi: 10.1007/s12583- 016-0701-9.

[1325]

Aurélia Hubert-Ferrari, Geoffrey King, Isabelle Manighetti, Rolando Armijo, Bertrand Meyer, and Paul Tapponnier. “Long-term elasticity in the continental lithosphere; modelling the Aden Ridge propagation and the Anatolian extrusion process”. In: Geophy. J. Int. 153.1 (2003), pp. 111–132. doi: 10.1046/j.1365-246X.2003.01872.x.

[1326]

Mireille Huc, Riad Hassani, and Jean Chéry. “Large earthquake nucleation associated with stress exchange between middle and upper crust”. In: Geophys. Res. Lett. 25.4 (1998), pp. 551–554. doi: 10.1029/98GL00091.

[1327]

M.R. Hudec and M.P.A. Jackson. “Terra infirma: Understanding salt tectonics”. In: Earth-Science Reviews 82 (2007), pp. 1–28.

[1328]

Michael R Hudec, Martin PA Jackson, and Daniel D Schultz-Ela. “The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins”. In: Geological Society of America Bulletin 121.1-2 (2009), pp. 201–221. doi: 10.1130/B26275.1.

[1329]

Audrey D Huerta and Dennis L Harry. “The transition from diffuse to focused extension: Modeled evolution of the West Antarctic Rift system”. In: Earth Planet. Sci. Lett. 255.1-2 (2007), pp. 133–147.

[1330]

Thomas JR Hughes and Robert L Taylor. “Unconditionally stable algorithms for quasi-static elasto/visco-plastic finite element analysis”. In: Computers & Structures 8.2 (1978), pp. 169–173. doi: 10.1016/0045-7949(78)90019-6.

[1331]

R. Huismans and C. Beaumont. “Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins”. In: Nature 473 (2011), pp. 74–79. doi: 10.1038/ nature09988.

[1332]

R. S. Huismans and C. Beaumont. “Symmetric and asymmetric lithospheric extension: Relative effects of frictional-plastic and viscous strain softening”. In: J. Geophys. Res.: Solid Earth 108 (B10).2496 (2003). doi: 10.1029/2002JB002026.

[1333]

R.S. Huismans and C. Beaumont. “Complex rifted continental margins explained by dynamical models of depth-dependent lithospheric extension”. In: Geology 30.3 (2002), pp. 211–214. doi: 10.1130/0091-7613(2002)030<0211:ALETRO>2.0.CO;2.

[1334]

R.S. Huismans and C. Beaumont. “Complex rifted continental margins explained by dynamical models of depth-dependent lithospheric extension”. In: Geology 36.2 (2008), pp. 163–166. doi: 10.1130/G24231A.1.

[1335]

R.S. Huismans and C. Beaumont. “Roles of lithospheric strain softening and heterogeneity in determining the geometry of rifts and continental margins”. In: Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup. Vol. 282. Geological Society, London, Special Publications, 2007, pp. 111–138. doi: 10.1144/SP282.6.

[1336]

R.S. Huismans, S.J.H. Buiter, and C. Beaumont. “Effect of plastic-viscous layering and strain softening on mode selection during lithospheric extension”. In: J. Geophys. Res.: Solid Earth 110 (2005), B02406. doi: 10.1029/2004JB003114.

[1337]

Ritske S Huismans and Christopher Beaumont. “Rifted continental margins: The case for depth-dependent extension”. In: Earth Planet. Sci. Lett. 407 (2014), pp. 148–162. doi: 10.1016/j.epsl.2014.09.032.

[1338]

Ritske S Huismans and Giovanni Bertotti. “The Transylvanian basin, transfer zone between coeval extending and contracting regions: Inferences on the relative importance of slab pull and rift push in arc–back arc systems”. In: Tectonics 21.2 (2002), pp. 2–1. doi: 10.1029/ 2001TC900026.

[1339]

Ritske S Huismans, Yuri Y Podladchikov, and Sierd Cloetingh. “Dynamic modeling of the transition from passive to active rifting, application to the Pannonian basin”. In: Tectonics 20.6 (2001), pp. 1021–1039.

[1340]

Ritske S Huismans, Yuri Y Podladchikov, and Sierd Cloetingh. “Transition from passive to active rifting: Relative importance of asthenospheric doming and passive extension of the lithosphere”. In: J. Geophys. Res.: Solid Earth 106.B6 (2001), pp. 11271–11291.

[1341]

RS Huismans, YY Podladchikov, and SAPL Cloetingh. “The Pannonian Basin: dynamic modelling of the transition from passive to active rifting.” In: EGU Stephan Mueller Special Publication Series 3 (2002), pp. 41–63. doi: 10.5194/smsps-3-41-2002.

[1342]

Florian Humair, Arthur Bauville, Jean-Luc Epard, and Stefan M Schmalholz. “Interaction of folding and thrusting during fold-and-thrust-belt evolution: Insights from numerical simulations and application to the Swiss Jura and Canadian Foothills”. In: Tectonophysics (2020), p. 228474. doi: 10.1016/j.tecto.2020.228474.

[1343]

Natalie Hummel, Susanne Buiter, and Zoltán Erdős. “The influence of viscous slab rheology on numerical models of subduction”. In: Solid Earth 15.5 (2024), pp. 567–587. doi: 10. 5194/se-15-567-2024.

[1344]

J. van Hunen, A.P. van den Berg, and N.J. Vlaar. “On the role of subducting oceanic plateaus in the development of shallow flat subduction”. In: Tectonophysics 352.3-4 (2002), pp. 317–333. doi: 10.1016/S0040-1951(02)00263-9.

[1345]

J. van Hunen, A.P. van den Berg, and N.J. Vlaar. “The impact of the South-American plate motion and the Nazca Ridge subduction on the flat subduction below South Peru”. In: Geophys. Res. Lett. 29.14 (2002), pp. 35–1. doi: 10.1029/2001GL014004.

[1346]

J. van Hunen and M.S. Miller. “Collisional processes and links to episodic changes in subduction zones”. In: Elements 11 (2015), pp. 119–124. doi: 10.2113/gselements.11. 2.119.

[1347]

J. van Hunen and S. Zhong. “New insight in the Hawaiian plume swell dynamics from scaling laws”. In: Geophys. Res. Lett. 30.15 (2003). doi: 10.1029/2003GL017646,.

[1348]

Jeroen van Hunen and Arie P van den Berg. “Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere”. In: Lithos 103.1-2 (2008), pp. 217–235. doi: 10.1016/j.lithos.2007.09.016.

[1349]

Jeroen van Hunen, Shijie Zhong, Nikolai M Shapiro, and Michael H Ritzwoller. “New evidence for dislocation creep from 3-D geodynamic modeling of the Pacific upper mantle structure”. In: Earth Planet. Sci. Lett. 238.1-2 (2005), pp. 146–155. doi: 10.1016/j.epsl.2005. 07.006.

[1350]

D. L. Hunt and L. H. Kellogg. “Quantifying mixing and age variations of heterogeneities in models of mantle convection: Role of depth-dependent viscosity”. In: J. Geophys. Res.: Solid Earth 106.B4 (2001), pp. 6747–6759. doi: 10.1029/2000JB900261.

[1351]

L. Husson, J.-P. Brun, P. Yamato, and C. Faccenna. “Episodic slab rollback fosters exhumation of HP-UHP rocks”. In: Geophy. J. Int. 179.3 (2009), pp. 1292–1300. doi: 10.1111/j.1365-246X.2009.04372.x.

[1352]

L. Husson and C. P. Conrad. “On the location of hotspots in the framework of mantle convection”. In: Geophys. Res. Lett. 39.17 (2012). doi: 10.1029/2012GL052866.

[1353]

L. Husson, P. Yamato, and A. Bézos. “Ultraslow, slow, or fast spreading ridges: Arm wrestling between mantle convection and far-field tectonics”. In: Earth Planet. Sci. Lett. 429 (2015), pp. 205–215. doi: 10.1016/j.epsl.2015.07.052.

[1354]

Laurent Husson. “Trench migration and upper plate strain over a convecting mantle”. In: Phys. Earth. Planet. Inter. 212 (2012), pp. 32–43.

[1355]

Laurent Husson et al. “Slow geodynamics and fast morphotectonics in the far East Tethys”. In: Geochem. Geophys. Geosyst. 23.1 (2022), e2021GC010167. doi: 10.1029/ 2021GC010167.

[1356]

Philippe Huybrechts, Tony Payne, et al. “The EISMINT benchmarks for testing ice-sheet models”. In: Annals of Glaciology 23 (1996), pp. 1–12. doi: 10.3189/S0260305500013197.

[1357]

Andrew Hynes. “Buoyancy of the oceanic lithosphere and subduction initiation”. In: International Geology Review 47.9 (2005), pp. 938–951. doi: 10.2747/0020-6814.47. 9.938.

[1358]

G. Iaffaldano and H.-P. Bunge. “Relating rapid plate-motion variations to plate-boundary forces in global coupled models of the mantle/lithosphere system: Effects of topography and friction”. In: Tectonophysics 474.1-2 (2009), pp. 393–404. doi: 10.1016/j.tecto.2008. 10.035.

[1359]

Benoit Ildefonse and Neil S Mancktelow. “Deformation around rigid particles: the influence of slip at the particle/matrix interface”. In: Tectonophysics 221.3-4 (1993), pp. 345–359. doi: 10.1016/0040-1951(93)90166-H.

[1360]

S.J. Ings and C. Beaumont. “Continental margin shale tectonics: Preliminary results from coupled fluid-mechanical models of large-scale delta instability”. In: Journal of the Geological Society 167.3 (2010), pp. 571–582. doi: 10.1144/0016-76492009-052.

[1361]

Steven J Ings and Christopher Beaumont. “Shortening viscous pressure ridges, a solution to the enigma of initiating salt ’withdrawal’ minibasins”. In: Geology 38.4 (2010), pp. 339–342. doi: 10.1130/G30520.1.

[1362]

Paraskevi Io Ioannidi, Kyle Bogatz, and Jacqueline E. Reber. “The Impact of Matrix Rheology on Stress Concentration in Embedded Brittle Clasts”. In: Geochem. Geophys. Geosyst. 23 (2022), e2021GC010127. doi: 10.1029/2021GC010127.

[1363]

Paraskevi Io Ioannidi, Laetitia Le Pourhiet, Philippe Agard, Samuel Angiboust, and Onno Oncken. “Effective rheology of a two-phase subduction shear zone: Insights from numerical simple shear experiments and implications for subduction zone interfaces”. In: Earth Planet. Sci. Lett. 566 (2021), p. 116913. doi: 10.1016/j.epsl.2021.116913.

[1364]

Tobin Isaac, Georg Stadler, and Omar Ghattas. “Solution of nonlinear Stokes equations discretized by high-order finite elements on nonconforming and anisotropic meshes, with application to ice sheet dynamics”. In: SIAM Journal on Scientific Computing 37.6 (2015), B804–B833. doi: 10.1137/140974407.

[1365]

Bryan Isacks, Jack Oliver, and Lynn R Sykes. “Seismology and the new global tectonics”. In: J. Geophys. Res.: Solid Earth 73.18 (1968), pp. 5855–5899. doi: 10 . 1029 / JB073i018p05855.

[1366]

Kazuhiko Ishii and Simon R Wallis. “High-and low-stress subduction zones recognized in the rock record”. In: Earth Planet. Sci. Lett. 531 (2020), p. 115935. doi: 10.1016/j.epsl. 2019.115935.

[1367]

A Ismail-Zadeh, A Korotkii, G Schubert, and I Tsepelev. “Quasi-reversibility method for data assimilation in models of mantle dynamics”. In: Geophy. J. Int. 170.3 (2007), pp. 1381–1398. doi: 10.1111/j.1365-246X.2007.03496.x.

[1368]

A. Ismail-Zadeh, S. Honda, and I. Tsepelev. “Linking mantle upwelling with the lithosphere descent and the Japan Sea evolution: a hypothesis”. In: Scientific Reports 3.1137 (2013). doi: 10.1038/srep01137.

[1369]

A. Ismail-Zadeh, I. Sepelev, C. Talbot, and A. Korotkii. “Three-dimensional forward and backward modelling of diapirism: numerical approach and its applicability to the evolution of salt structures in the Priscaspian basin”. In: Tectonophysics 387 (2004), pp. 81–103. doi: 10.1016/j.tecto.2004.06.006.

[1370]

Alik Ismail-Zadeh, Gerald Schubert, Igor Tsepelev, and Alexander Korotkii. “Three-dimensional forward and backward numerical modeling of mantle plume evolution: Effects of thermal diffusion”. In: J. Geophys. Res.: Solid Earth 111.B6 (2006). doi: 10.1029/2005JB003782.

[1371]

Alik T Ismail-Zadeh, Christopher J Talbot, and Yuri A Volozh. “Dynamic restoration of profiles across diapiric salt structures: numerical approach and its applications”. In: Tectonophysics 337.1-2 (2001), pp. 23–38. doi: 10.1016/S0040-1951(01)00111-1.

[1372]

D. Issler, H. McQueen, and C. Beaumont. “Thermal and isostatic consequences of simple shear extension of the continental lithosphere”. In: Earth Planet. Sci. Lett. 91.3-4 (1989), pp. 341–358. doi: 10.1016/0012-821X(89)90008-3.

[1373]

J. Ita and S.D. King. “Sensitivity of convection with an endothermic phase change to the form of governing equations, initial conditions, boundary conditions, and equation of state”. In: J. Geophys. Res.: Solid Earth 99.B8 (1994), pp. 15, 919–15, 938. doi: 10.1029/94JB00852.

[1374]

J. Ita and S.D. King. “The influence of thermodynamic formulation on simulations of subduction zone geometry and history”. In: Geophys. Res. Lett. 25.9 (1998), pp. 1463–1466. doi: 10.1029/98GL51033.

[1375]

Eiji Ito and Tomoo Katsura. “A temperature profile of the mantle transition zone”. In: Geophys. Res. Lett. 16.5 (1989), pp. 425–428. doi: 10.1029/GL016i005p00425.

[1376]

Pablo Cristián Iturrieta, Daniel E Hurtado, José Cembrano, and Ashley Stanton-Yonge. “States of stress and slip partitioning in a continental scale strike-slip duplex: Tectonic and magmatic implications by means of finite element modeling”. In: Earth Planet. Sci. Lett. 473 (2017), pp. 71–82. doi: 10.1016/j.epsl.2017.05.041.

[1377]

Erik R. Ivins, Thomas S. James, John Wahr, Ernst J. Ernst, Felix W. Landerer, and Karen M. Simon. “Antarctic contribution to sea level rise observed by GRACE with improved GIA correction”. In: J. Geophys. Res.: Solid Earth 118.6 (2013), pp. 3126–3141. doi: 10.1002/jgrb.50208.

[1378]

Y. Iwase. “Three-dimensional infinite Prandtl number convection in a spherical shell with temperature-dependent viscosity”. In: J. Geomag. Geoelectr. 48 (1996), pp. 1499–1514. doi: 10.5636/jgg.48.1499.

[1379]

Yasuyuki Iwase and Satoru Honda. “An interpretation of the Nusselt-Rayleigh number relationship for convection in a spherical shell”. In: Geophy. J. Int. 130.3 (1997), pp. 801–804. doi: 10.1111/j.1365-246X.1997.tb01874.x.

[1380]

Yasuyuki Iwase and Satoru Honda. “Effects of geometry on the convection with core-cooling”. In: Earth, planets and space 50.5 (1998), pp. 387–395. doi: 10.1186/BF03352125.

[1381]

Miki Izumi, Ken-ichi Hirauchi, and Masaki Yoshida. “Mantle-wedge alteration facilitates intra-oceanic subduction initiation along a pre-existing fault zone”. In: Tectonophysics 861 (2023), p. 229908. doi: 10.1016/j.tecto.2023.229908.

[1382]

JA Jackson. “Strength of the continental lithosphere: time to abandon the jelly sandwich?” In: GSA today 12 (2002), pp. 4–10. doi: xxxx.

[1383]

James Jackson, Dan McKenzie, and Keith Priestley. “Relations between earthquake distributions, geological history, tectonics and rheology on the continents”. In: Philosophical Transactions of the Royal Society A 379.2193 (2021), p. 20190412. doi: 10.1098/rsta. 2019.0412.

[1384]

Thomas Jacob, John Wahr, W Tad Pfeffer, and Sean Swenson. “Recent contributions of glaciers and ice caps to sea level rise”. In: Nature 482.7386 (2012), pp. 514–518. doi: 10.1038/nature10847.

[1385]

M.H.G. Jacobs, R. Schmid-Fetzer, and A.P. van den Berg. “An alternative use of Kieffer’s lattice dynamics model using vibrational density of states for constructing thermodynamic databases”. In: Physics and Chemistry of Minerals 40.3 (2013), pp. 207–227. doi: 10. 1007/s00269-012-0562-4.

[1386]

M.H.G. Jacobs, R. Schmid-Fetzer, and A.P. van den Berg. “Phase diagrams, thermodynamic properties and sound velocities derived from a multiple Einstein method using vibrational densities of states: an application to MgO-SiO2”. In: Physics and Chemistry of Minerals 44.1 (2017), pp. 43–62. doi: 10.1007/s00269-016-0835-4.

[1387]

M.H.G. Jacobs, R. Schmid-Fetzer, and A.P. van den Berg. “Thermophysical properties and phase diagrams in the system MgO-SiO2-FeO at upper mantle and transition zone conditions derived from a multiple-Einstein method”. In: Physics and Chemistry of Minerals 46.5 (2019), pp. 513–534. doi: 10.1007/s00269-018-01020-y.

[1388]

M.H.G. Jacobs and A.P. van den Berg. “Complex phase distribution and seismic velocity structure of the transition zone: Convection model predictions for a magnesium-endmember olivine-pyroxene mantle”. In: Phys. Earth. Planet. Inter. 186 (2011), pp. 36–48. doi: 10. 1016/j.pepi.2011.02.008.

[1389]

M.H.G. Jacobs, A.P. van den Berg, and B.H.W.S. de Jong. “The derivation of thermo-physical properties and phase equilibria of silicate materials from lattice vibrations: Application to convection in the Earth’s mantle”. In: Calphad: Computer Coupling of Phase Diagrams and Thermochemistry 30.2 (2006), pp. 131–146. doi: 10.1016/j.calphad. 2005.10.001.

[1390]

Michel HG Jacobs and Bernard HWS de Jong. “Placing constraints on phase equilibria and thermophysical properties in the system MgO–SiO2 by a thermodynamically consistent vibrational method”. In: Geochimica et Cosmochimica Acta 71.14 (2007), pp. 3630–3655. doi: 10.1016/j.gca.2007.05.010.

[1391]

Wolfgang R Jacoby. “One-dimensional modelling of mantle flow”. In: Pure Appl. Geophys. 116 (1978), pp. 1231–1249. doi: 10.1007/BF00874683.

[1392]

Wolfgang R Jacoby and Harro Schmeling. “Convection experiments and the driving mechanism”. In: Geologische Rundschau 70.1 (1981), pp. 207–230. doi: 10.1007/ BF01764323.

[1393]

Wolfgang R Jacoby and Harro Schmeling. “On the effects of the lithosphere on mantle convection and evolution”. In: Phys. Earth. Planet. Inter. 29.3-4 (1982), pp. 305–319. doi: 10.1016/0031-9201(82)90019-X.

[1394]

M. A. Jadamec. “Insights on Slab-driven Mantle Flow from Advances in Three-dimensional modelling”. In: Journal of Geodynamics (2016). issn: 0264-3707. doi: 10.1016/j.jog. 2016.07.004.

[1395]

M.A. Jadamec and M.I. Billen. “The role of rheology and slab shape on rapid mantle flow: Three-dimensional numerical models of the Alaska slab edge”. In: J. Geophys. Res.: Solid Earth 117.B2 (2012). doi: 10.1029/2011JB008563.

[1396]

M.A. Jadamec, M.I. Billen, and S.M. Roeske. “Three-dimensional numerical models of flat slab subduction and the Denali fault driving deformation in south-central Alaska”. In: Earth Planet. Sci. Lett. 376 (2013), pp. 29–42. doi: 10.1016/j.epsl.2013.06.009.

[1397]

MA Jadamec. “Slab-driven Mantle Weakening and Rapid Mantle Flow”. In: Subduction Dynamics: From Mantle Flow to Mega Disasters, Geophys. Monogr. Ser (2016), pp. 135–155. doi: 10.1002/9781118888865.ch7.

[1398]

Margarete A Jadamec and Magali I Billen. “Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge”. In: Nature 465.7296 (2010), p. 338. doi: 10.1038/nature09053.

[1399]

Margarete A Jadamec, Magali I Billen, and Oliver Kreylos. “Three-dimensional simulations of geometrically complex subduction with large viscosity variations”. In: Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond. ACM. 2012, p. 31. doi: 10.1145/2335755. 2335827.

[1400]

Charitra Jain, AB Rozel, and PJ Tackley. “Quantifying the correlation between mobile continents and elevated temperatures in the subcontinental mantle”. In: Geochem. Geophys. Geosyst. 20.3 (2019), pp. 1358–1386.

[1401]

Charitra Jain, Antoine B Rozel, Paul J Tackley, Patrick Sanan, and Taras V Gerya. “Growing primordial continental crust self-consistently in global mantle convection models”. In: Gondwana Research 73 (2019), pp. 96–122. doi: 10.1016/j.gr.2019.03.015.

[1402]

Chhavi Jain, Jun Korenaga, and Shun-ichiro Karato. “On the grain size sensitivity of olivine rheology”. In: J. Geophys. Res.: Solid Earth 123.1 (2018), pp. 674–688. doi: 10.1002/ 2017JB014847.

[1403]

R. A. Jamieson and C. Beaumont. “Coeval thrusting and extension during lower crustal ductile flow - implications for exhumation of high-grade metamorphic rocks”. In: Journal of Metamorphic Geology 29.1 (2011), pp. 33–51. doi: 10.1111/j.1525-1314.2010.00908.x.

[1404]

R.A. Jamieson and C. Beaumont. “Deformation and metamorphism in convergent orogens: A model for uplift and exhumation of metamorphic terrains”. In: Geological Society Special Publication 43 (1989), pp. 117–129. doi: 10.1144/GSL.SP.1989.043.01.07.

[1405]

R.A. Jamieson, C. Beaumont, P. Fullsack, and B. Lee. “Barrovian regional metamorphism: where’s the heat?” In: Geological Society Special Publication 138 (1998), pp. 23–51. doi: 10.1144/GSL.SP.1996.138.01.03.

[1406]

R.A. Jamieson, C. Beaumont, J. Hamilton, and P. Fullsack. “Tectonic assembly of inverted metamorphic sequences”. In: Geology 24.9 (1996), pp. 839–842. doi: 10.1130/0091- 7613(1996)024<0839:TAOIMS>2.3.CO;2.

[1407]

R.A. Jamieson, C. Beaumont, S. Medvedev, and M.H. Nguyen. “Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen”. In: J. Geophys. Res.: Solid Earth 109.6 (2004), B06407. doi: 10.1029/2003JB002811.

[1408]

R.A. Jamieson, C. Beaumont, M.H. Nguyen, and N.G. Culshaw. “Synconvergent ductile flow in variable-strength continental crust: Numerical models with application to the western Grenville orogen”. In: Tectonics 26.5 (2007). doi: 10.1029/2006TC002036.

[1409]

R.A. Jamieson, C. Beaumont, M.H. Nguyen, and D. Grujic. “Provenance of the Greater Himalayan Sequence and associated rocks: Predictions of channel flow models”. In: Geological Society Special Publication 268 (2006), pp. 165–182. doi: 10.1144/GSL.SP.2006.268. 01.07.

[1410]

R.A. Jamieson, C. Beaumont, M.H. Nguyen, and B. Lee. “Interaction of metamorphism, deformation and exhumation in large convergent orogens”. In: Journal of Metamorphic Geology 20.1 (2002), pp. 9–24. doi: 10.1046/j.0263-4929.2001.00357.x.

[1411]

R.A. Jamieson, C. Beaumont, C.J. Warren, and M.H. Nguyen. “The Grenville Orogen explained? Applications and limitations of integrating numerical models with geological and geophysical data”. In: Canadian Journal of Earth Sciences 47.4 (2010), pp. 517–539. doi: 10.1139/E09-070.

[1412]

S. Jammes and R.S. Huismans. “Structural styles of mountain building: Controls of lithospheric rheologic stratification and extensional inheritance”. In: J. Geophys. Res.: Solid Earth 117.B10 (2012). doi: 10.1029/2012JB009376.

[1413]

S. Jammes, R.S. Huismans, and J.A. Muñoz. “Lateral variation in structural style of mountain building: controls of rheological and rift inheritance”. In: Terra Nova 26 (2014), pp. 201–207. doi: 10.1111/ter.12087.

[1414]

S. Jammes and L.L. Lavier. “Effect of contrasting strength from inherited crustal fabrics on the development of rifting margins”. In: Geosphere 15.2 (2019), pp. 407–422. doi: 10.1130/GES01686.1.

[1415]

S. Jammes, G. Manatschal, and L. Lavier. “Interaction between prerift salt and detachment faulting in hyperextended rift systems: The example of the Parentis and Mauléon basins (Bay of Biscay and western Pyrenees)”. In: AAPG Bulletin 94.7 (2010), pp. 957–975. doi: 10.1306/12090909116.

[1416]

Suzon Jammes and Luc L Lavier. “The effect of bimineralic composition on extensional processes at lithospheric scale”. In: Geochem. Geophys. Geosyst. 17.8 (2016), pp. 3375–3392. doi: 10.1002/2016GC006399.

[1417]

Suzon Jammes, Luc L Lavier, and Jacqueline E Reber. “Localization and delocalization of deformation in a bimineralic material”. In: J. Geophys. Res.: Solid Earth 120.5 (2015), pp. 3649–3663. doi: 10.1002/2015JB011890.

[1418]

Daniela Jansen et al. “Small-scale disturbances in the stratigraphy of the NEEM ice core: observations and numerical model simulations”. In: The Cryosphere 10.1 (2016), pp. 359–370. doi: 10.5194/tc-10-359-2016.

[1419]

Y. Jaquet, Th. Duretz, and S.M. Schmalholz. “Dramatic effect of elasticity on thermal softening and strain localization during lithospheric shortening”. In: Geophy. J. Int. 204 (2016), pp. 780–784. doi: 10.1093/gji/ggv464.

[1420]

Richard D Jarrard. “Relations among subduction parameters”. In: Reviews of Geophysics 24.2 (1986), pp. 217–284. doi: 10.1029/RG024i002p00217.

[1421]

G.T. Jarvis. “Effects of curvature on two-dimensional models of mantle convection: cylindrical polar coordinates”. In: J. Geophys. Res.: Solid Earth 98.B3 (1993), pp. 4477–4485. doi: 10.1029/92JB02117.

[1422]

Gary T Jarvis and Ian H Campbell. “Archean komatiites and geotherms: solution to an apparent contradiction”. In: Geophys. Res. Lett. 10.12 (1983), pp. 1133–1136. doi: 10. 1029/GL010i012p01133.

[1423]

Gary T Jarvis and Julian P Lowman. “Sinking slabs below fossil subduction zones”. In: Phys. Earth. Planet. Inter. 152.1-2 (2005), pp. 103–115. doi: 10.1016/j.pepi.2005.05.002.

[1424]

Gary T Jarvis and Julian P Lowman. “Survival times of subducted slab remnants in numerical models of mantle flow”. In: Earth Planet. Sci. Lett. 260.1-2 (2007), pp. 23–36. doi: 10.1016/j.epsl.2007.05.009.

[1425]

Gary T Jarvis and WR Peltier. “Effects of lithospheric rigidity on ocean floor bathymetry and heat flow”. In: Geophys. Res. Lett. 8.8 (1981), pp. 857–860. doi: 10.1029/ GL008i008p00857.

[1426]

Gary T Jarvis and WR Peltier. “Mantle convection as a boundary layer phenomenon”. In: Geophy. J. Int. 68.2 (1982), pp. 389–427. doi: 10.1111/j.1365-246X.1982.tb04907.x.

[1427]

Gary T Jarvis and WR Peltier. “Oceanic bathymetry profiles flattened by radiogenic heating in a convecting mantle”. In: Nature 285.5767 (1980), pp. 649–651. doi: 10.1038/ 285649a0.

[1428]

Gary T. Jarvis and Dan P. McKenzie. “Convection in a compressible fluid with infinite Prandtl number”. In: Journal of Fluid Mechanics 96.3 (1980), pp. 515–583. doi: 10. 1017/S002211208000225X.

[1429]

GT Jarvis. “The long wavelength component of mantle convection”. In: Phys. Earth. Planet. Inter. 40.1 (1985), pp. 24–42. doi: 10.1016/0031-9201(85)90003-2.

[1430]

GT Jarvis. “Time-dependent convection in the Earth’s mantle”. In: Phys. Earth. Planet. Inter. 36.3-4 (1984), pp. 305–327. doi: 10.1016/0031-9201(84)90054-2.

[1431]

GT Jarvis. “Two-dimensional numerical models of mantle convection”. In: Advances in geophysics. Vol. 33. 1991, pp. 1–80. doi: 10.1016/S0065-2687(08)60440-9.

[1432]

GT Jarvis and JX Mitrovica. “On Nusselt numbers and the relative resolution of plumes and boundary layers in mantle convection”. In: Geophy. J. Int. 99.3 (1989), pp. 497–509. doi: 10.1111/j.1365-246X.1989.tb02035.x.

[1433]

GT Jarvis and WR Peltier. “Lateral heterogeneity in the convecting mantle”. In: J. Geophys. Res.: Solid Earth 91.B1 (1986), pp. 435–451. doi: 10.1029/JB091iB01p00435.

[1434]

GT Jarvis and WR Peltier. “Low-wavenumber signatures of time-dependent mantle convection”. In: Phys. Earth. Planet. Inter. 59.3 (1990), pp. 182–194. doi: 10.1016/0031- 9201(90)90224-L.

[1435]

Pejvak Javaheri, Julian P Lowman, and Paul J Tackley. “Spherical geometry convection in a fluid with an Arrhenius thermal viscosity dependence: The impact of core size and surface temperature on the scaling of stagnant-lid thickness and internal temperature”. In: Phys. Earth. Planet. Inter. 349 (2024), p. 107157. doi: 10.1016/j.pepi.2024.107157.

[1436]

L. Jeanniot, N. Kusznir, G. Mohn, G. Manatschal, and L. Cowie. “Constraining lithosphere deformation modes during continental breakup for the Iberia-Newfoundland conjugate rifted margins”. In: Tectonophysics 680 (2016), pp. 28–49. doi: 10.1016/j.tecto.2016.05. 006.

[1437]

Ludovic Jeanniot and Susanne JH Buiter. “A quantitative analysis of transtensional margin width”. In: Earth Planet. Sci. Lett. 491 (2018), pp. 95–108. doi: 10.1016/j.epsl.2018. 03.003.

[1438]

Kopal Jha, EM Parmentier, and Jason Phipps Morgan. “The role of mantle-depletion and melt-retention buoyancy in spreading-center segmentation”. In: Earth Planet. Sci. Lett. 125.1-4 (1994), pp. 221–234. doi: 10.1016/0012-821X(94)90217-8.

[1439]

Ivone Jiménez-Munt, Daniel Garcia-Castellanos, and Manel Fernandez. “Thin-sheet modelling of lithospheric deformation and surface mass transport”. In: Tectonophysics 407.3-4 (2005), pp. 239–255. doi: 10.1016/j.tecto.2005.08.015.

[1440]

Mignon D Johnston, Maureen D Long, and Paul G Silver. “State of stress and age offsets at oceanic fracture zones and implications for the initiation of subduction”. In: Tectonophysics 512.1-4 (2011), pp. 47–59. doi: 10.1016/j.tecto.2011.09.017.

[1441]

Laurent Jolivet et al. “Aegean tectonics: Strain localisation, slab tearing and trench retreat”. In: Tectonophysics 597 (2013), pp. 1–33. doi: 10.1016/j.tecto.2012.06.011.

[1442]

Chris A Jones. “Planetary magnetic fields and fluid dynamos”. In: Annual Review of Fluid Mechanics 43 (2011), pp. 583–614. doi: 10.1146/annurev-fluid-122109-160727.

[1443]

FW Jones, F Pascal, and ME Ertman. “The thermal regime of a three-dimensional subducting lithospheric slab and its electromagnetic response: a numerical model”. In: Tectonophysics 225.1-2 (1993), pp. 35–48. doi: 10.1016/0040-1951(93)90246-G.

[1444]

TD Jones, DR Davies, IH Campbell, CR Wilson, and SC Kramer. “Do mantle plumes preserve the heterogeneous structure of their deep-mantle source?” In: Earth Planet. Sci. Lett. 434 (2016), pp. 10–17. doi: 10.1016/j.epsl.2015.11.016.

[1445]

Timothy D Jones, Ross R Maguire, Peter E van Keken, Jeroen Ritsema, and Paula Koelemeijer. “Subducted oceanic crust as the origin of seismically slow lower-mantle structures”. In: Progress in Earth and Planetary Science 7 (2020), pp. 1–16. doi: 10. 1186/s40645-020-00327-1.

[1446]

Timothy David Jones, Nathan Sime, and PE van Keken. “Burying Earth’s primitive mantle in the slab graveyard”. In: Geochem. Geophys. Geosyst. 22.3 (2021), e2020GC009396. doi: 10.1029/2020GC009396.

[1447]

Ganesh Raj Joshi and Daigoro Hayashi. “Finite element modelling of the pull-apart formation: implication for tectonics of Bengo Co pull-apart basin, southern Tibet”. In: Natural Science 2.06 (2010), p. 654. doi: 10.4236/ns.2010.26082.

[1448]

A. Jourdon, L. Le Pourhiet, Mouthereau F, and E. Masini. “Role of rift maturity on the architecture and shortening distribution in mountain belts”. In: Earth Planet. Sci. Lett. 512 (2019), pp. 89–99. doi: 10.1016/j.epsl.2019.01.057.

[1449]

A. Jourdon, L. Le Pourhiet, C. Petit, and Y. Rolland. “Impact of range-parallel sediment transport on 2D thermo-mechanical models of mountain belts: Application to the Kyrgyz Tien Shan”. In: Terra Nova 30 (2018), pp. 279–288. doi: 10.1111/ter.12337.

[1450]

Anthony Jourdon, Charlie Kergaravat, Guillaume Duclaux, and Caroline Huguen. “Looking beyond kinematics: 3D thermo-mechanical modelling reveals the dynamics of transform margins”. In: Solid Earth 12.5 (2021), pp. 1211–1232. doi: 10.5194/se-12-1211-2021.

[1451]

Anthony Jourdon, Laetitia Le Pourhiet, Frédéric Mouthereau, and Dave May. “Modes of propagation of continental break-up and associated oblique rift structures”. In: J. Geophys. Res.: Solid Earth 125 (2020), e2020JB019906. doi: 10.1029/2020JB019906.

[1452]

M Jull and P áB Kelemen. “On the conditions for lower crustal convective instability”. In: J. Geophys. Res.: Solid Earth 106.B4 (2001), pp. 6423–6446. doi: 10.1029/2000jb900357.

[1453]

M.K. Kaban, M. Tesauro, and S. Cloetingh. “An integrated gravity model for Europe’s crust and upper mantle”. In: Earth Planet. Sci. Lett. 296 (2010), pp. 195–209. doi: 10.1016/ j.epsl.2010.04.041.

[1454]

Mikhail K Kaban, Alexey G Petrunin, Harro Schmeling, and Meysam Shahraki. “Effect of decoupling of lithospheric plates on the observed geoid”. In: Surveys in Geophysics 35.6 (2014), pp. 1361–1373. doi: 10.1007/s10712-014-9281-3.

[1455]

Mikhail K Kaban, Irina Rogozhina, and Valeriy Trubitsyn. “Importance of lateral viscosity variations in the whole mantle for modelling of the dynamic geoid and surface velocities”. In: Journal of Geodynamics 43.2 (2007), pp. 262–273. doi: 10.1016/j.jog.2006.09.020.

[1456]

Mikhail K Kaban and Peter Schwintzer. “Oceanic upper mantle structure from experimental scaling of Vs and density at different depths”. In: Geophy. J. Int. 147.1 (2001), pp. 199–214. doi: 10.1046/j.0956-540x.2001.01520.x.

[1457]

Mikhail K Kaban and Valeriy Trubitsyn. “Density structure of the mantle transition zone and the dynamic geoid”. In: Journal of Geodynamics 59 (2012), pp. 183–192. doi: 10. 1016/j.jog.2012.02.007.

[1458]

L. Kaislaniemi and J. van Hunen. “Dynamics of lithospheric thinning and mantle melting by edge-driven convection: Application to Moroccan Atlas mountains”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 3175–3189. doi: 10.1002/2014GC005414.

[1459]

K Kalousová, O Souček, and O Čadek. “Deformation of an elastic shell with variable thickness: a comparison of different methods”. In: Geophy. J. Int. 190.2 (2012), pp. 726–744. doi: 10.1111/j.1365-246X.2012.05539.x.

[1460]

K Kalousová, O Souček, and O Čadek. “Two-phase convection in icy satellites”. In: Acta Universitatis Carolinae. Mathematica et Physica 53.1 (2012), pp. 61–71.

[1461]

Klára Kalousová, Ondřej Souček, Gabriel Tobie, Gaël Choblet, and Ondřej Čadek. “Ice melting and downward transport of meltwater by two-phase flow in Europa’s ice shell”. In: J. Geophys. Res.: Planets 119.3 (2014), pp. 532–549. doi: 10.1002/2013JE004563.

[1462]

M. Kameyama, D.A. Yuen, and H. Fujimoto. “The interaction of viscous heating with grain-size dependent rheology in the formation of localized slip zones”. In: Geophys. Res. Lett. 24.20 (1997), pp. 2523–2526. doi: 10.1029/97GL02648.

[1463]

M. Kameyama, D.A. Yuen, and S.-I. Karato. “Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone”. In: Earth Planet. Sci. Lett. 168 (1999), pp. 159–172.

[1464]

Masanori Kameyama, Hiromi Fujimoto, and Masaki Ogawa. “A thermo-chemical regime in the upper mantle in the early Earth inferred from a numerical model of magma-migration in a convecting upper mantle”. In: Phys. Earth. Planet. Inter. 94.3-4 (1996), pp. 187–215. doi: 10.1016/0031-9201(95)03102-2.

[1465]

Masanori Kameyama and Akari Harada. “Supercontinent Cycle and Thermochemical Structure in the Mantle: Inference from Two-Dimensional Numerical Simulations of Mantle Convection”. In: Geosciences 7.4 (2017). doi: 10.3390/geosciences7040126.

[1466]

Masanori Kameyama, Takehiro Miyagoshi, and Masaki Ogawa. “Linear analysis on the onset of thermal convection of highly compressible fluids: implications for the mantle convection of super-Earths”. In: Geophy. J. Int. 200.2 (2015), pp. 1066–1077. doi: 10.1093/gji/ ggu457.

[1467]

Edouard Kaminski, Neil M Ribe, and Jules T Browaeys. “D-Rex, a program for calculation of seismic anisotropy due to crystal lattice preferred orientation in the convective upper mantle”. In: Geophy. J. Int. 158.2 (2004), pp. 744–752. doi: 10.1111/j.1365-246X.2004.02308.x.

[1468]

Édouard Kaminski and Neil M Ribe. “Timescales for the evolution of seismic anisotropy in mantle flow”. In: Geochem. Geophys. Geosyst. 3.8 (2002), pp. 1–17. doi: 10.1029/ 2001GC000222.

[1469]

Takeo Kaneko, Tomoeki Nakakuki, and Hikaru Iwamori. “Mechanical coupling of the motion of the surface plate and the lower mantle slab: Effects of viscosity hill, yield strength, and depth-dependent thermal expansivity”. In: Phys. Earth. Planet. Inter. 294 (2019), p. 106274. doi: 10.1016/j.pepi.2019.106274.

[1470]

Kaixuan Kang, Shijie Zhong, Geruo A, and Wei Mao. “The effects of non-Newtonian rheology in the upper mantle on relative sea level change and geodetic observables induced by glacial isostatic adjustment process”. In: Geophy. J. Int. 228.3 (2022), pp. 1887–1906. doi: 10. 1093/gji/ggab428.

[1471]

Duminda GJ Kankanamge and William B Moore. “Heat transport in the Hadean mantle: From heat pipes to plates”. In: Geophys. Res. Lett. 43.7 (2016), pp. 3208–3214. doi: 10.1002/2015GL067411.

[1472]

S. Karato, M.R. Riedel, and D.A. Yuen. “Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes”. In: Phys. Earth. Planet. Inter. 127 (2001), pp. 83–108. doi: 10.1016/ S0031-9201(01)00223-0.

[1473]

S.-I. Karato. “Importance of anelasticity in the interpretation of seismic tomography”. In: Geophys. Res. Lett. 20.15 (1993), pp. 1623–1626.

[1474]

S.-I. Karato and H. Jung. “Effects of pressure on high-temperature dislocation creep in olivine”. In: Philosophical Magazine 83.3 (2003), pp. 401–414. doi: 10.1080/ 0141861021000025829.

[1475]

S.-I. Karato and P. Li. “Diffusion Creep in Perovskite: Implications for the Rheology of the Lower Mantle”. In: Science 255.5049 (1992), p. 1238. doi: 10.1126/science.255.5049. 123.

[1476]

S.-I. Karato and P. Wu. “Rheology of the Upper Mantle: A synthesis”. In: Science 260 (1993), pp. 771–778. doi: 10.1126/science.260.5109.771.

[1477]

Shun-Ichiro Karato. “Grain-size distribution and rheology of the upper mantle”. In: Tectonophysics 104.1-2 (1984), pp. 155–176. doi: 10.1016/0040-1951(84)90108-2.

[1478]

Shun-Ichiro Karato, Mervyn S Paterson, and John D FitzGerald. “Rheology of synthetic olivine aggregates: influence of grain size and water”. In: J. Geophys. Res.: Solid Earth 91.B8 (1986), pp. 8151–8176.

[1479]

GD Karner and AB Watts. “Gravity anomalies and flexure of the lithosphere at mountain ranges”. In: J. Geophys. Res.: Solid Earth 88.B12 (1983), pp. 10449–10477. doi: 10. 1029/JB088iB12p10449.

[1480]

Mikhail Karpychev and Luce Fleitout. “Long-wavelength geoid: The effect of continental roots and lithosphere thickness variations”. In: Geophy. J. Int. 143.3 (2000), pp. 945–963. doi: 10.1046/j.1365-246X.2000.00309.x.

[1481]

Mikhail Karpychev and Luce Fleitout. “Simple considerations on forces driving plate motion and on the plate-tectonic contribution to the long-wavelength geoid”. In: Geophy. J. Int. 127.2 (1996), pp. 268–282. doi: 10.1111/j.1365-246X.1996.tb04719.x.

[1482]

Tomoo Katsura, Akira Yoneda, Daisuke Yamazaki, Takashi Yoshino, and Eiji Ito. “Adiabatic temperature profile in the mantle”. In: Phys. Earth. Planet. Inter. 183.1-2 (2010), pp. 212–218. doi: 10.1016/j.pepi.2010.07.001.

[1483]

Tomoo Katsura et al. “P-V-T relations of MgSiO3 perovskite determined by in situ X-ray diffraction using a large-volume high-pressure apparatus”. In: Geophys. Res. Lett. 36.1 (2009).

[1484]

Richard F Katz, David W Rees Jones, John F Rudge, and Tobias Keller. “Physics of Melt Extraction from the Mantle: Speed and Style”. In: Annual Review of Earth and Planetary Sciences 50 (2022), pp. 507–540. doi: 10.1146/annurev-earth-032320-083704.

[1485]

Richard F Katz and Samuel M Weatherley. “Consequences of mantle heterogeneity for melt extraction at mid-ocean ridges”. In: Earth Planet. Sci. Lett. 335 (2012), pp. 226–237. doi: 10.1016/j.epsl.2012.04.042.

[1486]

Rafael Katzman, Uri S ten Brink, and Jian Lin. “Three-dimensional modeling of pull-apart basins: Implications for the tectonics of the Dead Sea Basin”. In: J. Geophys. Res.: Solid Earth 100.B4 (1995), pp. 6295–6312. doi: 10.1029/94JB03101.

[1487]

William M Kaula. “Minimal upper mantle temperature variations consistent with observed heat flow and plate velocities”. In: J. Geophys. Res.: Solid Earth 88.B12 (1983), pp. 10323–10332. doi: 10.1029/JB088iB12p10323.

[1488]

B.J.P. Kaus and T.W. Becker. “Effects of elasticity on the Rayleigh-Taylor instability: implications for large-scale geodynamics”. In: Geophy. J. Int. 168.843–862 (2007). doi: 10.1111/j.1365-246X.2006.03201.x.

[1489]

B.J.P. Kaus and Y.Y. Podlachikov. “Forward and Reverse Modeling of the Three-Dimensional Viscous Rayleigh-Taylor Instability”. In: Geophys. Res. Lett. 28.6 (2001), pp. 1095–1098.

[1490]

B.J.P. Kaus and Y.Y. Podlachikov. “Initiation of localized shear zones in viscoelastoplastic rocks”. In: J. Geophys. Res.: Solid Earth 111.B04412 (2006). doi: 10.1029/2005JB003652.

[1491]

B.J.P. Kaus, C. Steedman, and T.W. Becker. “From passive continental margin to mountain belt: insights from analytical and numerical models and application to Taiwan”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 235–251. doi: 10.1016/j.pepi.2008.06.015.

[1492]

Boris J. P. Kaus and Stefan M. Schmalholz. “3D finite amplitude folding: Implications for stress evolution during crustal and lithospheric deformation”. In: Geophys. Res. Lett. 33 (2006). doi: 10.1029/2006GL026341.

[1493]

Boris JP Kaus, Yingchun Liu, TW Becker, David A Yuen, and Yaolin Shi. “Lithospheric stress-states predicted from long-term tectonic models: Influence of rheology and possible application to Taiwan”. In: Journal of Asian Earth Sciences 36.1 (2009), pp. 119–134. doi: 10.1016/j.jseaes.2009.04.004.

[1494]

Takaaki Kawazoe, Shun-ichiro Karato, Kazuhiko Otsuka, Zhicheng Jing, and Mainak Mookherjee. “Shear deformation of dry polycrystalline olivine under deep upper mantle conditions using a rotational Drickamer apparatus (RDA)”. In: Phys. Earth. Planet. Inter. 174.1-4 (2009), pp. 128–137. doi: 10.1016/j.pepi.2008.06.027.

[1495]

Robert Woodbury Kay and S Mahlburg Kay. “Delamination and delamination magmatism”. In: Tectonophysics 219.1-3 (1993), pp. 177–189. doi: 10.1016/0040-1951(93)90295-U.

[1496]

Y. Ke and V. S. Solomatov. “Early transient superplumes and the origin of the Martian crustal dichotomy”. In: J. Geophys. Res.: Solid Earth 111.E10 (2006). doi: 10.1029/ 2005JE002631.

[1497]

Y. Ke and V.S. Solomatov. “Plume formation in strongly temperature-dependent viscosity fluids over a very hot surface”. In: Physics of Fluids 16.4 (2004), pp. 1059–1063. doi: 10.1063/1.1648638.

[1498]

JW Keefner, SJ Mackwell, DL Kohlstedt, and F Heidelbach. “Dependence of dislocation creep of dunite on oxygen fugacity: implications for viscosity variations in Earth’s mantle”. In: J. Geophys. Res.: Solid Earth 116.B5 (2011).

[1499]

Henk Keers, Stéphane Rondenay, Yaël Harlap, and Ivar Nordmo. “Resources for Computational Geophysics Courses”. In: Eos, Transactions American Geophysical Union 95.37 (2014), pp. 335–336. doi: xxxx.

[1500]

P. van Keken. “Cylindrical scaling for dynamical cooling models of the Earth”. In: Phys. Earth. Planet. Inter. 124 (2001), pp. 119–130. doi: 10.1016/S0031-9201(01)00195-9.

[1501]

P. van Keken, D.A. Yuen, and A. van den Berg. “Pulsating diapiric flows: Consequences of vertical variations in mantle creep laws”. In: Earth Planet. Sci. Lett. 112 (1992), pp. 179–194. doi: 10.1016/0012-821X(92)90015-N.

[1502]

P.E. van Keken. “Evolution of starting mantle plumes: a comparison between numerical and laboratory models”. In: Earth Planet. Sci. Lett. 148 (1997), pp. 1–11. doi: 10.1016/ S0012-821X(97)00042-3.

[1503]

P.E. van Keken, C.J. Ballentine, and E.H. Hauri. “2.12 - Convective Mixing in the Earth’s Mantle”. In: Treatise on Geochemistry. Ed. by Heinrich D. Holland and Karl K. Turekian. Oxford: Pergamon, 2007, pp. 1–21.

[1504]

P.E. van Keken, E.H. Hauri, and C.J. Ballentine. “Mantle mixing: the generation, preservation and destruction of chemical heterogeneity”. In: Annu. Rev. Earth Sci 30 (2002), pp. 493–525. doi: 10.1146/annurev.earth.30.091201.141236.

[1505]

P.E. van Keken, I. Wada, N. Sime, and G.A. Abers. “Thermal structure of the forearc in subduction zones: a comparison of methodologies”. In: Geochem. Geophys. Geosyst. 20 (2019), pp. 3268–3288. doi: 10.1029/2019GC008334.

[1506]

P.E. van Keken, D.A. Yuen, and A.P. van den Berg. “The effects of shallow rheological boundaries in the upper mantle on inducing shorter time scales of diapiric flows”. In: Geophys. Res. Lett. 20.18 (1993), pp. 1927–1930. doi: 10.1029/93GL01768.

[1507]

PE van Keken, A Davaille, and J Vatteville. “Dynamics of a laminar plume in a cavity: The influence of boundaries on the steady state stem structure”. In: Geochem. Geophys. Geosyst. 14.1 (2013), pp. 158–178. doi: 10.1029/2012GC004383.

[1508]

Peter E van Keken. “The structure and dynamics of the mantle wedge”. In: Earth Planet. Sci. Lett. 215.3-4 (2003), pp. 323–338. doi: 10.1016/S0012-821X(03)00460-6.

[1509]

Peter E van Keken, David A Yuen, and Arie P van den Berg. “Implications for mantle dynamics from the high melting temperature of perovskite”. In: Science 264.5164 (1994), pp. 1437–1439. doi: 10.1126/science.264.5164.1437.

[1510]

T. Keller, D.A. May, and B.J.P. Kaus. “Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust”. In: Geophy. J. Int. 195.3 (2013), pp. 1406–1442. doi: 10.1093/gji/ggt306.

[1511]

Tobias Keller and Richard F Katz. “The role of volatiles in reactive melt transport in the asthenosphere”. In: Journal of Petrology 57.6 (2016), pp. 1073–1108. doi: 10.1093/ petrology/egw030.

[1512]

Tobias Keller and Jenny Suckale. “A continuum model of multi-phase reactive transport in igneous systems”. In: Geophy. J. Int. 219.1 (2019), pp. 185–222. doi: 10.1093/gji/ ggz287.

[1513]

L. H. Kellogg. “Growing the Earth’s D‘‘ layer: Effect of density variations at the core-mantle boundary”. In: Geophys. Res. Lett. 24.22 (1997), pp. 2749–2752. doi: 10.1029/97GL02952.

[1514]

L. H. Kellogg. “Interaction of plumes with a compositional boundary at 670 km”. In: Geophys. Res. Lett. 18.5 (1991), pp. 865–868. doi: 10.1029/91GL01066.

[1515]

L. H. Kellogg and S. D. King. “Effect of mantle plumes on the growth of D” by reaction between the core and mantle”. In: Geophys. Res. Lett. 20.5 (1993), pp. 379–382. doi: 10.1029/93GL00045.

[1516]

L. H. Kellogg and S. D. King. “The effect of temperature dependent viscosity on the structure of new plumes in the mantle: Results of a finite element model in a spherical, axisymmetric shell”. In: Earth Planet. Sci. Lett. 148.1-2 (1997), pp. 13–26. doi: 10.1016/ S0012-821X(97)00025-3.

[1517]

LH Kellogg and DL Turcotte. “Mixing and the distribution of heterogeneities in a chaotically convecting mantle”. In: J. Geophys. Res.: Solid Earth 95.B1 (1990), pp. 421–432. doi: 10.1029/JB095iB01p00421.

[1518]

Louise H Kellogg. “Chaotic mixing in the Earth’s mantle”. In: Advances in geophysics. Vol. 34. 1993, pp. 1–33. doi: 10.1016/S0065-2687(08)60433-1.

[1519]

Louise H Kellogg, Bradford H Hager, and Rob D Van Der Hilst. “Compositional stratification in the deep mantle”. In: Science 283.5409 (1999), pp. 1881–1884. doi: 10.1126/science. 283.5409.1881.

[1520]

Louise H Kellogg and Cheryl A Stewart. “Mixing by chaotic convection in an infinite Prandtl number fluid and implications for mantle convection”. In: Physics of Fluids A: Fluid Dynamics 3.5 (1991), pp. 1374–1378. doi: 10.1063/1.858067.

[1521]

David V Kemp and David J Stevenson. “A tensile, flexural model for the initiation of subduction”. In: Geophy. J. Int. 125.1 (1996), pp. 73–93. doi: 10.1111/j.1365- 246X.1996.tb06535.x.

[1522]

B.L.N. Kennett. “On the density distribution within the Earth”. In: Geophy. J. Int. 132.2 (1998), pp. 374–382. doi: 10.1046/j.1365-246x.1998.00451.x.

[1523]

Lindsey M Kenyon and Ikuko Wada. “Mantle Wedge Seismic Anisotropy and Shear Wave Splitting: Effects of Oblique Subduction”. In: J. Geophys. Res.: Solid Earth (2022), e2021JB022752. doi: 10.1029/2021JB022752.

[1524]

D.F. Keppie, C.A. Currie, and C. Warren. “Subduction erosion modes: comparing finite element numerical models with the geological record”. In: Earth Planet. Sci. Lett. 287 (2009), pp. 241–254. doi: 10.1016/j.epsl.2009.08.009.

[1525]

R Keppler, FM Rosas, and TJ Nagel. “Thin viscous middle-crust and evolving fault distribution during continental rifting: Insights from analog modeling experiments”. In: Tectonophysics 608 (2013), pp. 161–175.

[1526]

Katie M Keranen, Simon L Klemperer, Jordi Julia, Jesse F Lawrence, and Andy A Nyblade. “Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?” In: Geochem. Geophys. Geosyst. 10.5 (2009).

[1527]

Buchanan C Kerswell, Matthew J Kohn, and Taras V Gerya. “Backarc lithospheric thickness and serpentine stability control slab-mantle coupling depths in subduction zones”. In: Geochem. Geophys. Geosyst. (2021), e2020GC009304. doi: 10.1029/2020GC009304.

[1528]

Buchanan C Kerswell, Matthew J Kohn, and Taras V Gerya. “Computing rates and distributions of rock recovery in subduction zones”. In: Geochem. Geophys. Geosyst. 24.5 (2023), e2022GC010834. doi: 10.1029/2022GC010834.

[1529]

Jae-Yoon Keum and Byung-Dal So. “Sediment buoyancy controls the effective slab pull force and deviatoric stress along trenches: Insights from a 3D free-subduction model”. In: Tectonophysics 862 (2023), p. 229970. doi: 10.1016/j.tecto.2023.229970.

[1530]

Tania S Khaleque, Andrew C Fowler, PD Howell, and Michael Vynnycky. “Numerical studies of thermal convection with temperature-and pressure-dependent viscosity at extreme viscosity contrasts”. In: Physics of Fluids 27.7 (2015), p. 076603. doi: 10.1063/1. 4923061.

[1531]

Tania S Khaleque and Sayeed SA Motaleb. “Effects of temperature-and pressure-dependent viscosity and internal heating on mantle convection”. In: GEM-International Journal on Geomathematics 12.1 (2021), pp. 1–22. doi: 10.1007/s13137-021-00190-2.

[1532]

W. S. Kiefer. “Mantle viscosity stratification and flow geometry: Implications for surface motions on Earth and Venus”. In: Geophys. Res. Lett. 20.4 (1993), pp. 265–268. doi: 10.1029/93GL00129.

[1533]

W.S. Kiefer and B. Hager. “Geoid anomalies and dynamic topography from convection in cylindrical geometry: applications to mantle plumes on Earth and Venus”. In: Geophy. J. Int. 108 (1992), pp. 198–214. doi: 10.1111/j.1365-246X.1992.tb00850.x.

[1534]

Walter S Kiefer and Louise H Kellogg. “Geoid anomalies and dynamic topography from time-dependent, spherical axisymmetric mantle convection”. In: Phys. Earth. Planet. Inter. 106.3-4 (1998), pp. 237–256. doi: 10.1016/S0031-9201(98)00078-8.

[1535]

Walter S Kiefer and Qingsong Li. “Water undersaturated mantle plume volcanism on present-day Mars”. In: Meteoritics & Planetary Science 51.11 (2016), pp. 1993–2010. doi: 10.1111/maps.12720.

[1536]

Y-M Kim and C. Lee. “Effect of time-evolving age and convergence rate of the subducting plate on the Cenozoic adakites and boninites”. In: Journal of Asian Earth Sciences 95 (2014), pp. 300–312. doi: 10.1016/j.jseaes.2014.06.029.

[1537]

Chris Kincaid and I Selwyn Sacks. “Thermal and dynamical evolution of the upper mantle in subduction zones”. In: J. Geophys. Res.: Solid Earth 102.B6 (1997), pp. 12295–12315. doi: 10.1029/96JB03553.

[1538]

E.M. King, S. Stellmach, J. Noir, U. Hansen, and J.M. Aurnou. “Boundary layer control of rotating convection systems”. In: Nature 457.7227 (2009), pp. 301–304. doi: 10.1038/ nature07647.

[1539]

S. King et al. “A community benchmark for 2D Cartesian compressible convection in the Earth’s mantle”. In: Geophy. J. Int. 180 (2010), pp. 73–87.

[1540]

S. D. King. “On topography and geoid from 2-D stagnant lid convection calculations”. In: Geochem. Geophys. Geosyst. 10.3 (2009), n/a–n/a. doi: 10.1029/2008GC002250.

[1541]

S. D. King and B. H. Hager. “Subducted slabs and the geoid: 1. Numerical experiments with temperature-dependent viscosity”. In: J. Geophys. Res.: Solid Earth 99.B10 (1994), pp. 19843–19852. doi: 10.1029/94JB01552.

[1542]

S. D. King and B. H. Hager. “The relationship between plate velocity and trench viscosity in Newtonian and power-law subduction calculations”. In: Geophys. Res. Lett. 17.13 (1990), pp. 2409–2412. doi: 10.1029/GL017i013p02409.

[1543]

S.D. King. “Venus Resurfacing Constrained by Geoid and Topography”. In: J. Geophys. Res.: Planets 123 (2018), pp. 1041–1060. doi: 10.1002/2017JE005475.

[1544]

S.D. King and D.L. Anderson. “An alternative mechanism of flood basalt formation”. In: Earth Planet. Sci. Lett. 136 (1995), pp. 269–279.

[1545]

S.D. King and D.L. Anderson. “Edge-driven convection”. In: Earth Planet. Sci. Lett. 160 (1998), pp. 289–296.

[1546]

S.D. King, D.J. Frost, and D.C. Rubie. “Why cold slabs stagnate in the transition zone”. In: Geology 43.3 (2015), pp. 231–234. doi: 10.1130/G36320.1.

[1547]

Scott D King. “Geoid and topographic swells over temperature-dependent thermal plumes in spherical-axisymmetric geometry”. In: Geophys. Res. Lett. 24.23 (1997), pp. 3093–3096. doi: 10.1029/97GL53154.

[1548]

Scott D King. “Radial models of mantle viscosity: results from a genetic algorithm”. In: Geophy. J. Int. 122.3 (1995), pp. 725–734. doi: 10.1111/j.1365-246X.1995.tb06831.x.

[1549]

Scott D King, Carl W Gable, and Stuart A Weinstein. “Models of convection-driven tectonic plates: a comparison of methods and results”. In: Geophy. J. Int. 109.3 (1992), pp. 481–487. doi: 10.1111/j.1365-246X.1992.tb00111.x.

[1550]

Scott D King and Joel Ita. “Effect of slab rheology on mass transport across a phase transition boundary”. In: J. Geophys. Res.: Solid Earth 100.B10 (1995), pp. 20211–20222. doi: 10.1029/95JB01964.

[1551]

Scott D King, Julian P Lowman, and Carl W Gable. “Episodic tectonic plate reorganizations driven by mantle convection”. In: Earth Planet. Sci. Lett. 203.1 (2002), pp. 83–91. doi: 10.1016/S0012-821X(02)00852-X.

[1552]

Scott D King and Jeroen Ritsema. “African hot spot volcanism: small-scale convection in the upper mantle beneath cratons”. In: Science 290.5494 (2000), pp. 1137–1140. doi: 10.1126/science.290.5494.1137.

[1553]

A. Kiraly, C. Faccenna, F. Funiciello, and A. Sembroni. “Coupling surface and mantle dynamics: A novel experimental approach”. In: Geophys. Res. Lett. 42 (2015). doi: 10. 1002/2015GL063867.

[1554]

Á Király, Clinton P Conrad, and LN Hansen. “Evolving viscous anisotropy in the upper mantle and its geodynamic implications”. In: Geochem. Geophys. Geosyst. 21 (2020), e2020GC009159. doi: 10.1029/2020GC009159.

[1555]

A. Király, F.A. Capitanio, F. Funiciello, and C. Faccenna. “Subduction induced mantle flow: Length-scales and orientation of the toroidal cell”. In: Earth Planet. Sci. Lett. 479 (2017), pp. 284–297. doi: 10.1016/j.epsl.2017.09.017.

[1556]

Ágnes Király, Francesca Funiciello, Fabio A Capitanio, and Claudio Faccenna. “Dynamic interactions between subduction zones”. In: Global and Planetary Change (2021), p. 103501. doi: 10.1016/j.gloplacha.2021.103501.

[1557]

Ágnes Király, Adam F Holt, Francesca Funiciello, Claudio Faccenna, and Fabio A Capitanio. “Modeling slab-slab interactions: Dynamics of outward dipping double-sided subduction systems”. In: Geochem. Geophys. Geosyst. 19.3 (2018), pp. 693–714. doi: 10.1002/ 2017GC007199.

[1558]

Ágnes Király et al. “The effect of slab gaps on subduction dynamics and mantle upwelling”. In: Tectonophysics (2020), p. 228458. doi: 10.1016/j.tecto.2020.228458.

[1559]

Eric Kirby and Kelin X Whipple. “Expression of active tectonics in erosional landscapes”. In: Journal of Structural Geology 44 (2012), pp. 54–75. doi: 10.1016/j.jsg.2012.07.009.

[1560]

S.H. Kirby and A.K. Kronenberg. “Rheology of the lithosphere: Selected topics”. In: Reviews of Geophysics 25.6 (1987). doi: 10.1029/RG025i006p01219.

[1561]

Daniel Kiss, Thibault Duretz, and Stefan Schmalholz. “Tectonic inheritance controls nappe detachment, transport and stacking in the Helvetic Nappe System, Switzerland: insights from thermo-mechanical simulations”. In: Solid Earth (2020), pp. 287–305. doi: 10.5194/se- 11-287-2020.

[1562]

Daniel Kiss, Evangelos Moulas, Boris JP Kaus, and Arne Spang. “Decompression and fracturing caused by magmatically induced thermal stresses”. In: J. Geophys. Res.: Solid Earth 128.3 (2023), e2022JB025341. doi: 10.1029/2022JB025341.

[1563]

Dániel Kiss, Lorenzo G Candioti, Thibault Duretz, and Stefan M Schmalholz. “Thermal softening induced subduction initiation at a passive margin”. In: Geophy. J. Int. 220.3 (2020), pp. 2068–2073. doi: 10.1093/gji/ggz572.

[1564]

Dániel Kiss, Yuri Podladchikov, Thibault Duretz, and Stefan M Schmalholz. “Spontaneous generation of ductile shear zones by thermal softening: Localization criterion, 1D to 3D modelling and application to the lithosphere”. In: Earth Planet. Sci. Lett. 519 (2019), pp. 284–296.

[1565]

EA Kneller, PE van Keken, I Katayama, and S-i Karato. “Stress, strain, and B-type olivine fabric in the fore-arc mantle: Sensitivity tests using high-resolution steady-state subduction zone models”. In: J. Geophys. Res.: Solid Earth 112.B4 (2007). doi: 10.1029/ 2006JB004544.

[1566]

Erik A Kneller and Peter E van Keken. “Effect of three-dimensional slab geometry on deformation in the mantle wedge: Implications for shear wave anisotropy”. In: Geochem. Geophys. Geosyst. 9.1 (2008).

[1567]

Erik A. Kneller, Markus Albertz, Garry D. Karner, and Christopher A. Johnson. “Testing inverse kinematic models of paleocrustal thickness in extensional systems with high-resolution forward thermo-mechanical models”. In: Geochem. Geophys. Geosyst. (2013).

[1568]

BS Knight, JH Davies, and FA Capitanio. “Timescales of successful and failed subduction: insights from numerical modelling”. In: Geophy. J. Int. 225 (2021), pp. 261–276. doi: 10.1093/gji/ggaa410.

[1569]

Thomas Kocher and Neil S Mancktelow. “Dynamic reverse modelling of flanking structures: a source of quantitative kinematic information”. In: Journal of Structural Geology 27.8 (2005), pp. 1346–1354. doi: 10.1016/j.jsg.2005.05.007.

[1570]

P. Koelemeijer, J. Ritsema, A. Deuss, and H.-J. van Heijst. “SP12RTS: a degree-12 model of shear- and compressional-wave velocity for Earth’s mantle”. In: Geophy. J. Int. 204 (2016), pp. 1024–1039.

[1571]

D. E. Koglin Jr., S. R. Ghias, S. D. King, G. T. Jarvis, and J. P. Lowman. “Mantle convection with reversing mobile plates: A benchmark study”. In: Geochem. Geophys. Geosyst. 6.9 (2005). doi: 10.1029/2005GC000924.

[1572]

D.L. Kohlstedt, B. Evans, and S.J. Mackwell. “Strength of the lithosphere: Constraints imposed by laboratory experiments”. In: J. Geophys. Res.: Solid Earth 100 (1995), pp. 17587–17602. doi: 10.1029/95JB01460.

[1573]

D.L. Kohlstedt and C. Goetze. “Low-Stress High-Temperature Creep in Olivine Single Crystals”. In: J. Geophys. Res.: Solid Earth 79.14 (1974), p. 2045. doi: 10.1029/ JB079i014p02045.

[1574]

David L Kohlstedt. “Properties of rocks and minerals-constitutive equations, rheological behavior, and viscosity of rocks”. In: Treatise on Geophysics. 2007, pp. 389–417.

[1575]

David L Kohlstedt. “Role of water and melts on upper mantle viscosity and strength”. In: Mantle Flow and Melt Generation at Mid-Ocean Ridges. Am. Geophys. Union, Washington DC (1992), pp. 103–121.

[1576]

T. Komut, R. Gray, R. Pysklywec, and O. Gogus. “Mantle flow uplift of western Anatolia and the Aegean: Interpretation from geophysical analyses and geodynamic modeling”. In: J. Geophys. Res.: Solid Earth 117.B11412 (2012). doi: 10.1029/2012JB009306.

[1577]

Henk Kooi and Christopher Beaumont. “Escarpment evolution on high-elevation rifted margins: Insights derived from a surface processes model that combines diffusion, advection, and reaction”. In: J. Geophys. Res.: Solid Earth 99.B6 (1994), pp. 12191–12209. doi: 10.1029/94JB00047.

[1578]

Henk Kooi and Christopher Beaumont. “Large-scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model”. In: J. Geophys. Res.: Solid Earth 101.B2 (1996), pp. 3361–3386. doi: 10.1029/95JB01861.

[1579]

P.O. Koons. “Modeling the topographic evolution of collisional belts”. In: Annu. Rev. Earth Planet. Sci. 23 (1995), pp. 375–408. doi: 10.1146/annurev.ea.23.050195.002111.

[1580]

P.O. Koons. “Three-dimensional critical wedges: Tectonics and topography in oblique collisional orogen”. In: J. Geophys. Res.: Solid Earth 99.B6 (1994), pp. 12, 301–12, 315. doi: 10.1029/94JB00611.

[1581]

P.O. Koons, R.J. Norris, D. Craw, and A.F. Cooper. “Influence of exhumation on the structural evolution of transpressional plate boundaries: An example from the Southern Alps, New Zealand”. In: Geology 31.1 (2003), pp. 3–6.

[1582]

H. Koopmann, S. Brune, D. Franke, and S. Breuer. “Linking rift propagation barriers to excess magmatism at volcanic rifted margins”. In: Geology (2014). doi: 10.1130/G36085. 1.

[1583]

Anthony AP Koppers. “Mantle plumes persevere”. In: Nature Geoscience 4.12 (2011), pp. 816–817. doi: 10.1038/ngeo1334.

[1584]

Anthony AP Koppers et al. “Mantle plumes and their role in Earth processes”. In: Nature Reviews Earth & Environment (2021), pp. 1–20. doi: 10.1038/s43017-021-00168-6.

[1585]

A. Koptev, A. Beniest, L. Jolivet, and S. Leroy. “Plume-Induced Breakup of a Subducting Plate: Microcontinent Formation Without Cessation of the Subduction Process”. In: Geophys. Res. Lett. 46 (2019), pp. 3663–3675. doi: 10.1029/2018GL081295.

[1586]

A. Koptev, E. Calais, E. Burov, S. Leroy, and T. Gerya. “Dual continental rift systems generated by plume-lithosphere interaction”. In: Nature Geoscience (2015), 10.1038/NGEO2401.

[1587]

A. Koptev, S. Cloetingh, E. Burov, T. Francois, and T. Gerya. “Long-distance impact of Iceland plume on Norway’s rifted margin”. In: Scientific Reports 7.10408 (2017).

[1588]

A. Koptev et al. “Contrasted continental rifting via plume-craton interaction: Applications to Central East African Rift”. In: Geoscience Frontiers 7 (2016), pp. 221–236.

[1589]

Alexander Koptev, Sierd Cloetingh, Taras Gerya, Pietro Sternai, and Svetlana Botsyun. “Ocean-continent subduction cannot be initiated without preceding intra-oceanic subduction!” In: Frontiers in Earth Science 10 (2022), p. 1097922. doi: 10.3389/feart. 2022.1097922.

[1590]

Alexander Koptev, Todd A Ehlers, Matthias Nettesheim, and David Whipp. “Response of a rheologically stratified lithosphere to subduction of an indenter-shaped plate: Insights into localized exhumation at orogen syntaxes”. In: Tectonics (2019).

[1591]

Alexander Koptev, Matthias Nettesheim, and Todd A Ehlers. “Plate corner subduction and rapid localized exhumation: Insights from 3D coupled geodynamic and geomorphological modelling”. In: Terra Nova 34.3 (2022), pp. 210–223. doi: 10.1111/ter.12581.

[1592]

Alexander Koptev, Matthias Nettesheim, Sarah Falkowski, and Todd A Ehlers. “3D geodynamic-geomorphologic modelling of deformation and exhumation at curved plate boundaries: Implications for the southern Alaskan plate corner”. In: Scientific Reports 12.1 (2022), pp. 1–14. doi: 10.1038/s41598-022-17644-8.

[1593]

Megan Korchinski, Christian Teyssier, Patrice F Rey, Donna L Whitney, and Luke Mondy. “Single-phase vs two-phase rifting: Numerical perspectives on the accommodation of extension during continental break-up”. In: Marine and Petroleum Geology 123 (2021), p. 104715. doi: 10.1016/j.marpetgeo.2020.104715.

[1594]

J. Korenaga. “Thermal cracking and the deep hydration of oceanic lithosphere: A key to the generation of plate tectonics?” In: J. Geophys. Res.: Solid Earth 112.B05408 (2007). doi: 10.1029/2006JB004502.

[1595]

J. Korenaga and S.-I. Karato. “A new analysis of experimental data on olivine rheology”. In: J. Geophys. Res.: Solid Earth 113.B02403 (2008). doi: 10.1029/2007JB005100.

[1596]

Jun Korenaga. “Energetics of mantle convection and the fate of fossil heat”. In: Geophys. Res. Lett. 30.8 (2003). doi: 10.1029/2003GL016982.

[1597]

Jun Korenaga. “Hadean geodynamics and the nature of early continental crust”. In: Precambrian Research 359 (2021), p. 106178. doi: 10.1016/j.precamres.2021.106178.

[1598]

Jun Korenaga. “How does small-scale convection manifest in surface heat flux?” In: Earth Planet. Sci. Lett. 287.3-4 (2009), pp. 329–332. doi: 10.1016/j.epsl.2009.08.015.

[1599]

Jun Korenaga. “Initiation and evolution of plate tectonics on Earth: theories and observations”. In: Annual review of earth and planetary sciences 41 (2013), pp. 117–151. doi: 10.1146/annurev-earth-050212-124208.

[1600]

Jun Korenaga. “Urey ratio and the structure and evolution of Earth’s mantle”. In: Reviews of Geophysics 46.2 (2008). doi: 10.1029/2007RG000241.

[1601]

Jun Korenaga and Thomas H. Jordan. “On the state of sublithospheric upper mantle beneath a supercontinent”. In: Geophy. J. Int. 149.1 (2002), pp. 179–189. doi: 10.1046/ j.1365-246X.2002.01633.x.

[1602]

Jun Korenaga and Thomas H Jordan. “Onset of convection with temperature-and depth-dependent viscosity”. In: Geophys. Res. Lett. 29.19 (2002), pp. 29–1. doi: 10. 1029/2002GL015672.

[1603]

Jun Korenaga and Thomas H Jordan. “Physics of multiscale convection in Earth’s mantle: Onset of sublithospheric convection”. In: J. Geophys. Res.: Solid Earth 108.B7 (2003). doi: 10.1029/2002JB001760.

[1604]

Tomoko Korenaga and Jun Korenaga. “Evolution of young oceanic lithosphere and the meaning of seafloor subsidence rate”. In: J. Geophys. Res.: Solid Earth 121.9 (2016), pp. 6315–6332. doi: 10.1002/2016JB013395.

[1605]

Ivan Koulakov, Vera Schlindwein, Mingqi Liu, Taras Gerya, Andrey Jakovlev, and Aleksey Ivanov. “Low-degree mantle melting controls the deep seismicity and explosive volcanism of the Gakkel Ridge”. In: Nature Communications 13.1 (2022), pp. 1–10. doi: 10.1038/ s41467-022-30797-4.

[1606]

Hemin A Koyi. “Modeling the influence of sinking anhydrite blocks on salt diapirs targeted for hazardous waste disposal”. In: Geology 29.5 (2001), pp. 387–390. doi: 10.1130/0091- 7613(2001)029<0387:MTIOSA>2.0.CO;2.

[1607]

M. Krabbendam. “Sliding of temperate basal ice on a rough, hard bed: creep mechanisms, pressure melting, and implications for ice streaming”. In: The Cryosphere 10 (2016), pp. 1915–1932. doi: 10.5194/tc-10-1915-2016.

[1608]

Corné Kreemer, Geoffrey Blewitt, and Elliot C Klein. “A geodetic plate motion and Global Strain Rate Model”. In: Geochem. Geophys. Geosyst. 15.10 (2014), pp. 3849–3889.

[1609]

Corné Kreemer, William E Holt, and A John Haines. “An integrated global model of present-day plate motions and plate boundary deformation”. In: Geophy. J. Int. 154.1 (2003), pp. 8–34.

[1610]

Neil J Krystopowicz and Claire A Currie. “Crustal eclogitization and lithosphere delamination in orogens”. In: Earth Planet. Sci. Lett. 361 (2013), pp. 195–207.

[1611]

Kristina Kublik, Claire A Currie, and D Graham Pearson. “Evaluating the rheological controls on topography development during craton stabilization: Objective approaches to comparing geodynamic models”. In: J. Geophys. Res.: Solid Earth 129.4 (2024), e2023JB028226.

[1612]

E.-J. N. Kuiper, J. H. P. de Bresser, M. R. Drury, J. Eichler, G. M. Pennock, and I. Weikusat. “Using a composite flow law to model deformation in the NEEM deep ice core, Greenland: Part 2 the role of grain size and premelting on ice deformation at high homologous temperature”. In: The Cryosphere Discussions 2019 (2019), pp. 1–30. doi: 10.5194/tc- 2018-275.

[1613]

E.-J. N. Kuiper, I. Weikusat, J. H. P. de Bresser, D. Jansen, G. M. Pennock, and M. R. Drury. “Using a composite flow law to model deformation in the NEEM deep ice core, Greenland: Part 1 the role of grain size and grain size distribution on the deformation of Holocene and glacial ice”. In: The Cryosphere Discussions 2019 (2019), pp. 1–32. doi: 10.5194/tc-2018-274.

[1614]

E.N. Kuiper. “Flow in naturally deformed ice: a cryogenic electron microscopy and modelling study of the NEEM ice core”. PhD thesis. Utrecht University, 2019.

[1615]

NJ Kusznir and RG Park. “The strength of intraplate lithosphere”. In: Phys. Earth. Planet. Inter. 36.3-4 (1984), pp. 224–235. doi: 10.1016/0031-9201(84)90048-7.

[1616]

Alessandro La Rosa et al. “Observing Oblique Slip During Rift Linkage in Northern Afar”. In: Geophys. Res. Lett. 46.19 (2019), pp. 10782–10790. doi: 10.1029/2019GL084801.

[1617]

Stéphane Labrosse. “Hotspots, mantle plumes and core heat loss”. In: Earth Planet. Sci. Lett. 199.1-2 (2002), pp. 147–156. doi: 10.1016/S0012-821X(02)00537-X.

[1618]

A.H. Lachenbruch and G.A. Thompson. “Oceanic ridges and transform faults: their intersection angles and resistance to plate motion”. In: Earth Planet. Sci. Lett. 15 (1972), pp. 116–122. doi: 10.1016/0012-821X(72)90051-9.

[1619]

Dimitri Lague, Niels Hovius, and Philippe Davy. “Discharge, discharge variability, and the bedrock channel profile”. In: J. Geophys. Res.: Earth Surface 110.F4 (2005). doi: 10. 1029/2004JF000259.

[1620]

Arijit Laik, Wouter P Schellart, and Vincent Strak. “Sustained indentation in 2-D models of continental collision involving whole mantle subduction”. In: Geophy. J. Int. 232.1 (2023), pp. 343–365. doi: 10.1093/gji/ggac339.

[1621]

Serge Lallemand and Diane Arcay. “Subduction initiation from the earliest stages to self-sustained subduction: Insights from the analysis of 70 Cenozoic sites”. In: Earth-Science Reviews 221 (2021), p. 103779. doi: 10.1016/j.earscirev.2021.103779.

[1622]

Serge Lallemand, Arnauld Heuret, and David Boutelier. “On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones”. In: Geochem. Geophys. Geosyst. 6.9 (2005).

[1623]

K. Lambeck, H. Rouby, A. Purcell, Y. Sun, and M. Sambridge. “Sea level and global ice volumes from the Last Glacial Maximum to the Holocene”. In: Proceedings of the National Academy of Sciences 111.43 (2014), pp. 15, 296–15, 303. doi: 10.1073/pnas.1411762111.

[1624]

R Lanari et al. “The Atlas of Morocco: A Plume-Assisted Orogeny”. In: Geochem. Geophys. Geosyst. 24.6 (2023), e2022GC010843. doi: 10.1029/2022GC010843.

[1625]

Sean M Langemeyer, Julian P Lowman, and Paul J Tackley. “Global mantle convection models produce transform offsets along divergent plate boundaries”. In: Communications Earth & Environment 2.1 (2021), pp. 1–10. doi: 10.1038/s43247-021-00139-1.

[1626]

Sean M Langemeyer, Julian P Lowman, and Paul J Tackley. “The dynamics and impact of compositionally originating provinces in a mantle convection model featuring rheologically obtained plates”. In: Geophy. J. Int. 220.3 (2020), pp. 1700–1716. doi: 10.1093/gji/ ggz497.

[1627]

Sean M Langemeyer, Julian P Lowman, and Paul J Tackley. “The Sensitivity of Core Heat Flux to the Modeling of Plate-Like Surface Motion”. In: Geochem. Geophys. Geosyst. 19.4 (2018), pp. 1282–1308. doi: 10.1002/2017GC007266.

[1628]

SM Langemeyer, JP Lowman, and PJ Tackley. “Contrasts in 2-D and 3-D system behaviour in the modelling of compositionally originating LLSVPs and a mantle featuring dynamically obtained plates”. In: Geophy. J. Int. 230.3 (2022), pp. 1751–1774. doi: 10.1093/gji/ ggac143.

[1629]

T.B. Larsen and D.A. Yuen. “Fast plumeheads: Temperature-dependent versus non-Newtonian rheology”. In: Geophys. Res. Lett. 24.16 (1997), pp. 1995–1998. doi: 10. 1029/97GL01886.

[1630]

T.B. Larsen and D.A. Yuen. “Ultrafast upwelling bursting through the upper mantle”. In: Earth Planet. Sci. Lett. 146.3-4 (1997), pp. 393–399. doi: 10.1016/S0012-821X(96) 00247-6.

[1631]

T.B. Larsen, D.A. Yuen, A.V. Malevsky, and J.L. Smedsmo. “Dynamics of strongly time-dependent convection with non-Newtonian temperature-dependent viscosity”. In: Phys. Earth. Planet. Inter. 94.1-2 (1996), pp. 75–103. doi: 10.1016/0031-9201(95)03082-4.

[1632]

Tine B Larsen, David A Yuen, and Andrei V Malevsky. “Dynamical consequences on fast subducting slabs from a self-regulating mechanism due to viscous heating in variable viscosity convection”. In: Geophys. Res. Lett. 22.10 (1995), pp. 1277–1280. doi: 10.1029/ 95GL01112.

[1633]

Tine B Larsen, David A Yuen, Jiř´i    Moser, and Bengt Fornberg. “A high-order finite-difference method applied to large Rayleigh number mantle convection”. In: Geophysical & Astrophysical Fluid Dynamics 84.1-2 (1997), pp. 53–83. doi: 10.1080/ 03091929708208973.

[1634]

Tine B Larsen, David A Yuen, and Michael Storey. “Ultrafast mantle plumes and implications for flood basalt volcanism in the Northern Atlantic Region”. In: Tectonophysics 311.1-4 (1999), pp. 31–43.

[1635]

R. L. Larson and C. Kincaid. “Onset of mid-Cretaceous volcanism by elevation of the 670 km thermal boundary layer”. In: Geology 24.6 (1996), p. 551. doi: 10.1130/0091- 7613(1996)024<0551:OOMCVB>2.3.CO;2.

[1636]

Tiphaine Larvet, Laetitia Le Pourhiet, and Philippe Agard. “Cimmerian block detachment from Gondwana: A slab pull origin?” In: Earth Planet. Sci. Lett. 596 (2022), p. 117790. doi: 10.1016/j.epsl.2022.117790.

[1637]

T. M. Lassak, A. K. McNamara, E. J. Garnero, and S. Zhong. “Core-mantle boundary topography as a possible constraint on lower mantle chemistry and dynamics”. In: Earth Planet. Sci. Lett. 289.1-2 (2010), pp. 232–241. doi: 10.1016/j.epsl.2009.11.012.

[1638]

Teresa Mae Lassak, Matthew J Fouch, Chad E Hall, and Édouard Kaminski. “Seismic characterization of mantle flow in subduction systems: Can we resolve a hydrated mantle wedge?” In: Earth Planet. Sci. Lett. 243.3-4 (2006), pp. 632–649. doi: 10.1016/j.epsl. 2006.01.022.

[1639]

Harriet CP Lau, Benjamin K Holtzman, and Christopher Havlin. “Toward a Self-Consistent Characterization of Lithospheric Plates Using Full-Spectrum Viscoelasticity”. In: AGU Advances 1.4 (2020), e2020AV000205. doi: 10.1029/2020AV000205.

[1640]

J Lavé. “Analytic solution of the mean elevation of a watershed dominated by fluvial incision and hillslope landslides”. In: Geophys. Res. Lett. 32.11 (2005).

[1641]

L.L. Lavier and W.R. Buck. “Half graben versus large-offset low-angle normal fault: Importance of keeping cool during normal faulting”. In: J. Geophys. Res.: Solid Earth 107.B6 (2002), 10.1029/2001JB000513.

[1642]

Luc L Lavier and W Roger Buck. “Half graben versus large-offset low-angle normal fault: Importance of keeping cool during normal faulting”. In: J. Geophys. Res.: Solid Earth 107.B6 (2002), ETG–8. doi: 10.1029/2001JB000513.

[1643]

Luc L Lavier, W Roger Buck, and Alexei NB Poliakov. “Factors controlling normal fault offset in an ideal brittle layer”. In: J. Geophys. Res.: Solid Earth 105.B10 (2000), pp. 23431–23442. doi: 10.1029/2000JB900108.

[1644]

Luc L Lavier, W Roger Buck, and Alexei NB Poliakov. “Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults”. In: Geology 27.12 (1999), pp. 1127–1130. doi: 10.1130/0091-7613(1999)027<1127:SCRHMF>2.3.CO;2.

[1645]

Thorne Lay, John Hernlund, and Bruce A Buffett. “Core–mantle boundary heat flow”. In: Nature Geoscience 1.1 (2008), p. 25.

[1646]

Michael Le Bars and Anne Davaille. “Large interface deformation in two-layer thermal convection of miscible viscous fluids”. In: Journal of Fluid Mechanics 499 (2004), p. 75. doi: 10.1017/S0022112003006931.

[1647]

Michael Le Bars and Anne Davaille. “Whole layer convection in a heterogeneous planetary mantle”. In: J. Geophys. Res.: Solid Earth 109.B3 (2004). doi: 10.1029/2003JB002617.

[1648]

Xavier Le Pichon. “Sea-floor spreading and continental drift”. In: J. Geophys. Res.: Solid Earth 73.12 (1968), pp. 3661–3697. doi: 10.1029/JB073i012p03661.

[1649]

L. Le Pourhiet. “Strain Localization Due to Structural Softening During Pressure Sensitive Rate Independent Yielding”. In: Bull. Soc. Geol. France 184 (2013), pp. 357–371. doi: 10.2113/gssgfbull.184.4-5.357.

[1650]

L. Le Pourhiet, B. Huet, L. Labrousse, K. Yao, P. Agard, and L. Jolivet. “Strain localisation in mechanically layered rocks beneath detachment zones: insights from numerical modelling”. In: Solide Earth 4 (2013), pp. 135–152.

[1651]

L. Le Pourhiet, B. Huet, D.A. May, L. Labrousse, and L. Jolivet. “Kinematic interpretation of the 3D shapes of metamorphic core complexes”. In: Geochem. Geophys. Geosyst. 13.Q09002 (2012). doi: 10.1029/2012GC004271.

[1652]

Laetitia Le Pourhiet, Michael Gurnis, and Jason Saleeby. “Mantle instability beneath the Sierra Nevada mountains in California and Death Valley extension”. In: Earth Planet. Sci. Lett. 251.1-2 (2006), pp. 104–119. doi: 10.1016/j.epsl.2006.08.028.

[1653]

Laetitia Le Pourhiet, L Mattioni, and I Moretti. “3D modelling of rifting through a pre-existing stack of nappes in the Gulf of Corinth (Greece): a mixed analogue/numerical approach”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 233–252. doi: 10.1144/GSL.SP.2006.253.01.12.

[1654]

Laetitia Le Pourhiet, Dave A May, Lucas Huille, Louise Watremez, and Sylvie Leroy. “A genetic link between transform and hyper-extended margins”. In: Earth Planet. Sci. Lett. 465 (2017), pp. 184–192.

[1655]

S.M. Lechmann, D.A. May, B.J.P. Kaus, and S.M. Schmalholz. “Comparing thin-sheet models with 3-D multilayer models for continental collision”. In: Geophy. J. Int. 187 (2011), pp. 10–33.

[1656]

SM Lechmann, SM Schmalholz, G Hetényi, DA May, and BJP Kaus. “Quantifying the impact of mechanical layering and underthrusting on the dynamics of the modern India-Asia collisional system with 3-D numerical models”. In: J. Geophys. Res.: Solid Earth 119.1 (2014), pp. 616–644. doi: 10.1002/2012JB009748.

[1657]

E. Lecomte, L. Le Pourhiet, O. Lacombe, and L. Jolivet. “A continuum mechanics approach to quantify brittle strain on weak faults: application to the extensional reactivation of shallow dipping discontinuities”. In: Geophy. J. Int. 184 (2011), pp. 1–11.

[1658]

C. Lee and S. D. King. “Dynamic buckling of subducting slabs reconciles geological and geophysical observations”. In: Earth Planet. Sci. Lett. 312.3-4 (2011), pp. 360–370. doi: 10.1016/j.epsl.2011.10.033.

[1659]

C. Lee and S. D. King. “Effect of mantle compressibility on the thermal and flow structures of the subduction zones”. In: Geochem. Geophys. Geosyst. 10.1 (2009), n/a–n/a. doi: 10.1029/2008GC002151.

[1660]

C. Lee and S. D. King. “Why are high-Mg# andesites widespread in the western Aleutians? A numerical model approach”. In: Geology 38.7 (2010), pp. 583–586. doi: 10.1130/ G30714.1.

[1661]

C. Lee and C. Lim. “Short-term and localized plume-slab interaction explains the genesis of Abukuma adakite in Northeastern Japan”. In: Earth Planet. Sci. Lett. 396 (2014), pp. 116–124. doi: 10.1016/j.epsl.2014.04.009.

[1662]

Changyeol Lee, Donghoon Seoung, and Nestor G Cerpa. “Effect of water solubilities on dehydration and hydration in subduction zones and water transport to the deep mantle: Implications for natural subduction zones”. In: Gondwana Research 89 (2021), pp. 287–305. doi: 10.1016/j.gr.2020.10.012.

[1663]

S. van der Lee, K. Regenauer-Lieb, and D.A. Yuen. “The role of water in connecting past and future episodes of subduction”. In: Earth Planet. Sci. Lett. 273.1-2 (2008), pp. 15–27. doi: 10.1016/j.epsl.2008.04.041.

[1664]

Matthew E Lees, John F Rudge, and Dan McKenzie. “Gravity, Topography, and Melt Generation Rates From Simple 3-D Models of Mantle Convection”. In: Geochem. Geophys. Geosyst. 21.4 (2020), e2019GC008809. doi: 10.1029/2019GC008809.

[1665]

K.A. Leever, R.H. Gabrielsen, D. Sokoutis, and E. Willingshofer. “The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis”. In: Tectonics 30.TC2013 (2011), 10.1029/2010TC002823.

[1666]

Tian Lei, Zhong-Hai Li, and Mian Liu. “Removing mantle lithosphere under orogens: delamination versus convective thinning”. In: Geophy. J. Int. 219.2 (2019), pp. 877–896. doi: 10.1093/gji/ggz329.

[1667]

A.M. Leitch, V. Steinbach, and D.A. Yuen. “Centerline temperature of mantle plumes in various geometries: Incompressible flow”. In: J. Geophys. Res.: Solid Earth 101.B10 (1996), pp. 21829–21846. doi: 10.1029/96JB01784.

[1668]

A.M. Leitch, D.A. Yuen, and G. Sewell. “Mantle convection with internal heating and pressure-dependent thermal expansivity”. In: Earth Planet. Sci. Lett. 102.2 (1991), pp. 213–232. doi: 10.1016/0012-821X(91)90009-7.

[1669]

V. Lemiale, H.-B. Mühlhaus, L. Moresi, and J. Stafford. “Shear banding analysis of plastic models formulated for incompressible viscous flows”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 177–186. doi: 10.1016/j.pepi.2008.07.038.

[1670]

A Lenardic, Laurent Guillou-Frottier, JC Mareschal, C Jaupart, LN Moresi, and WM Kaula. “What the mantle sees: the effects of continents on mantle heat flow”. In: GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION 121 (2000), pp. 95–112.

[1671]

A Lenardic and L Moresi. “Thermal convection below a conducting lid of variable extent: heat flow scalings and two-dimensional, infinite Prandtl number numerical simulations”. In: Physics of Fluids 15.2 (2003), pp. 455–466. doi: 10.1063/1.1533755.

[1672]

A Lenardic, L Moresi, and H Mühlhaus. “The role of mobile belts for the longevity of deep cratonic lithosphere: the crumple zone model”. In: Geophys. Res. Lett. 27.8 (2000), pp. 1235–1238. doi: 10.1029/1999GL008410.

[1673]

A Lenardic and L-N Moresi. “Some thoughts on the stability of cratonic lithosphere: Effects of buoyancy and viscosity”. In: J. Geophys. Res.: Solid Earth 104.B6 (1999), pp. 12747–12758. doi: 10.1029/1999JB900035.

[1674]

A Lenardic, M Weller, T Höink, and J Seales. “Toward a Boot Strap Hypothesis of Plate Tectonics: Feedbacks Between Plates, The Asthenosphere, and The Wavelength of Mantle Convection”. In: Phys. Earth. Planet. Inter. 296 (2019), p. 106299. doi: 10.1016/j. pepi.2019.106299.

[1675]

A. Lenardic. “On the partitioning of mantle heat loss below oceans and continents over time and its relationship to the Archaean paradox: Mantle heat partitioning and the Archaean paradox”. In: Geophy. J. Int. 134.3 (1998), pp. 706–720. doi: 10.1046/j.1365- 246x.1998.00604.x.

[1676]

A. Lenardic and W. M. Kaula. “Near-surface thermal/chemical boundary layer convection at infinite Prandtl number: two-dimensional numerical experiments”. In: Geophy. J. Int. 126.3 (1996), pp. 689–711. doi: 10.1111/j.1365-246X.1996.tb04698.x.

[1677]

A. Lenardic and W. M. Kaula. “Self-lubricated mantle convection: Two-dimensional models”. In: Geophys. Res. Lett. 21.16 (1994), pp. 1707–1710. doi: 10.1029/94GL01464.

[1678]

A. Lenardic and W. M. Kaula. “Tectonic plates, D” thermal structure, and the nature of mantle plumes”. In: J. Geophys. Res.: Solid Earth 99.B8 (1994), p. 15697. doi: 10.1029/ 94JB00466.

[1679]

A. Lenardic and L. Moresi. “A new class of equilibrium geotherms in the deep thermal lithosphere of continents”. In: Earth Planet. Sci. Lett. 176.3-4 (2000), pp. 331–338. doi: 10.1016/S0012-821X(00)00025-X.

[1680]

A. Lenardic, L. Moresi, A.M. Jellinek, C.J. O’Neill, C.M. Cooper, and C.T. Lee. “Continents, supercontinents, mantle thermal mixing, and mantle thermal isolation: Theory, numerical simulations, and laboratory experiments”. In: Geochem. Geophys. Geosyst. 12.10 (2011).

[1681]

Adrian Lenardic, AM Jellinek, and L-N Moresi. “A climate induced transition in the tectonic style of a terrestrial planet”. In: Earth Planet. Sci. Lett. 271.1-4 (2008), pp. 34–42. doi: 10.1016/j.epsl.2008.03.031.

[1682]

Adrian Lenardic and L Moresi. “Heat flow scaling for mantle convection below a conducting lid: Resolving seemingly inconsistent modeling results regarding continental heat flow”. In: Geophys. Res. Lett. 28.7 (2001), pp. 1311–1314. doi: 10.1029/2000GL008484.

[1683]

Adrian Lenardic, L-N Moresi, AM Jellinek, and M Manga. “Continental insulation, mantle cooling, and the surface area of oceans and continents”. In: Earth Planet. Sci. Lett. 234.3-4 (2005), pp. 317–333. doi: 10.1016/j.epsl.2005.01.038.

[1684]

Adrian Lenardic, L-N Moresi, and H Mühlhaus. “Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics”. In: J. Geophys. Res.: Solid Earth 108.B6 (2003). doi: 10.1029/2002JB001859.

[1685]

W. Leng, M. Gurnis, and P. Asimov. “From basalts to boninites: The geodynamics of volcanic expression during induced subduction initiation”. In: Initiation and Termination of Subduction: Rock Record, Geodynamic Models, Modern Plate Boundaries (2012).

[1686]

W. Leng and S. Zhong. “More constraints on internal heating rate of the Earth’s mantle from plume observations”. In: Geophys. Res. Lett. 36.2 (2009), n/a–n/a. doi: 10.1029/ 2008GL036449.

[1687]

W. Leng and S. Zhong. “Viscous heating, adiabatic heating and energetic consistency in compressible mantle convection”. In: Geophy. J. Int. 173 (2008), pp. 693–702. doi: 10. 1111/j.1365-246X.2008.03745.x.

[1688]

Wei Leng and Michael Gurnis. “Dynamics of subduction initiation with different evolutionary pathways”. In: Geochem. Geophys. Geosyst. 12.12 (2011), Q12018. doi: 10.1029/ 2011GC003877.

[1689]

Wei Leng and Michael Gurnis. “Shape of thermal plumes in a compressible mantle with depth-dependent viscosity”. In: Geophys. Res. Lett. 39.5 (2012). doi: 10.1029/ 2012GL050959.

[1690]

Wei Leng and Michael Gurnis. “Subduction initiation at relic arcs”. In: Geophys. Res. Lett. 42 (2015), pp. 7014–7021. doi: 10.1002/2015GL064985.

[1691]

Wei Leng, Lili Ju, Yan Xie, Tao Cui, and Max Gunzburger. “Finite element three-dimensional Stokes ice sheet dynamics model with enhanced local mass conservation”. In: J. Comp. Phys. 274 (2014), pp. 299–311.

[1692]

Wei Leng and Hao Liu. “Progress in the numerical modeling of mantle plumes”. In: Science China Earth Sciences 66.4 (2023), pp. 685–702. doi: 10.1007/s11430-022-1058-x.

[1693]

Wei Leng and Shijie Zhong. “Constraints on viscous dissipation of plate bending from compressible mantle convection”. In: Earth Planet. Sci. Lett. 297.1-2 (2010), pp. 154–164. doi: 10.1016/j.epsl.2010.06.016.

[1694]

Wei Leng and Shijie Zhong. “Controls on plume heat flux and plume excess temperature”. In: J. Geophys. Res.: Solid Earth 113.B4 (2008). doi: 10.1029/2007JB005155.

[1695]

Wei Leng and Shijie Zhong. “Surface subsidence caused by mantle plumes and volcanic loading in large igneous provinces”. In: Earth Planet. Sci. Lett. 291.1-4 (2010), pp. 207–214. doi: 10.1016/j.epsl.2010.01.015.

[1696]

Sara Lenzi, Jost von Hardenberg, and Antonello Provenzale. “Scale of plume clustering in large-Prandtl-number convection”. In: Physical Review E 103.5 (2021), p. 053103. doi: 10.1103/PhysRevE.103.053103.

[1697]

Tiffany Leonard and Lijun Liu. “The role of a mantle plume in the formation of Yellowstone volcanism”. In: Geophys. Res. Lett. 43.3 (2016), pp. 1132–1139. doi: 10.1002/ 2015GL067131.

[1698]

Luna Bergere Leopold and Thomas Maddock. The hydraulic geometry of stream channels and some physiographic implications. Vol. 252. US Government Printing Office, 1953. doi: xxxx.

[1699]

Charles E Lesher et al. “Iron isotope fractionation at the core–mantle boundary by thermodiffusion”. In: Nature Geoscience 13.5 (2020), pp. 382–386. doi: 10.1038/s41561- 020-0560-y.

[1700]

O Lesne, E Calais, and J Deverchere. “Finite element modelling of crustal deformation in the Baikal rift zone: new insights into the active–passive rifting debate”. In: Tectonophysics 289.4 (1998), pp. 327–340.

[1701]

Einat Lev and Bradford H Hager. “Anisotropic viscosity changes subduction zone thermal structure”. In: Geochem. Geophys. Geosyst. 12.4 (2011), Q04009. doi: 10.1029/ 2010GC003382.

[1702]

A Levander et al. “Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling”. In: Nature 472.7344 (2011), p. 461. doi: 10 . 1038 / nature10001.

[1703]

Fucheng Li et al. “Low-viscosity crustal layer controls the crustal architecture and thermal distribution at hyper-extended margins: Modeling insight and application to the northern South China Sea margin”. In: Geochem. Geophys. Geosyst. (2019). doi: 10.1029/ 2019GC008200.

[1704]

Keqing Li, Jiashun Hu, Yida Li, Hao Zhou, and Haijiang Zhang. “Slab segmentation and stacking in mantle transition zone controls disparate surface and lower mantle subducting rates and complex slab morphology”. In: Geophys. Res. Lett. 51.17 (2024), e2024GL110202. doi: 10.1029/2024GL110202.

[1705]

L. Li et al. “Deformation of olivine at mantle pressure using the D-DIA”. In: Eur. J. Mineral. 18 (2006), pp. 7–19. doi: 10.1127/0935-1221/2006/0018-0007.

[1706]

M. Li, S. Zhong, and P. Olson. “Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation”. In: Phys. Earth. Planet. Inter. 277 (2018), pp. 10–29. doi: 10.1016/j.pepi.2018.01.010.

[1707]

Min Li et al. “Neogene subduction initiation models in the western Pacific and analysis of subduction zone parameters”. In: Science China Earth Sciences 66.3 (2023), pp. 472–491. doi: 10.1007/s11430-022-1065-1.

[1708]

Mingming Li. “The influence of uncertain mantle density and viscosity structures on the calculations of deep mantle flow and lateral motion of plumes”. In: Geophy. J. Int. 233.3 (2023), pp. 1916–1937. doi: 10.1093/gji/ggad040.

[1709]

Mingming Li. “Variable distribution of subducted oceanic crust beneath subduction regions of the lowermost mantle”. In: Phys. Earth. Planet. Inter. 341 (2023), p. 107063. doi: 10.1016/j.pepi.2023.107063.

[1710]

Mingming Li, Benjamin Black, Shijie Zhong, Michael Manga, Maxwell L Rudolph, and Peter Olson. “Quantifying melt production and degassing rate at mid-ocean ridges from global mantle convection models with plate motion history”. In: Geochem. Geophys. Geosyst. 17.7 (2016), pp. 2884–2904. doi: 10.1002/2016GC006439.

[1711]

Mingming Li and Allen K McNamara. “Evolving morphology of crustal accumulations in Earth’s lowermost mantle”. In: Earth Planet. Sci. Lett. 577 (2022), p. 117265. doi: 10. 1016/j.epsl.2021.117265.

[1712]

Mingming Li and Allen K McNamara. “The difficulty for subducted oceanic crust to accumulate at the Earth’s core-mantle boundary”. In: J. Geophys. Res.: Solid Earth 118.4 (2013), pp. 1807–1816. doi: 10.1002/jgrb.50156.

[1713]

Mingming Li, Allen K McNamara, and Edward J Garnero. “Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs”. In: Nature Geoscience 7.5 (2014), pp. 366–370. doi: 10.1038/NGEO2120.

[1714]

Mingming Li, Allen K McNamara, Edward J Garnero, and Shule Yu. “Compositionally-distinct ultra-low velocity zones on Earth’s core-mantle boundary”. In: Nature Communications 8.1 (2017), p. 177. doi: 10.1038/s41467-017-00219-x.

[1715]

Mingming Li and Shijie Zhong. “Lateral Motion of Mantle Plumes in 3-D Geodynamic Models”. In: Geophys. Res. Lett. 46 (2019), pp. 4685–4693. doi: 10.1029/2018GL081404.

[1716]

Mingming Li and Shijie Zhong. “The source location of mantle plumes from 3D spherical models of mantle convection”. In: Earth Planet. Sci. Lett. 478 (2017), pp. 47–57. doi: 10.1016/j.epsl.2017.08.033.

[1717]

Tao Li and Andrea Hampel. “Effect of glacial-interglacial sea-level changes on the displacement and stress field in the forearc and along the plate interface of subduction zones”. In: Solid Earth 3.1 (2012), pp. 63–70. doi: 10.5194/se-3-63-2012.

[1718]

Xiong Li and Michel Chouteau. “Three-dimensional gravity modeling in all space”. In: Surveys in Geophysics 19.4 (1998), pp. 339–368. doi: 10.1023/A:1006554408567.

[1719]

Yang Li, Frédéric Deschamps, and Paul J Tackley. “Effects of the post-perovskite phase transition properties on the stability and structure of primordial reservoirs in the lower mantle of the Earth”. In: Earth Planet. Sci. Lett. 432 (2015), pp. 1–12. doi: 10.1016/j. epsl.2015.09.040.

[1720]

Yang Li, Frédéric Deschamps, and Paul J Tackley. “The stability and structure of primordial reservoirs in the lower mantle: insights from models of thermochemical convection in three-dimensional spherical geometry”. In: Geophy. J. Int. 199.2 (2014), pp. 914–930. doi: 10.1093/gji/ggu295.

[1721]

Yang Li, Zhigang Zhang, Juan Li, Zhidong Shi, and Liang Zhao. “Effects of depth-and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of large thermochemical piles of primordial material in the lower mantle of the Earth: Insights from 2-D numerical modeling”. In: Science China Earth Sciences 66 (2023), pp. 1–12. doi: 10.1007/s11430-022-1111-6.

[1722]

Yang Li et al. “Influence of composition-dependent thermal conductivity on the long-term evolution of primordial reservoirs in Earth’s lower mantle”. In: Earth, Planets and Space 74.1 (2022), pp. 1–13. doi: 10.1186/s40623-022-01608-3.

[1723]

Yanyou Li and Jiafu Qi. “Salt-related contractional structure and its main controlling factors of Kelasu structural zone in Kuqa depression: insights from physical and numerical experiments”. In: Procedia Engineering 31 (2012), pp. 863–867. doi: 10.1016/j.proeng. 2012.01.1113.

[1724]

Yaqing Li et al. “Numerical modeling of failed rifts in the northern South China Sea margin: implications for continental rifting and breakup”. In: Journal of Asian Earth Sciences (2020), p. 104402. doi: 10.1016/j.jseaes.2020.104402.

[1725]

Yida Li and Michael Gurnis. “A simple force balance model of subduction initiation”. In: Geophy. J. Int. 232.1 (2023), pp. 128–146. doi: 10.1093/gji/ggac332.

[1726]

Yida Li and Michael Gurnis. “Strike slip motion and the triggering of subduction initiation”. In: Frontiers in Earth Science 11 (2023), p. 1156034. doi: 10.3389/feart.2023.1156034.

[1727]

Z.-H. Li, Z. Xu, T. Gerya, and J.-P. Burg. “Collision of continental corner from 3-D numerical modeling”. In: Earth Planet. Sci. Lett. 380 (2013), pp. 98–111. doi: 10.1016/j.epsl. 2013.08.034.

[1728]

Z.H. Li, Z.Q. Xu, and T.V. Gerya. “Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones”. In: Earth Planet. Sci. Lett. 301 (2011), pp. 65–77.

[1729]

ZH Li, TV Gerya, and J-P Burg. “Influence of tectonic overpressure on P–T paths of HP–UHP rocks in continental collision zones: thermomechanical modelling”. In: Journal of Metamorphic Geology 28.3 (2010), pp. 227–247. doi: 10.1111/j.1525-1314.2009. 00864.x.

[1730]

Zhong-Hai Li. “Integrated thermodynamic and thermomechanical numerical modeling: A useful method for studying deep Earth water and carbon cycling”. In: Geosystems and Geoenvironment 1 (2022), p. 100002. doi: 10.1016/j.geogeo.2021.09.002.

[1731]

Zhong-Hai Li, Jeanette F Di Leo, and Neil M Ribe. “Subduction-induced mantle flow, finite strain, and seismic anisotropy: Numerical modeling”. In: J. Geophys. Res.: Solid Earth 119.6 (2014), pp. 5052–5076. doi: 10.1002/2014JB010996.

[1732]

Zhong-Hai Li, Taras Gerya, and James AD Connolly. “Variability of subducting slab morphologies in the mantle transition zone: Insight from petrological-thermomechanical modeling”. In: Earth-Science Reviews 196 (2019), p. 102874. doi: 10.1016/j.earscirev. 2019.05.018.

[1733]

Zhong-Hai Li and Neil M Ribe. “Dynamics of free subduction from 3-D boundary element modeling”. In: J. Geophys. Res.: Solid Earth 117.B6 (2012). doi: 10.1029/2012JB009165.

[1734]

ZhongHai Li. “A review on the numerical geodynamic modeling of continental subduction, collision and exhumation”. In: Science China Earth Sciences 57 (2014), pp. 47–69. doi: 10.1007/s11430-013-4696-0.

[1735]

Zhonghai Li and Taras V Gerya. “Polyphase formation and exhumation of high-to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China”. In: J. Geophys. Res.: Solid Earth 114.B9 (2009). doi: 10.1029/2008JB005935.

[1736]

Z.-X. Lia and S. Zhong. “Supercontinent-superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics”. In: Phys. Earth. Planet. Inter. 176 (2009), pp. 143–156.

[1737]

Qing Liang, Chao Chen, and Yaoguo Li. “3-D inversion of gravity data in spherical coordinates with application to the GRAIL data”. In: J. Geophys. Res.: Planets 119.6 (2014), pp. 1359–1373. doi: 10.1002/2014JE004626.

[1738]

J Liao, T Gerya, and Q Wang. “Layered structure of the lithospheric mantle changes dynamics of craton extension”. In: Geophys. Res. Lett. 40.22 (2013), pp. 5861–5866. doi: 10.1002/2013GL058081.

[1739]

J. Liao and T. Gerya. “From continental rifting to seafloor spreading: Insight from 3D thermo-mechanical modeling”. In: Gondwana Research (2014).

[1740]

J. Liao and T. Gerya. “Influence of lithospheric mantle stratification on craton extension: Insight from two-dimensional thermo-mechanical modeling”. In: Tectonophysics 631 (2014), pp. 50–64. doi: 10.1016/j.tecto.2014.01.020.

[1741]

Jie Liao and Taras Gerya. “Partitioning of crustal shortening during continental collision: 2-D thermomechanical modeling”. In: J. Geophys. Res.: Solid Earth 122.1 (2017), pp. 592–606. doi: 10.1002/2016JB013398.

[1742]

Jie Liao, Qin Wang, Taras Gerya, and Maxim D Ballmer. “Modeling craton destruction by hydration-induced weakening of the upper mantle”. In: J. Geophys. Res.: Solid Earth 122.9 (2017), pp. 7449–7466. doi: 10.1002/2017JB014157.

[1743]

Tim Lichtenberg, Tobias Keller, Richard F Katz, Gregor J Golabek, and Taras V Gerya. “Magma ascent in planetesimals: Control by grain size”. In: Earth Planet. Sci. Lett. 507 (2019), pp. 154–165. doi: 10.1016/j.epsl.2018.11.034.

[1744]

C. Lim and C. Lee. “Effects of temporal plume-slab interaction on the partial melting of the subducted oceanic crust”. In: Journal of Asian Earth Sciences 113 (2015), pp. 857–865. doi: 10.1016/j.jseaes.2015.09.016.

[1745]

Yi-An Lin, Lorenzo Colli, and Jonny Wu. “NW Pacific-Panthalassa intra-oceanic subduction during Mesozoic times from mantle convection and geoid models”. In: Geochem. Geophys. Geosyst. 23 (2022), e2022GC010514. doi: 10.1029/2022GC010514.

[1746]

Jian Lin and EM Parmentier. “A finite amplitude necking model of rifting in brittle lithosphere”. In: J. Geophys. Res.: Solid Earth 95.B4 (1990), pp. 4909–4923. doi: 10. 1029/JB095iB04p04909.

[1747]

John Lin, GM Purdy, H Schouten, J-C Sempere, and C Zervas. “Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge”. In: Nature 344.6267 (1990), p. 627. doi: 10.1038/344627a0.

[1748]

Ja-Ren Lin, Taras V Gerya, Paul J Tackley, David A Yuen, and Gregor J Golabek. “Numerical modeling of protocore destabilization during planetary accretion: Methodology and results”. In: Icarus 204.2 (2009), pp. 732–748. doi: 10.1016/j.icarus.2009.06.035.

[1749]

Ja-Ren Lin, Taras V Gerya, Paul J Tackley, David A Yuen, and Gregor J Golabek. “Protocore destabilization in planetary embryos formed by cold accretion: Feedbacks from non-Newtonian rheology and energy dissipation”. In: Icarus 213.1 (2011), pp. 24–42. doi: 10.1016/j.icarus.2011.02.021.

[1750]

S.-C. Lin and B.-Y. Kuo. “Dynamics of the opposite-verging subduction zones in the Taiwan region: Insights from numerical models”. In: J. Geophys. Res.: Solid Earth 121 (2016), pp. 2174–2192. doi: 10.1002/2015JB012784.

[1751]

S.-C. Lin and P.E. van Keken. “Dynamics of thermochemical plumes: 1. Plume formation and entrainment of a dense layer”. In: Geochem. Geophys. Geosyst. 7.2 (2006). doi: 10. 1029/2005GC001071.

[1752]

S.-C. Lin and P.E. van Keken. “Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes”. In: Geochem. Geophys. Geosyst. 7.3 (2006). doi: 10.1029/2005GC001072.

[1753]

Shu-Chuan Lin and Peter E van Keken. “Multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes”. In: Nature 436.7048 (2005), pp. 250–252. doi: 10. 1038/nature03697.

[1754]

Shu-Chuan Lin, Ban-Yuan Kuo, Ling-Yun Chiao, and Peter E van Keken. “Thermal plume models and melt generation in East Africa: A dynamic modeling approach”. In: Earth Planet. Sci. Lett. 237.1-2 (2005), pp. 175–192. doi: 10.1016/j.epsl.2005.04.049.

[1755]

G.S. Lister, M.A. Etheridge, and P.A. Symonds. “Detachment faulting and the evolution of passive continental margins”. In: Geology 14 (1986), pp. 246–250. doi: 10.1130/0091- 7613(1986)14<246:DFATEO>2.0.CO;2.

[1756]

Konstantin D Litasov and Eiji Ohtani. “Effect of water on the phase relations in Earth’s mantle and deep water cycle”. In: Special Papers-Geological Society of America 421 (2007), p. 115. doi: 10.1130/2007.2421(08).

[1757]

C Lithgow-Bertelloni, MA Richards, CP Conrad, and RW Griffiths. “Plume generation in natural thermal convection at high Rayleigh and Prandtl numbers”. In: Journal of Fluid Mechanics 434 (2001), pp. 1–21. doi: 10.1017/S0022112001003706.

[1758]

C. Lithgow-Bertelloni and J.H. Guynn. “Origin of the lithospheric stress field”. In: J. Geophys. Res.: Solid Earth 109 (2004), B01408. doi: 10.1029/2003JB002467.

[1759]

Carolina Lithgow-Bertelloni and Mark A Richards. “The dynamics of Cenozoic and Mesozoic plate motions”. In: Reviews of Geophysics 36.1 (1998), pp. 27–78. doi: 10.1029/ 97RG02282.

[1760]

Danhong Liu and Lin Chen. “Edge-driven convection and thinning of craton lithosphere: Two-dimensional thermal-mechanical modeling”. In: Science China Earth Sciences 62 (2019), pp. 2106–2120. doi: 10.1007/s11430-019-9371-0.

[1761]

Hao Liu, Michael Gurnis, and Wei Leng. “Constraints on Mantle Viscosity from Slab Dynamics”. In: J. Geophys. Res.: Solid Earth 126 (2021), e2021JB022329. doi: 10.1029/ 2021JB022329.

[1762]

Hao Liu, Wei Leng, Wenzhong Wang, and Yong Zheng. “Deciphering the deep Earth heterogeneities from the temperature fluctuation of mantle plumes”. In: Earth Planet. Sci. Lett. 618 (2023), p. 118275. doi: 10.1016/j.epsl.2023.118275.

[1763]

L. Liu and D.R. Stegman. “Segmentation of the Farallon slab”. In: Earth Planet. Sci. Lett. 311 (2011), pp. 1–10. doi: 10.1016/j.epsl.2011.09.027.

[1764]

Mengxue Liu and Dinghui Yang. “How do pre-existing weak zones and rheological layering of the continental lithosphere influence the development and evolution of intra-continental subduction?” In: Journal of Asian Earth Sciences 238 (2022), p. 105385. doi: 10.1016/ j.jseaes.2022.105385.

[1765]

Mengxue Liu, Dinghui Yang, and Rui Qi. “The role of continental lithospheric thermal structure in the evolution of orogenic systems: application to the Himalayan–Tibetan collision zone”. In: Solid Earth 14.11 (2023), pp. 1155–1168. doi: 10.5194/se-14-1155-2023.

[1766]

Mingqi Liu and Taras Gerya. “Forced subduction initiation near spreading centers: effects of brittle-ductile damage”. In: J. Geophys. Res.: Solid Earth 128.2 (2023), e2022JB024701. doi: 10.1029/2022JB024701.

[1767]

Mingqi Liu and Zhonghai Li. “Dynamics of thinning and destruction of the continental cratonic lithosphere: Numerical modeling”. In: Science China Earth Sciences 61 (2018), pp. 823–852. doi: 10.1007/s11430-017-9184-x.

[1768]

Shaofeng Liu et al. “Craton deformation from flat-slab subduction and rollback”. In: Nature Geoscience xxx (2024), p. xxx. doi: 10.1038/s41561-024-01513-2.

[1769]

Sibiao Liu et al. “Sensitivity of gravity anomalies to mantle rheology at mid-ocean ridge–transform fault systems”. In: Earth Planet. Sci. Lett. 622 (2023), p. 118420. doi: 10.1016/j.epsl.2023.118420.

[1770]

X. Liu and S. Zhong. “Analyses of marginal stability, heat transfer and boundary layer properties for thermal convection in a compressible fluid with infinite Prandtl number”. In: Geophy. J. Int. 194 (2013), pp. 125–144. doi: 10.1093/gji/ggt117.

[1771]

X. Liu and S. Zhong. “The long-wavelength geoid from three-dimensional spherical models of thermal and thermochemical mantle convection”. In: J. Geophys. Res.: Solid Earth 120.6 (2015), pp. 4572–4596. doi: 10.1002/2015JB012016.

[1772]

Xi Liu, Juan Li, Zhigang Zhang, and Weidong Sun. “The foundering of stagnant slabs bearing oceanic plateau into the lower mantle”. In: Deep Sea Research Part I: Oceanographic Research Papers 194 (2023), p. 103964. doi: 10.1016/j.dsr.2023.103964.

[1773]

Xi Liu and Shijie Zhong. “Constraining mantle viscosity structure for a thermochemical mantle using the geoid observation”. In: Geochem. Geophys. Geosyst. 17.3 (2016), pp. 895–913. doi: 10.1002/2015GC006161.

[1774]

Xiaowen Liu and Russell Pysklywec. “Transient injection of flow: How torn and bent slabs induce unusual mantle circulation patterns near a flat slab”. In: Geochem. Geophys. Geosyst. 24.10 (2023), e2023GC011056. doi: 10.1029/2023GC011056.

[1775]

Xiaowen Liu, Lara S Wagner, Claire A Currie, and Mark J Caddick. “Implications of flat-slab subduction on hydration, slab seismicity, and arc volcanism in the Pampean region of Chile and Argentina”. In: Geochem. Geophys. Geosyst. 25.3 (2024), e2023GC011317. doi: 10.1029/2023GC011317.

[1776]

Z. Liu and P. Bird. “Two-dimensional and three-dimensional finite element modelling of mantle processes beneath central South Island, New Zealand”. In: Geophy. J. Int. 165 (2006), pp. 1003–1028.

[1777]

Ze Liu et al. “Deep-shallow coupling mechanism in pull-apart basins: Insight from 3D numerical simulation”. In: Journal of Asian Earth Sciences 242 (2023), p. 105509. doi: 10.1016/j.jseaes.2022.105509.

[1778]

M.-G. Llorens. “Stress and strain evolution during single-layer folding under pure and simple shear”. In: Journal of Structural Geology 126 (2019), pp. 245–257. doi: 10.1016/j.jsg. 2019.06.009.

[1779]

Maria-Gema Llorens, Paul D Bons, Albert Griera, Enrique Gomez-Rivas, and Lynn A Evans. “Single layer folding in simple shear”. In: Journal of Structural Geology 50 (2013), pp. 209–220. doi: 10.1016/j.jsg.2012.04.002.

[1780]

Maria-Gema Llorens et al. “Dynamic recrystallisation of ice aggregates during co-axial viscoplastic deformation: a numerical approach”. In: Journal of Glaciology 62.232 (2016), pp. 359–377. doi: 10.1017/jog.2016.28.

[1781]

LI Lobkovsky, AA Baranov, AM Bobrov, and AV Chuvaev. “Global Geodynamic Model of the Earth and Its Application to the Arctic Region”. In: Doklady Earth Sciences. 2024, pp. 1–6. doi: 10.1134/S1028334X23603000.

[1782]

A. Loddoch, C. Stein, and U. Hansen. “Temporal variations in the convective style of planetary mantles”. In: Earth Planet. Sci. Lett. 251.1-2 (2006), pp. 79–89. doi: 10.1016/ j.epsl.2006.08.026.

[1783]

J. Lof and A.H. van den Boogaard. “Adaptive return mapping algorithms for J2 elasto-viscoplastic flow”. In: Int. J. Num. Meth. Eng. 51 (2001), pp. 1283–1298. doi: 10.1002/nme.203.

[1784]

Liz C Logan, Luc L Lavier, Eunseo Choi, Eh Tan, and Ginny A Catania. “Semi-brittle rheology and ice dynamics in DynEarthSol3D”. In: The Cryosphere 11.1 (2017), pp. 117–132. doi: 10.5194/tc-11-117-2017.

[1785]

C. Loiselet et al. “Subducting slabs: Jellyfishes in the Earth’s mantle”. In: Geochem. Geophys. Geosyst. 11.8 (2010). doi: 10.1029/2010GC003172.

[1786]

Christelle Loiselet, Laurent Husson, and Jean Braun. “From longitudinal slab curvature to slab rheology”. In: Geology 37.8 (2009), pp. 747–750.

[1787]

M. D. Long, B. H. Hager, M. V. de Hoop, and R. D. van der Hilst. “Two-dimensional modelling of subduction zone anisotropy with application to southwestern Japan”. In: Geophy. J. Int. 170.2 (2007), pp. 839–856. doi: 10.1111/j.1365-246X.2007.03464.x.

[1788]

Maureen D Long and Thorsten W Becker. “Mantle dynamics and seismic anisotropy”. In: Earth Planet. Sci. Lett. 297.3-4 (2010), pp. 341–354. doi: 10.1016/j.epsl.2010.06.036.

[1789]

Aurelie Louis–Napoleon, Thomas Bonometti, Muriel Gerbault, Roland Martin, and Olivier Vanderhaeghe. “Models of convection and segregation in heterogeneous partially molten crustal roots with a VOF method–I: flow regimes”. In: Geophy. J. Int. 229.3 (2022), pp. 2047–2080. doi: 10.1093/gji/ggab510.

[1790]

Aurelie Louis–Napoleon, Muriel Gerbault, Thomas Bonometti, Cedric Thieulot, Roland Martin, and Olivier Vanderhaeghe. “3D numerical modeling of crustal polydiapirs with Volume-Of-Fluid methods”. In: Geophy. J. Int. 222 (2020), pp. 474–506. doi: 10.1093/ gji/ggaa141.

[1791]

Aurélie Louis-Napoléon, Muriel Gerbault, Thomas Bonometti, Olivier Vanderhaeghe, Roland Martin, and Nathan Maury. “Convection and segregation in heterogeneous orogenic crust with a VOF method–II: how to form migmatite domes”. In: Geophy. J. Int. 236.1 (2024), pp. 207–232. doi: 10.1093/gji/ggad388.

[1792]

Aurélie Louis-Napoléon, Olivier Vanderhaeghe, Muriel Gerbault, Roland Martin, and Thomas Bonometti. “Formation of the Naxos nested domes and crustal differentiation by convection and diapirism”. In: BSGF-Earth Sciences Bulletin 195 (2024), p. 21. doi: 10. 1051/bsgf/2024017.

[1793]

Diogo L Lourenço, Antoine B Rozel, Maxim D Ballmer, and Paul J Tackley. “Plutonic-squishy lid: A new global tectonic regime generated by intrusive magmatism on earth-like planets”. In: Geochem. Geophys. Geosyst. 21.4 (2020), e2019GC008756. doi: 10.1029/2019GC008756.

[1794]

Diogo L Lourenço, Antoine B Rozel, Taras Gerya, and Paul J Tackley. “Efficient cooling of rocky planets by intrusive magmatism”. In: Nature Geoscience 11.5 (2018), p. 322.

[1795]

Diogo L Lourenço and Max L Rudolph. “Shallow lower mantle viscosity modulates the pattern of mantle structure”. In: Geochem. Geophys. Geosyst. 21.8 (2020), e2020GC008934. doi: 10.1029/2020GC008934.

[1796]

Peter Lovely, Eric Flodin, Chris Guzofski, Frantz Maerten, and David D Pollard. “Pitfalls among the promises of mechanics-based restoration: Addressing implications of unphysical boundary conditions”. In: Journal of Structural Geology 41 (2012), pp. 47–63. doi: 10. 1016/j.jsg.2012.02.020.

[1797]

Peter J Lovely, Stanislas N Jayr, and Donald A Medwedeff. “Practical and efficient three-dimensional structural restoration using an adaptation of the GeoChron model”. In: AAPG Bulletin 102.10 (2018), pp. 1985–2016. doi: 10.1306/03291817191.

[1798]

JP Lowman, AD Gait, CW Gable, and H Kukreja. “Plumes anchored by a high viscosity lower mantle in a 3D mantle convection model featuring dynamically evolving plates”. In: Geophys. Res. Lett. 35.19 (2008). doi: 10.1029/2008GL035342.

[1799]

JP Lowman, SD King, and SJ Trim. “The influence of plate boundary motion on planform in viscously stratified mantle convection models”. In: J. Geophys. Res.: Solid Earth 116.B12 (2011). doi: 10.1029/2011JB008362.

[1800]

Julian P Lowman. “Mantle convection models featuring plate tectonic behavior: An overview of methods and progress”. In: Tectonophysics 510.1-2 (2011), pp. 1–16.

[1801]

Julian P Lowman and Carl W Gable. “Thermal evolution of the mantle following continental aggregation in 3D convection models”. In: Geophys. Res. Lett. 26.17 (1999), pp. 2649–2652. doi: 10.1029/1999GL008332.

[1802]

Julian P Lowman and Gary T Jarvis. “Continental collisions in wide aspect ratio and high Rayleigh number two-dimensional mantle convection models”. In: J. Geophys. Res.: Solid Earth 101.B11 (1996), pp. 25485–25497. doi: 10.1029/96JB02568.

[1803]

Julian P Lowman and Gary T Jarvis. “Effects of mantle heat source distribution on supercontinent stability”. In: J. Geophys. Res.: Solid Earth 104.B6 (1999), pp. 12733–12746. doi: 10.1029/1999JB900108.

[1804]

Julian P Lowman and Gary T Jarvis. “Mantle convection flow reversals due to continental collisions”. In: Geophys. Res. Lett. 20.19 (1993), pp. 2087–2090. doi: 10.1029/93GL02047.

[1805]

Julian P Lowman and Gary T Jarvis. “Mantle convection models of continental collision and breakup incorporating finite thickness plates”. In: Phys. Earth. Planet. Inter. 88.1 (1995), pp. 53–68.

[1806]

Julian P Lowman, Scott D King, and Carl W Gable. “Steady plumes in viscously stratified, vigorously convecting, three-dimensional numerical mantle convection models with mobile plates”. In: Geochem. Geophys. Geosyst. 5.1 (2004). doi: 10.1029/2003GC000583.

[1807]

Julian P Lowman, Scott D King, and Carl W Gable. “The influence of tectonic plates on mantle convection patterns, temperature and heat flow”. In: Geophy. J. Int. 146.3 (2001), pp. 619–636. doi: 10.1046/j.1365-246X.2001.00471.x.

[1808]

Julian P Lowman, Scott D King, and Carl W Gable. “The role of the heating mode of the mantle in intermittent reorganization of the plate velocity field”. In: Geophy. J. Int. 152.2 (2003), pp. 455–467. doi: 10.1046/j.1365-246X.2003.01862.x.

[1809]

Julian P Lowman, Laura T Pinero-Feliciangeli, J-Michael Kendall, and M Hosein Shahnas. “Influence of convergent plate boundaries on upper mantle flow and implications for seismic anisotropy”. In: Geochem. Geophys. Geosyst. 8.8 (2007). doi: 10.1029/2007GC001627.

[1810]

Anthony R Lowry, Neil M Ribe, and Robert B Smith. “Dynamic elevation of the Cordillera, western United States”. In: J. Geophys. Res.: Solid Earth 105.B10 (2000), pp. 23371–23390. doi: 10.1029/2000JB900182.

[1811]

SJ Loyd, TW Becker, CP Conrad, C Lithgow-Bertelloni, and FA Corsetti. “Time variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth’s thermal evolution”. In: Proceedings of the National Academy of Sciences 104.36 (2007), pp. 14266–14271. doi: 10.1073/pnas.0706667104.

[1812]

Chang Lu et al. “The Sensitivity of Joint Inversions of Seismic and Geodynamic Data to Mantle Viscosity”. In: Geochem. Geophys. Geosyst. 21.4 (2020), e2019GC008648. doi: 10.1029/2019GC008648.

[1813]

Gang Lu and Ritske S Huismans. “Melt volume at Atlantic volcanic rifted margins controlled by depth-dependent extension and mantle temperature”. In: Nature Communications 12.1 (2021), pp. 1–10. doi: 10.1038/s41467-021-23981-5.

[1814]

Gang Lu, Dave A May, and Ritske S Huismans. “A Three-Field Formulation for Two-Phase Flow in Geodynamic Modeling: Toward the Zero-Porosity Limit”. In: J. Geophys. Res.: Solid Earth 129.1 (2024), e2023JB027469. doi: 10.1029/2023JB027469.

[1815]

Gang Lu, Liang Zhao, Ling Chen, Bo Wan, and FuYuan Wu. “Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth?” In: Earth and Planetary Physics 5.2 (2021), pp. 123–140. doi: 10.26464/epp2021014.

[1816]

ER Lundin, AG Doré, J Naliboff, and J van Wijk. “Utilization of continental transforms in break-up: observations, models, and a potential link to magmatism”. In: Geological Society, London, Special Publications 524 (2022). doi: 10.6084/m9.figshare.c.5756724.

[1817]

Ting Luo and Wei Leng. “Thermal structure of continental subduction zone: high temperature caused by the removal of the preceding oceanic slab”. In: Earth and Planetary Physics 5.3 (2021), pp. 290–295. doi: 10.26464/epp2021027.

[1818]

Stefan Luth, Ernst Willingshofer, Dimitrios Sokoutis, and Sierd Cloetingh. “Does subduction polarity changes below the Alps? Inferences from analogue modelling”. In: Tectonophysics 582 (2013), pp. 140–161.

[1819]

Richard A Lux, Geoffrey F Davies, and John H Thomas. “Moving lithospheric plates and mantle convection”. In: Geophy. J. Int. 58.1 (1979), pp. 209–228.

[1820]

P. Ma, S. Liu, M. Gurnis, and B. Zhang. “Slab Horizontal Subduction and Slab Tearing Beneath East Asia”. In: Geophys. Res. Lett. 46 (2019), pp. 5161–5169. doi: 10.1029/ 2018GL081703.

[1821]

ZiQi Ma, Gang Lu, JianFeng Yang, and Liang Zhao. “Numerical modeling of metamorphic core complex formation: Implications for the destruction of the North China Craton”. In: Earth and Planetary Physics 6.2 (2022), pp. 191–203. doi: 10.26464/epp2022016.

[1822]

C. Maas and U. Hansen. “Effects of Earth’s rotation on the early differentiation of a terrestrial magma ocean”. In: J. Geophys. Res.: Solid Earth 120.11 (2015), pp. 7508–7525. doi: 10.1002/2015JB012053.

[1823]

Julia G MacDougall, Margarete A Jadamec, and Karen M Fischer. “The zone of influence of the subducting slab in the asthenospheric mantle”. In: J. Geophys. Res.: Solid Earth 122.8 (2017), pp. 6599–6624. doi: 10.1002/2017JB014445.

[1824]

P. Machetel and D.A. Yuen. “Penetrative convective flows induced by internal heating and mantle compressibility”. In: J. Geophys. Res.: Solid Earth 94.B8 (1989), pp. 10, 609–10, 626. doi: 10.1029/JB094iB08p10609.

[1825]

Philippe Machetel, Catherine Thoraval, and David Brunet. “Spectral and geophysical consequences of 3-D spherical mantle convection with an endothermic phase change at the 670 km discontinuity”. In: Phys. Earth. Planet. Inter. 88.1 (1995), pp. 43–51. doi: 10.1016/0031-9201(94)05075-9.

[1826]

Philippe Machetel and Patrice Weber. “Intermittent layered convection in a model mantle with an endothermic phase change at 670 km”. In: Nature 350.6313 (1991), p. 55.

[1827]

S.J. Mackwell, M. E. Zimmerman, and D. L. Kohlstedt. “High-temperature deformation of dry diabase with application to tectonics on Venus”. In: J. Geophys. Res.: Solid Earth 103 (1998), pp. 975–984. doi: 10.1029/97JB02671.

[1828]

Elizabeth H Madden et al. “Linked 3-D modelling of megathrust earthquake-tsunami events: from subduction to tsunami run up”. In: Geophy. J. Int. 224.1 (2020), pp. 487–516. doi: 10.1093/gji/ggaa484.

[1829]

Daniele Maestrelli, Sascha Brune, Giacomo Corti, Derek Keir, Ameha A Muluneh, and Federico Sani. “Analog and Numerical Modeling of Rift-Rift-Rift Triple Junctions”. In: Tectonics 41.10 (2022), e2022TC007491. doi: 10.1029/2022TC007491.

[1830]

M. Maffione, C. Thieulot, D.J.J. van Hinsbergen, A. Morris, O. Plümper, and W. Spakman. “Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites”. In: Geochem. Geophys. Geosyst. 16 (2015), pp. 1753–1770. doi: 10.1002/2015GC005746.

[1831]

John Keith Magali, Thomas Bodin, Navid Hedjazian, Henri Samuel, and Suzanne Atkins. “Geodynamic tomography: constraining upper-mantle deformation patterns from Bayesian inversion of surface waves”. In: Geophy. J. Int. 224.3 (2021), pp. 2077–2099. doi: 10. 1093/gji/ggaa577.

[1832]

V Magni, J van Hunen, F Funiciello, and C Faccenna. “Numerical models of slab migration in continental collision zones.” In: Solid Earth 3.2 (2012), pp. 293–306. doi: 10.5194/se- 3-293-2012.

[1833]

V. Magni. “The effects of back-arc spreading on arc magmatism”. In: Earth Planet. Sci. Lett. 519 (2019), pp. 141–151. doi: 10.1016/j.epsl.2019.05.009.

[1834]

V. Magni, M.B. Allen, J. van Hunen, and P. Bouilhol. “Continental underplating after slab break-off”. In: Earth Planet. Sci. Lett. 474 (2017), pp. 59–67. doi: 10.1016/j.epsl. 2017.06.017.

[1835]

V. Magni, P. Bouilhol, and J. van Hunen. “Deep water recycling through time”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 4203–4216. doi: 10.1002/2014GC005525.

[1836]

V. Magni, J. Naliboff, M. Prada, and C. Gaina. “Ridge Jumps and Mantle Exhumation in Back-Arc Basins”. In: Geosciences 11 (2021), p. 475. doi: 10 . 3390 / geosciences11110475.

[1837]

Valentina Magni, Claudio Faccenna, Jeroen van Hunen, and Francesca Funiciello. “Delamination vs. break-off: the fate of continental collision”. In: Geophys. Res. Lett. 40.2 (2013), pp. 285–289. doi: 10.1002/grl.50090.

[1838]

Valentina Magni, Claudio Faccenna, Jeroen van Hunen, and Francesca Funiciello. “How collision triggers backarc extension: Insight into Mediterranean style of extension from 3-D numerical models”. In: Geology 42.6 (2014), pp. 511–514. doi: 10.1130/G35446.1.

[1839]

Valentina Magni and Agnes Király. “Delamination”. In: Reference Module in Earth Systems and Environmental Sciences. 2020. doi: 10.1016/B978-0-12-409548-9.09515-4.

[1840]

P. Maierova, O. Lexa, K. Schulmann, and P. Stipska. “Contrasting tectono-metamorphic evolution of orogenic lower crust in the Bohemian Massif: A numerical model”. In: Gondwana Research 25 (2014), pp. 509–521.

[1841]

P Maierová, P Hasalová, Karel Schulmann, P Št´i  pská, and O Souček. “Porous melt flow in continental crust—A numerical modeling study”. In: J. Geophys. Res.: Solid Earth 128.8 (2023), e2023JB026523. doi: 10.1029/2023JB026523.

[1842]

Petra Maierová, Karel Schulmann, and Taras Gerya. “Relamination styles in collisional orogens”. In: Tectonics 37.1 (2018), pp. 224–250. doi: 10.1002/2017TC004677.

[1843]

Petra Maierová, Karel Schulmann, Pavla Št´i   pská, Taras Gerya, and Ondrej Lexa. “Trans-lithospheric diapirism explains the presence of ultra-high pressure rocks in the European Variscides”. In: Communications Earth & Environment 2.1 (2021), pp. 1–9. doi: 10.1038/s43247-021-00122-w.

[1844]

A. Maitre, F. Gueydan, C. Thieulot, and E. Oliot. “Brittle-Ductile Rheological Behavior in Subduction Zones: Effects of Strength Ratio Between Strong and Weak Phases in a Bi-Phase System”. In: Geophys. Res. Lett. 51 (2024), e2024GL108405. doi: 10.1029/2024GL108405.

[1845]

C. Malatesta, T. Gerya, L. Crispini, L. Federico, and G. Capponi. “Interplate deformation at early-stage oblique subduction: 3-D thermomechanical numerical modeling”. In: Tectonics 35 (2016), pp. 1610–1625.

[1846]

C. Malatesta, T. Gerya, L. Crispini, L. Federico, and G. Capponi. “Oblique subduction modelling indicates along-trench tectonic transport of sediments”. In: Nature Communications 4 (2013). doi: 10.1038/ncomms3456.

[1847]

Cristina Malatesta, Taras Gerya, Simone Pittaluga, and Daniela Cabiddu. “Intermediate-depth seismicity and intraslab stress changes due to outer-rise faulting”. In: Communications Earth & Environment 5.1 (2024), p. 253. doi: 10.1038/s43247-024-01420-9.

[1848]

A.V. Malevsky and D.A. Yuen. “Characteristics-based methods applied to infinite Prandtl number thermal convection in the hard turbulent regime”. In: Physics of Fluids A 3.9 (1991), pp. 2105–2115. doi: 10.1063/1.857893.

[1849]

A.V. Malevsky and D.A. Yuen. “Plume structures in the hard-turbulent regime of three-dimensional infinite Prandtl number convection”. In: Geophys. Res. Lett. 20.5 (1993), pp. 383–386. doi: 10.1029/93GL00293.

[1850]

A.V. Malevsky and D.A. Yuen. “Strongly chaotic non-newtonian mantle convection”. In: Geophysical & Astrophysical Fluid Dynamics 65.1-4 (1992), pp. 149–171. doi: 10.1080/ 03091929208225244.

[1851]

Andrei V Malevsky, David A Yuen, and LM Weyer. “Viscosity and thermal fields associated with strongly chaotic non-Newtonian thermal convection”. In: Geophys. Res. Lett. 19.2 (1992), pp. 127–130.

[1852]

Claire Mallard, Nicolas Coltice, Maria Seton, R Dietmar Müller, and Paul J Tackley. “Subduction controls the distribution and fragmentation of Earth’s tectonic plates”. In: Nature 535.7610 (2016), p. 140. doi: 10.1038/nature17992.

[1853]

Lucan Mameri, Andréa Tommasi, Javier Signorelli, and Lars N Hansen. “Predicting viscoplastic anisotropy in the upper mantle: a comparison between experiments and polycrystal plasticity models”. In: Phys. Earth. Planet. Inter. 286 (2019), pp. 69–80. doi: 10.1016/j.pepi.2018.11.002.

[1854]

Lucan Mameri, Andréa Tommasi, Alain Vauchez, Javier Signorelli, and Riad Hassani. “Structural inheritance controlled by olivine viscous anisotropy in fossil mantle shear zones with different past kinematics”. In: Tectonophysics 863 (2023), p. 229982. doi: 10.1016/ j.tecto.2023.229982.

[1855]

N.S. Mancktelow. “Tectonic pressure: Theoretical concepts and modelled examples”. In: Lithos 103 (2008), pp. 149–177. doi: 10.1016/j.lithos.2007.09.013.

[1856]

N Mandal, Susanta Kumar Samanta, and Chandan Chakraborty. “Numerical modeling of heterogeneous flow fields around rigid objects with special reference to particle paths, strain shadows and foliation drag”. In: Tectonophysics 330.3-4 (2001), pp. 177–194.

[1857]

Mioara Mandea, Clément Narteau, Isabelle Panet, and Jean Louis Le Mouël. “Gravimetric and magnetic anomalies produced by dissolution-crystallization at the core-mantle boundary”. In: J. Geophys. Res.: Solid Earth 120.9 (2015), pp. 5983–6000. doi: 10.1002/ 2015JB012048.

[1858]

Mioara Mandea, Isabelle Panet, Vincent Lesur, Olivier De Viron, Michel Diament, and Jean-Louis Le Mouël. “Recent changes of the Earth’s core derived from satellite observations of magnetic and gravity fields”. In: Proceedings of the National Academy of Sciences 109.47 (2012), pp. 19129–19133. doi: 10.1073/pnas.1207346109.

[1859]

V. Manea and M. Gurnis. “Subduction zone evolution and low viscosity wedges and channels”. In: Earth Planet. Sci. Lett. 264 (2007), pp. 22–45.

[1860]

V. C. Manea, M. Manea, W. P. Leeman, and D. L. Schutt. “The influence of plume head-lithosphere interaction on magmatism associated with the Yellowstone hotspot track”. In: Journal of Volcanology and Geothermal Research 188.1-3 (2009), pp. 68–85. doi: 10. 1016/j.jvolgeores.2008.12.012.

[1861]

V.C. Manea, W.P. Leeman, T. Gerya, M. Manea, and G. Zhu. “Subduction of fracture zones controls mantle melting and geochemical signature above slabs”. In: Nature Communications (2014). doi: 10.1038/ncomms6095.

[1862]

Vlad C Manea, Marta Pérez-Gussinyé, and Marina Manea. “Chilean flat slab subduction controlled by overriding plate thickness and trench rollback”. In: Geology 40.1 (2012), pp. 35–38.

[1863]

Michael Manga. “Interactions between mantle diapirs”. In: Geophys. Res. Lett. 24.15 (1997), pp. 1871–1874. doi: 10.1029/97GL01889.

[1864]

Michael Manga. “Low-viscosity mantle blobs are sampled preferentially at regions of surface divergence and stirred rapidly into the mantle”. In: Phys. Earth. Planet. Inter. 180.1-2 (2010), pp. 104–107. doi: 10.1016/j.pepi.2010.02.013.

[1865]

Michael Manga. “Mixing of heterogeneities in the mantle: Effect of viscosity differences”. In: Geophys. Res. Lett. 23.4 (1996), pp. 403–406. doi: 10.1029/96GL00242.

[1866]

G. Maniatis, D. Kurfess, A. Hampel, and O. Heidbach. “Slip acceleration on normal faults due to erosion and sedimentation - Results from a new three-dimensional numerical model coupling tectonics and landscape evolution”. In: Earth Planet. Sci. Lett. 284 (2009), pp. 570–582.

[1867]

Georgios Maniatis and Andrea Hampel. “Along-strike variations of the slip direction on normal faults: Insights from three-dimensional finite-element models”. In: Journal of Structural Geology 30.1 (2008), pp. 21–28. doi: 10.1016/j.jsg.2007.10.002.

[1868]

Antonio Manjón-Cabeza Córdoba and Maxim D Ballmer. “The role of edge-driven convection in the generation of volcanism–Part 1: A 2D systematic study”. In: Solid Earth 12.3 (2021), pp. 613–632. doi: 10.5194/se-12-613-2021.

[1869]

Antonio Manjón-Cabeza Córdoba and Maxim D Ballmer. “The role of edge-driven convection in the generation ofvolcanism–Part 2: Interaction with mantle plumes, applied to the Canary Islands”. In: Solid Earth 13.10 (2022), pp. 1585–1605. doi: 10.5194/se-13-1585-2022.

[1870]

Utsav Mannu, Kosuke Ueda, Sean D Willett, Taras V Gerya, and Michael Strasser. “Impact of sedimentation on evolution of accretionary wedges: Insights from high-resolution thermomechanical modeling”. In: Tectonics 35.12 (2016), pp. 2828–2846.

[1871]

Utsav Mannu, Kosuke Ueda, Sean D Willett, Taras V Gerya, and Michael Strasser. “Stratigraphic signatures of forearc basin formation mechanisms”. In: Geochem. Geophys. Geosyst. 18.6 (2017), pp. 2388–2410.

[1872]

Wei Mao and Shijie Zhong. “Constraints on mantle viscosity from intermediate-wavelength geoid anomalies in mantle convection models with plate motion history”. In: J. Geophys. Res.: Solid Earth 126.4 (2021), e2020JB021561. doi: 10.1029/2020JB021561.

[1873]

Wei Mao and Shijie Zhong. “Controls on global mantle convective structures and their comparison with seismic models”. In: J. Geophys. Res.: Solid Earth 124 (2019), pp. 9345–9372. doi: 10.1029/2019JB017918.

[1874]

Wei Mao and Shijie Zhong. “Formation of horizontally deflected slabs in the mantle transition zone caused by spinel-to-post-spinel phase transition, its associated grainsize reduction effects, and trench retreat”. In: Geophys. Res. Lett. 48.15 (2021), e2021GL093679. doi: 10.1029/2021GL093679.

[1875]

Wei Mao and Shijie Zhong. “Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone”. In: Nature Geoscience 11.11 (2018), p. 876. doi: 10.1038/ s41561-018-0225-2.

[1876]

X. Mao, M. Gurnis, and D.A. May. “Subduction Initiation With Vertical Lithospheric Heterogeneities and New Fault Formation”. In: Geophys. Res. Lett. 44 (2017), pp. 11, 349–11, 356. doi: 10.1002/2017GL075389.

[1877]

Yadan Mao, Jin-Qiang Zhong, and Jun Zhang. “The dynamics of an insulating plate over a thermally convecting fluid and its implication for continent movement over convective mantle”. In: Journal of Fluid Mechanics 868 (2019), pp. 286–315. doi: 10.1017/jfm. 2019.189.

[1878]

Walter V Maresch and Taras V Gerya. “Blueschists and blue amphiboles: How much subduction do they need?” In: International Geology Review 47.7 (2005), pp. 688–702.

[1879]

G Marketos, C J Spiers, and Rob Govers. “Impact of rock salt creep law choice on subsidence calculations for hydrocarbon reservoirs overlain by evaporite caprocks”. In: J. Geophys. Res.: Solid Earth 121.6 (2016), pp. 4249–4267.

[1880]

G. Marketos, R. Govers, and C.J. Spiers. “Ground motions induced by a producing hydrocarbon reservoir that is overlain by a viscoelastic rocksalt layer: a numerical model”. In: Geophy. J. Int. 203 (2015), pp. 228–242. doi: 10.1093/gji/ggv294.

[1881]

A.M. Marotta and M.I. Spalla. “Permian-Triassic high thermal regime in the Alps: Result of late Variscan collapse or continental rifting? Validation by numerical modeling”. In: Tectonics 26.TC4016 (2007), 10.1029/2006TC002047.

[1882]

A.M. Marotta, E. Spelta, and C. Rizzetto. “Gravity signature of crustal subduction inferred from numerical modelling”. In: Geophys. J. Int. 166 (2006), pp. 923–938.

[1883]

AM Marotta, M Fernandez, and R Sabadini. “Mantle unrooting in collisional settings”. In: Tectonophysics 296.1-2 (1998), pp. 31–46. doi: 10.1016/S0040-1951(98)00134-6.

[1884]

Anna Maria Marotta, Manel Fernàndez, and Roberto Sabadini. “The onset of extension during lithospheric shortening: a two-dimensional thermomechanical model for lithospheric unrooting”. In: Geophy. J. Int. 139.1 (1999), pp. 98–114. doi: 10.1046/j.1365- 246X.1999.00922.x.

[1885]

Anna Maria Marotta, Manuel Roda, Katya Conte, and Maria Iole Spalla. “Thermo-mechanical numerical model of the transition from continental rifting to oceanic spreading: the case study of the Alpine Tethys”. In: Geological Magazine 155.2 (2018), pp. 250–279. doi: 10.1017/S0016756816000856.

[1886]

Anna Maria Marotta and Roberto Sabadini. “The style of the Tyrrhenian subduction”. In: Geophys. Res. Lett. 22.7 (1995), pp. 747–750.

[1887]

Hauke Marquardt and Lowell Miyagi. “Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity”. In: Nature Geoscience 8.4 (2015), p. 311. doi: 10. 1038/NGEO2393.

[1888]

F.O. Marques, F.R. Cabral, T.V. Gerya, G. Zhu, and D.A. May. “Subduction initiates at straight passive margins”. In: geology (2014). doi: 10.1130/G35246.1.

[1889]

F.O. Marques and B.J.P. Kaus. “Speculations on the impact of catastrophic subduction initiation on the Earth System”. In: Journal of Geodynamics 93 (2016), pp. 1–16. doi: 10.1016/j.jog.2015.09.003.

[1890]

Fernando O Marques et al. “Testing the influence of far-field topographic forcing on subduction initiation at a passive margin”. In: Tectonophysics 608 (2013), pp. 517–524.

[1891]

FO Marques, PR Cobbold, and N Lourenço. “Physical models of rifting and transform faulting, due to ridge push in a wedge-shaped oceanic lithosphere”. In: Tectonophysics 443.1-2 (2007), pp. 37–52.

[1892]

Robert S Marshall, Juan C Heinrich, and OC Zienkiewicz. “Natural convection in a square enclosure by a finite-element, penalty function method using primitive fluid variables”. In: Numerical Heat Transfer, Part B: Fundamentals 1.3 (1978), pp. 315–330.

[1893]

Zdenek Martinec et al. “A benchmark study of numerical implementations of the sea level equation in GIA modelling”. In: Geophy. J. Int. 215.1 (2018), pp. 389–414. doi: 10. 1093/gji/ggy280.

[1894]

Zdeněk Martinec, Ctirad Matyska, Ondřej Čadek, and Pavel Hrdina. “The Stokes problem with 3D Newtonian rheology in a spherical shell”. In: Computer physics communications 76.1 (1993), pp. 63–79. doi: 10.1016/0010-4655(93)90121-R.

[1895]

J. Martinod et al. “How do subduction processes contribute to forearc Andean uplift? Insights from numerical models”. In: Journal of Geodynamics 96 (2016), pp. 6–18. doi: 10.1016/j.jog.2015.04.001.

[1896]

J.G. Masek and C. Duncan. “Minimum-work mountain building”. In: J. Geophys. Res.: Solid Earth 103.B1 (1998), pp. 907–917. doi: 10.1029/97JB03213.

[1897]

W.G. Mason, L. Moresi, P.G. Betts, and M.S. Miller. “Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones”. In: Tectonophysics 483 (2010), pp. 71–79.

[1898]

P. Massimi, A. Quarteroni, F. Saleri, and G. Scrofani. “Modeling of salt tectonics”. In: Comput. Methods Appl. Mech. Engrg. 197 (2007), pp. 281–293. doi: 10.1016/j.cma. 2007.08.004.

[1899]

Paolo Massimi, Alfio Quarteroni, and G Scrofani. “An adaptive finite element method for modeling salt diapirism”. In: Mathematical Models and Methods in Applied Sciences 16.04 (2006), pp. 587–614. doi: 10.1142/S0218202506001273.

[1900]

A. Massmeyer, E. Di Giuseppe, A. Davaille, T. Rolf, and P.J. Tackley. “Numerical simulation of thermal plumes in a Herschel-Bulkley fluid”. In: Journal of Non-Newtonian Rheology 195 (2013), pp. 32–45.

[1901]

Ben Mather et al. “Spreading ridge migration enabled by plume-ridge de-anchoring”. In: Nature Communications 15.1 (2024), p. 8934. doi: 10.1038/s41467-024-53397-w.

[1902]

Takeshi Matsumoto and Yoshibumi Tomoda. “Numerical simulation of the initiation of subduction at the fracture zone”. In: Journal of Physics of the Earth 31.3 (1983), pp. 183–194. doi: 10.4294/jpe1952.31.183.

[1903]

L Mattioni, Laetitia Le Pourhiet, and I Moretti. “Rifting through a heterogeneous crust: insights from analogue models and application to the Gulf of Corinth”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 213–231. doi: 10.1144/GSL.SP.2006. 253.01.11.

[1904]

C. Matyska, J. Moser, and D.A. Yuen. “The potential influence of radiative heat transfer on the formation of megaplumes in the lower mantle”. In: Earth Planet. Sci. Lett. 125.1-4 (1994), pp. 255–266. doi: 10.1016/0012-821X(94)90219-4.

[1905]

C. Matyska and D.A. Yuen. “The importance of radiative heat transfer on superplumes in the lower mantle with the new post-perovskite phase change”. In: Earth Planet. Sci. Lett. 234.1-2 (2005), pp. 71–81. doi: 10.1016/j.epsl.2004.10.040.

[1906]

Ctirad Matyska and David A Yuen. “Lower-mantle material properties and convection models of multiscale plumes”. In: Special Papers – Geological Society of America 430 (2007), p. 137.

[1907]

Ctirad Matyska, David A Yuen, Renata M Wentzcovitch, and Hana Č´i  žková. “The impact of variability in the rheological activation parameters on lower-mantle viscosity stratification and its dynamics”. In: Phys. Earth. Planet. Inter. 188.1-2 (2011), pp. 1–8. doi: 10.1016/ j.pepi.2011.05.012.

[1908]

T. Mauduit and O. Dauteuil. “Small-scale models of oceanic transform zones”. In: J. Geophys. Res.: Solid Earth 101.B9 (1996), pp. 20, 195–20, 209. doi: 10.1029/96JB01509.

[1909]

B Maunder, J Prytulak, S Goes, and M Reagan. “Rapid subduction initiation and magmatism in the Western Pacific driven by internal vertical forces”. In: Nature Communications 11.1 (2020), pp. 1–8. doi: 10.1038/s41467-020-15737-4.

[1910]

B. Maunder, J. van Hunen, P. Bouilhol, and V. Magni. “Modeling Slab Temperature: A Reevaluation of the Thermal Parameter”. In: Geochem. Geophys. Geosyst. (2019). doi: 10.1029/2018GC007641.

[1911]

B. Maunder, J. van Hunen, V. Magni, and P. Bouilhol. “Relamination of mafic subducting crust throughout Earth’s history”. In: Earth Planet. Sci. Lett. 449 (2016), pp. 206–216. doi: 10.1016/j.epsl.2016.05.042.

[1912]

Maxime Maurice, Nicola Tosi, Henri Samuel, Ana-Catalina Plesa, Christian Hüttig, and Doris Breuer. “Onset of solid-state mantle convection and mixing during magma ocean solidification”. In: J. Geophys. Res.: Planets 122.3 (2017), pp. 577–598. doi: 10.1002/ 2016JE005250.

[1913]

Dave A May and Matthew G Knepley. “Optimal, scalable forward models for computing gravity anomalies”. In: Geophy. J. Int. 187.1 (2011), pp. 161–177. doi: 10.1111/j.1365- 246X.2011.05167.x.

[1914]

RA Mazariegos, MJ Andrews, and JE Russell. “Modeling the evolution of salt structures using nonlinear rocksalt flow laws”. In: Tectonophysics 256.1-4 (1996), pp. 129–143.

[1915]

Stephane Mazzotti and Frédéric Gueydan. “Control of tectonic inheritance on continental intraplate strain rate and seismicity”. In: Tectonophysics 746 (2018), pp. 602–610. doi: 10.1016/j.tecto.2017.12.014.

[1916]

K. McClay, J.-A. Muñoz, and J. García-Senz. “Extensional salt tectonics in a contractional orogen: A newly identified tectonic event in the Spanish Pyrenees ”. In: Geology 32 (2004), pp. 373–740. doi: 10.1130/G20565.1.

[1917]

KR McClay. “Extensional fault systems in sedimentary basins: a review of analogue model studies”. In: Marine and petroleum Geology 7.3 (1990), pp. 206–233. doi: 10.1016/0264- 8172(90)90001-W.

[1918]

D. McKenzie. “Some remarks on the development of sedimentary basins”. In: Earth Planet. Sci. Lett. 40 (1978), pp. 25–32.

[1919]

D.P. McKenzie. “Speculations on the consequences and causes of plate motions”. In: Geophys. J. R. astr. Soc. 18 (1969), pp. 1–32. doi: 10.1111/j.1365-246X.1969.tb00259.x.

[1920]

Dan McKenzie. “The Generation and Compaction of Partially Molten Rock”. In: Journal of Petrology 25 (1984), pp. 713–765.

[1921]

Dan McKenzie. “The geometry of propagating rifts”. In: Earth and planetary science letters 77.2 (1986), pp. 176–186. doi: 10.1016/0012-821X(86)90159-7.

[1922]

Dan McKenzie and James Jackson. “The relationship between strain rates, crustal thickening, palaeomagnetism, finite strain and fault movements within a deforming zone”. In: Earth Planet. Sci. Lett. 65.1 (1983), pp. 182–202. doi: 10.1016/0012-821X(83)90198-X.

[1923]

Dan McKenzie, James Jackson, and Keith Priestley. “Thermal structure of oceanic and continental lithosphere”. In: Earth Planet. Sci. Lett. 233.3-4 (2005), pp. 337–349. doi: 10.1016/j.epsl.2005.02.005.

[1924]

Dan McKenzie and RK O’nions. “Mantle reservoirs and ocean island basalts”. In: Nature 301.5897 (1983), pp. 229–231. doi: 10.1038/301229a0.

[1925]

Dan McKenzie, Jean Roberts, and Nigel Weiss. “Numerical models of convection in the earth’s mantle”. In: Tectonophysics 19.2 (1973), pp. 89–103. doi: 10.1016/0040- 1951(73)90034-6.

[1926]

Dan P McKenzie. “Some remarks on heat flow and gravity anomalies”. In: J. Geophys. Res.: Solid Earth 72.24 (1967), pp. 6261–6273. doi: 10.1029/JZ072i024p06261.

[1927]

Dan P McKenzie. “The Earth’s mantle”. In: Scientific American 249.3 (1983), pp. 66–81.

[1928]

Dan P McKenzie and Robert L Parker. “The North Pacific: an example of tectonics on a sphere”. In: Nature 216.5122 (1967), pp. 1276–1280. doi: 10.1038/2161276a0.

[1929]

Dan P McKenzie, Jean M Roberts, and Nigel O Weiss. “Convection in the Earth’s mantle: towards a numerical simulation”. In: Journal of Fluid Mechanics 62.3 (1974), pp. 465–538. doi: 10.1017/S0022112074000784.

[1930]

Di P McKenzie and Frank Richter. “Convection currents in the Earth’s mantle”. In: Scientific American 235.5 (1976), pp. 72–89.

[1931]

DP McKenzie and JG Selater. “The evolution of the Indian Ocean”. In: Scientific American 228.5 (1973), pp. 62–74.

[1932]

A. K. McNamara, E. J. Garnero, and S. Rost. “Tracking deep mantle reservoirs with ultra-low velocity zones”. In: Earth Planet. Sci. Lett. 299.1-2 (2010), pp. 1–9. doi: 10. 1016/j.epsl.2010.07.042.

[1933]

A. K. McNamara and S. Zhong. “Thermochemical structures within a spherical mantle: Superplumes or piles?” In: J. Geophys. Res.: Solid Earth 109.B7 (2004). doi: 10.1029/ 2003JB002847.

[1934]

A.K. McNamara and S. Zhong. “Degree-one mantle convection: Dependence on internal heating and temperature-dependent rheology”. In: Geophys. Res. Lett. 32.L01301 (2005).

[1935]

A.K. McNamara and S. Zhong. “Thermochemical structures beneath Africa and the Pacific Ocean”. In: Nature 437 (2005), p. 1136.

[1936]

Allen K McNamara. “A review of large low shear velocity provinces and ultra low velocity zones”. In: Tectonophysics 760 (2019), pp. 199–220. doi: 10.1016/j.tecto.2018.04.015.

[1937]

Allen K McNamara, Peter E van Keken, and Shun-Ichiro Karato. “Development of anisotropic structure in the Earth’s lower mantle by solid-state convection”. In: Nature 416.6878 (2002), pp. 310–314. doi: 10.1038/416310a.

[1938]

Allen K McNamara, Peter E van Keken, and Shun-Ichiro Karato. “Development of finite strain in the convecting lower mantle and its implications for seismic anisotropy”. In: J. Geophys. Res.: Solid Earth 108.B5 (2003). doi: 10.1029/2002JB001970.

[1939]

S. Medvedev and C. Beaumont. “Growth of continental plateaus by channel injection: Models designed to address constraints and thermomechanical consistency”. In: Geological Society Special Publication 268 (2006), pp. 147–164. doi: 10.1144/GSL.SP.2006.268.01.06.

[1940]

D.G. van der Meer, D.J.J. van Hinsbergen, and Wim Spakman. “Atlas of the Underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity”. In: Tectonophysics 723 (2018), pp. 309–448. doi: 10.1016/j.tecto.2017. 10.004.

[1941]

C. Mégnin, H.-P. Bunge, B. Romanowicz, and M.A. Richards. “Imaging 3-D spherical convection models: What can seismic tomography tell us about mantle dynamics?” In: Geophys. Res. Lett. 24.11 (1997), pp. 1299–1302. doi: 10.1029/97GL01256.

[1942]

S. Mei and D.L. Kohlstedt. “Influence of water on plastic deformation of olivine aggregates 1. Diffusion creep regime”. In: J. Geophys. Res.: Solid Earth 105.B9 (2000), pp. 21, 457–21, 469.

[1943]

S. Mei and D.L. Kohlstedt. “Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime”. In: J. Geophys. Res.: Solid Earth 105.B9 (2000), pp. 21, 471–21, 481.

[1944]

Mark van der Meijde, Roland Pail, R Bingham, and R Floberghagen. “GOCE data, models, and applications: A review”. In: International journal of applied earth observation and geoinformation 35 (2015), pp. 4–15. doi: 10.1016/j.jag.2013.10.001.

[1945]

Rolf Meissner and Walter Mooney. “Weakness of the lower continental crust: a condition for delamination, uplift, and escape”. In: Tectonophysics 296.1-2 (1998), pp. 47–60. doi: 10.1016/S0040-1951(98)00136-X.

[1946]

HJ Melosh and Arthur Raefsky. “The dynamical origin of subduction zone topography”. In: Geophy. J. Int. 60.3 (1980), pp. 333–354.

[1947]

HJ Melosh and CA Williams Jr. “Mechanics of graben formation in crustal rocks: A finite element analysis”. In: J. Geophys. Res.: Solid Earth 94.B10 (1989), pp. 13961–13973.

[1948]

Armel Menant, Samuel Angiboust, and Taras Gerya. “Stress-driven fluid flow controls long-term megathrust strength and deep accretionary dynamics”. In: Scientific Reports 9.1 (2019), pp. 1–11. doi: 10.1038/s41598-019-46191-y.

[1949]

Armel Menant, Samuel Angiboust, Taras Gerya, Robin Lacassin, Martine Simoes, and Raphael Grandin. “Transient stripping of subducting slabs controls periodic forearc uplift”. In: Nature Communications 11.1 (2020), pp. 1–10. doi: 10.1038/s41467-020-15580-7.

[1950]

Armel Menant, Pietro Sternai, Laurent Jolivet, Laurent Guillou-Frottier, and Taras Gerya. “3D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: The eastern Mediterranean case”. In: Earth Planet. Sci. Lett. 442 (2016), pp. 93–107. doi: 10.1016/j.epsl.2016.03.002.

[1951]

Qingfeng Meng and David Hodgetts. “Combined control of décollement layer thickness and cover rock cohesion on structural styles and evolution of fold belts: A discrete element modelling study”. In: Tectonophysics 757 (2019), pp. 58–67. doi: 10.1016/j.tecto. 2019.03.004.

[1952]

Qingfeng Meng and David Hodgetts. “Structural styles and decoupling in stratigraphic sequences with double décollements during thin-skinned contractional tectonics: Insights from numerical modelling”. In: Journal of Structural Geology 127 (2019), p. 103862. doi: 10.1016/j.jsg.2019.103862.

[1953]

CA Mériaux, JA Mansour, Louis N Moresi, RC Kerr, and David Alexander May. “On the rise of strongly tilted mantle plume tails”. In: Phys. Earth. Planet. Inter. 184.1-2 (2011), pp. 63–79. doi: 10.1016/j.pepi.2010.10.013.

[1954]

CA Mériaux et al. “Capture of the Canary mantle plume material by the Gibraltar arc mantle wedge during slab rollback”. In: Geophy. J. Int. 201.3 (2015), pp. 1717–1721. doi: 10.1093/gji/ggv120.

[1955]

Catherine A Mériaux, João C Duarte, Wouter P Schellart, and Anne-Sophie Mériaux. “A two-way interaction between the Hainan plume and the Manila subduction zone”. In: Geophys. Res. Lett. 42.14 (2015), pp. 5796–5802. doi: 10.1002/2015GL064313.

[1956]

Grégoire Messager, Riad Hassani, and Bertrand Nivière. “Mechanical analysis of a natural example of onland gravity gliding: The role of river incision and deposition”. In: J. Geophys. Res.: Earth Surface 119.7 (2014), pp. 1581–1603. doi: 10.1002/2013JF003062.

[1957]

Guy Metcalfe, Craig R Bina, and JM Ottino. “Kinematic considerations for mantle mixing”. In: Geophys. Res. Lett. 22.7 (1995), pp. 743–746. doi: 10.1029/95GL00056.

[1958]

AJF Metherell and TJ Quinn. “The gravitational field of a 111 tetrahedron”. In: Metrologia 22.2 (1986), p. 87. doi: 10.1088/0026-1394/22/2/003.

[1959]

L. Métivier and C. P. Conrad. “Body tides of a convecting, laterally heterogeneous, and aspherical Earth”. In: J. Geophys. Res.: Solid Earth 113.B11 (2008). doi: 10.1029/ 2007JB005448.

[1960]

Clio Meyer and Wouter Pieter Schellart. “Three-dimensional dynamic models of subducting plate-overriding plate-upper mantle interaction”. In: J. Geophys. Res.: Solid Earth 118.2 (2013), pp. 775–790. doi: 10.1002/jgrb.50078.

[1961]

Laurent Michon and Olivier Merle. “Crustal structures of the Rhinegraben and the Massif Central grabens: An experimental approach”. In: Tectonics 19.5 (2000), pp. 896–904. doi: 10.1029/2000TC900015.

[1962]

K Mickus, Ketsela Tadesse, GR Keller, and Befekadu Oluma. “Gravity analysis of the main Ethiopian rift”. In: Journal of African Earth Sciences 48.2-3 (2007), pp. 59–69.

[1963]

Ivar Midtkandal, Jean-Pierre Brun, Roy H Gabrielsen, and Ritske S Huismans. “Control of lithosphere rheology on subduction polarity at initiation: Insights from 3D analogue modelling”. In: Earth Planet. Sci. Lett. 361 (2013), pp. 219–228.

[1964]

C. Miehe, F. Aldakheel, and S. Mauthe. “Mixed variational principles and robust finite element implementations of gradient plasticity at small strains”. In: Int. J. Num. Meth. Eng. 94 (2013), pp. 1037–1074. doi: 10.1002/nme.4486.

[1965]

V Mikhailov et al. “Numerical modelling of post-seismic rupture propagation after the Sumatra 26.12.2004 earthquake constrained by GRACE gravity data”. In: Geophy. J. Int. 194.2 (2013), pp. 640–650.

[1966]

M. S. Miller and T. W. Becker. “Mantle flow deflected by interactions between subducted slabs and cratonic keels”. In: Nature Geoscience 5.10 (2012), pp. 726–730. doi: 10.1038/ ngeo1553.

[1967]

A.N. Minakov, Y.Y. Podlachikov, J.I. Faleide, and R.S. Huismans. “Rifting assisted by shear heating and formation of the Lomonosov ridge”. In: Earth Planet. Sci. Lett. 373 (2013), pp. 31–40. doi: 10.1016/j.epsl.2013.04.042.

[1968]

Brent M Minchew, Colin R Meyer, Alexander A Robel, G Hilmar Gudmundsson, and Mark Simons. “Processes controlling the downstream evolution of ice rheology in glacier shear margins: case study on Rutford Ice Stream, West Antarctica”. In: Journal of Glaciology 64.246 (2018), pp. 583–594. doi: 10.1017/jog.2018.47.

[1969]

John W Minear and M Nafi Toksöz. “Thermal regime of a downgoing slab and new global tectonics”. In: J. Geophys. Res.: Solid Earth 75.8 (1970), pp. 1397–1419. doi: 10.1029/ JB075i008p01397.

[1970]

Y.A. Mishin, T.V. Gerya, J.-P. Burg, and J.A.D. Connolly. “Dynamics of double subduction: Numerical modeling”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 280–295. doi: 10. 1016/j.pepi.2008.06.012.

[1971]

G. Mitri and A. P. Showman. “Convective-conductive transitions and sensitivity of a convecting ice shell to perturbations in heat flux and tidal-heating rate: Implications for Europa”. In: Icarus 177.2 (2005), pp. 447–460. doi: 10.1016/j.icarus.2005.03.019.

[1972]

J.X. Mitrovica, C. Beaumont, and G.T. Jarvis. “Tilting of continental interiors by the dynamical effects of subduction”. In: Tectonics 8.5 (1989), pp. 1079–1094. doi: 10.1029/ TC008i005p01079.

[1973]

J.X. Mitrovica, R.N. Pysklywec, C. Beaumont, and A. Rutty. “The Devonian to Permian sedimentation of the Russian platform: An example of subduction-controlled long-wavelength tilting of continents”. In: Journal of Geodynamics 22.1-2 (1996), pp. 79–96. doi: 10. 1016/0264-3707(96)00008-7.

[1974]

Jerry X Mitrovica. “Haskell [1935] revisited”. In: J. Geophys. Res.: Solid Earth 101.B1 (1996), pp. 555–569. doi: 10.1029/95JB03208.

[1975]

Jerry X Mitrovica and Alessandro M Forte. “Radial profile of mantle viscosity: results from the joint inversion of convection and postglacial rebound observables”. In: J. Geophys. Res.: Solid Earth 102.B2 (1997), pp. 2751–2769.

[1976]

JX Mitrovica and GT Jarvis. “A numerical study of thermal convection between rigid horizontal boundaries”. In: Geophysical & Astrophysical Fluid Dynamics 38.3 (1987), pp. 193–223. doi: 10.1080/03091928708219204.

[1977]

JX Mitrovica and GT Jarvis. “Surface deflections due to transient subduction in a convecting mantle”. In: Tectonophysics 120.3-4 (1985), pp. 211–237. doi: 10.1016/0040-1951(85) 90052-6.

[1978]

JX Mitrovica et al. “Dynamic Topography and Ice Age Paleoclimate”. In: Annual Review of Earth and Planetary Sciences 48 (2020), pp. 585–621. doi: 10.1146/annurev-earth- 082517-010225.

[1979]

S. Mittal and T. Tezduyar. “A unified finite element formulation for compressible and incompressible flows using augmented conservation variables”. In: Computer Methods in Applied Mechanics and Engineering 161 (1998), pp. 229–243.

[1980]

Eric Mittelstaedt and Paul J Tackley. “Plume heat flow is much lower than CMB heat flow”. In: Earth Planet. Sci. Lett. 241.1-2 (2006), pp. 202–210.

[1981]

Takehiro Miyagoshi, Masanori Kameyama, and Masaki Ogawa. “Tectonic plates in 3D mantle convection model with stress-history-dependent rheology”. In: Earth, Planets and Space 72 (2020), pp. 1–6. doi: 10.1186/s40623-020-01195-1.

[1982]

Arata Miyauchi and Masanori Kameyama. “Influences of the depth-dependence of thermal conductivity and expansivity on thermal convection with temperature-dependent viscosity”. In: Phys. Earth. Planet. Inter. 223 (2013), pp. 86–95.

[1983]

Yoshinori Miyazaki and Jun Korenaga. “A wet heterogeneous mantle creates a habitable world in the Hadean”. In: Nature 603.7899 (2022), pp. 86–90. doi: 10.1038/s41586- 021-04371-9.

[1984]

A. Moeller and U. Hansen. “Influence of rotation on the metal rain in a Hadean magma ocean”. In: Geochem. Geophys. Geosyst. 14.4 (2013), pp. 1226–1244. doi: 10.1002/ggge. 20087.

[1985]

Arash Mohajeri, Yaron Finzi, Hans Mühlhaus, and Gideon Rosenbaum. “Melt and shear interactions in the lithosphere: Theory and numerical analysis of pure shear extension”. In: J. Geophys. Res.: Solid Earth 118.5 (2013), pp. 2488–2499. doi: 10.1111/j.1365- 246X.2006.03225.x.

[1986]

M Molinaro, H Zeyen, and X Laurencin. “Lithospheric structure beneath the south-eastern Zagros Mountains, Iran: Recent slab break-off?” In: Terra Nova 17.1 (2005), pp. 1–6. doi: 10.1111/j.1365-3121.2004.00575.x.

[1987]

Nicolas E Molnar, Alexander R Cruden, and Peter G Betts. “Interactions between propagating rifts and linear weaknesses in the lower crust”. In: Geosphere (2019). doi: 10.1130/GES02119.1.

[1988]

P. Molnar. Brace-Goetze strength profiles, the partitioning of strike-slip and thrust faulting at zones of oblique convergence, and the stress-heat flow paradox of the San Andreas Fault. Academic Press Ltd, 1992.

[1989]

P. Molnar, G.A. Houseman, and C.P. Conrad. “ Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer”. In: Geophys. J. Int. 133 (1998), pp. 568–584.

[1990]

Peter Molnar. “Climate change, flooding in arid environments, and erosion rates”. In: Geology 29.12 (2001), pp. 1071–1074. doi: 10.1130/0091-7613(2001)029<1071:CCFIAE>2.0. CO;2.

[1991]

Peter Molnar and Philip England. “Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?” In: Nature 346 (July 1990).

[1992]

Peter Molnar and Philip England. “Temperatures, heat flux, and frictional stress near major thrust faults”. In: J. Geophys. Res.: Solid Earth 95.B4 (1990), pp. 4833–4856. doi: 10. 1029/JB095iB04p04833.

[1993]

Peter Molnar and Craig H Jones. “A test of laboratory based rheological parameters of olivine from an analysis of late Cenozoic convective removal of mantle lithosphere beneath the Sierra Nevada, California, USA”. In: Geophy. J. Int. 156.3 (2004), pp. 555–564. doi: 10.1111/j.1365-246X.2004.02138.x.

[1994]

Peter Molnar and Paul Tapponnier. “Cenozoic tectonics of Asia: Effects of a continental collision”. In: Science 189 (1975), pp. 419–426. doi: xxxx.

[1995]

Martina Monaco, Juliane Dannberg, Rene Gassmoeller, and Stephen Pugh. “Linking geodynamic models of basalt segregation in mantle plumes to the X-Discontinuity observed beneath hotspots”. In: J. Geophys. Res.: Solid Earth 128 (2023), e2022JB025036. doi: 10.1029/2022JB025036.

[1996]

Luke S Mondy, Patrice F Rey, and Guillaume Duclaux. “The role of surface processes in basin inversion and breakup unconformity”. In: Geology (2023). doi: 10.1130/G50833.1.

[1997]

Luke S Mondy, Patrice F Rey, Guillaume Duclaux, and Louis Moresi. “The role of asthenospheric flow during rift propagation and breakup”. In: Geology 46.2 (2017), pp. 103–106. doi: 10.1130/G39674.1.

[1998]

Marc Monnereau and Sandrine Quéré. “Spherical shell models of mantle convection with tectonic plates”. In: Earth Planet. Sci. Lett. 184.3-4 (2001), pp. 575–587. doi: 10.1016/ S0012-821X(00)00334-4.

[1999]

Marc Monnereau and Michel Rabinowicz. “Is the 670 km phase transition able to layer the Earth’s convection in a mantle with depth-dependent viscosity?” In: Geophys. Res. Lett. 23.9 (1996), pp. 1001–1004. doi: 10.1029/96GL00737.

[2000]

Marc Monnereau and David A Yuen. “Topology of the postperovskite phase transition and mantle dynamics”. In: Proceedings of the National Academy of Sciences 104.22 (2007), pp. 9156–9161. doi: 10.1073/pnas.0608480104.

[2001]

M Montagnat et al. “Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores”. In: The Cryosphere 8 (2014), pp. 1129–1138. doi: 10.5194/tc-8-1129-2014.

[2002]

N. L. Montague, L. H. Kellogg, and M. Manga. “High Rayleigh number thermo-chemical models of a dense boundary layer in D””. In: Geophys. Res. Lett. 25.13 (1998), pp. 2345–2348. doi: 10.1029/98GL51872.

[2003]

Nancy L Montague and Louise H Kellogg. “Numerical models of a dense layer at the base of the mantle and implications for the geodynamics of D””. In: J. Geophys. Res.: Solid Earth 105.B5 (2000), pp. 11101–11114. doi: 10.1029/1999JB900450.

[2004]

Laurent GJ Montési. “Fabric development as the key for forming ductile shear zones and enabling plate tectonics”. In: Journal of Structural Geology 50 (2013), pp. 254–266. doi: 10.1016/j.jsg.2012.12.011.

[2005]

Laurent GJ Montési, Mark D Behn, Laura B Hebert, Jian Lin, and Jennifer L Barry. “Controls on melt migration and extraction at the ultraslow Southwest Indian Ridge 10–16 E”. In: J. Geophys. Res.: Solid Earth 116.B10 (2011). doi: 10.1029/2011JB008259.

[2006]

Laurent GJ Montési and Greg Hirth. “Grain size evolution and the rheology of ductile shear zones: from laboratory experiments to postseismic creep”. In: Earth Planet. Sci. Lett. 211.1-2 (2003), pp. 97–110.

[2007]

D.R. Montgomery and M.T. Brandon. “Topographic controls on erosion rates in tectonically active mountain ranges”. In: Earth Planet. Sci. Lett. 201 (2002), pp. 481–489. doi: 10. 1016/S0012-821X(02)00725-2.

[2008]

Albert de Montserrat, Manuele Faccenda, and Giorgio Pennacchioni. “Extrinsic Anisotropy of Two-Phase Newtonian Aggregates: Fabric Characterization and Parameterization”. In: J. Geophys. Res.: Solid Earth 126.11 (2021), e2021JB022232. doi: 10.1029/2021JB022232.

[2009]

William B Moore, Gerald Schubert, and Paul Tackley. “Three-dimensional simulations of plume-lithosphere interaction at the Hawaiian swell”. In: Science 279.5353 (1998), pp. 1008–1011.

[2010]

William B Moore, Gerald Schubert, and Paul J Tackley. “The role of rheology in lithospheric thinning by mantle plumes”. In: Geophys. Res. Lett. 26.8 (1999), pp. 1073–1076.

[2011]

William B Moore and A Alexander G Webb. “Heat-pipe earth”. In: Nature 501.7468 (2013), p. 501. doi: 10.1038/nature12473.

[2012]

William B. Moore, Justin I. Simon, and A. Alexander G. Webb. “Heat-pipe planets”. In: Earth Planet. Sci. Lett. 474 (2017), pp. 13–19. doi: 10.1016/j.epsl.2017.06.015.

[2013]

Eldridge M Moores, Louise H Kellogg, and Yildirim Dilek. “Tethyan ophiolites, mantle convection, and tectonic “historical contingency”: A resolution of the” ophiolite conundrum””. In: SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA 349 (2000), pp. 3–12. doi: xxxx.

[2014]

P. Mora and D.A. Yuen. “Simulation of regimes of convection and plume dynamics by the thermal Lattice Boltzmann Method”. In: Phys. Earth. Planet. Inter. 275 (2018), pp. 69–79. doi: 10.1016/j.pepi.2018.01.003.

[2015]

Peter Mora and David A Yuen. “Simulation of plume dynamics by the Lattice Boltzmann Method”. In: Geophy. J. Int. 210.3 (2017), pp. 1932–1937. doi: 10.1093/gji/ggx279.

[2016]

C. Morency and M.-P. Doin. “Numerical simulations of the mantle lithosphere delamination”. In: J. Geophys. Res.: Solid Earth 109.B03410 (2004).

[2017]

C. Morency, R.S. Huismans, C. Beaumont, and P. Fullsack. “A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability”. In: J. Geophys. Res.: Solid Earth 112.B10407 (2007). doi: 10.1029/ 2006JB004701.

[2018]

L Moresi and H-B Mühlhaus. “Anisotropic viscous models of large-deformation Mohr–Coulomb failure”. In: Philosophical Magazine 86.21-22 (2006), pp. 3287–3305. doi: 10.1080/14786430500255419.

[2019]

L-N Moresi and A. Lenardic. “Three-dimensional numerical simulations of crustal deformation and subcontinental mantle convection”. In: Earth Planet. Sci. Lett. 150.3-4 (1997), pp. 233–243. doi: 10.1016/S0012-821X(97)00093-9.

[2020]

L. Moresi, P.G. Betts, M.S. Miller, and R.A. Cayley. “Dynamics of continental accretion”. In: Nature 508 (2014), pp. 245–248. doi: 10.1038/nature13033.

[2021]

L. Moresi, F. Dufour, and H.B. Mühlhaus. “Mantle Convection Modeling with Viscoelastic/Brittle Lithosphere: Numerical Methodology and Plate Tectonic Modeling”. In: Pure Appl. Geophys. 159 (2002), p. 159. doi: 10.1007/s00024-002-8738-3.

[2022]

L. Moresi and M. Gurnis. “Constraints on the lateral strength of slabs from three-dimensional dynamic flow models”. In: Earth Planet. Sci. Lett. 138.1 (1996), pp. 15–28. doi: 10. 1016/0012-821X(95)00221-W.

[2023]

Louis Moresi, Francois Dufour, and HB Mühlhaus. “Viscoelastic formulation for modeling of plate tectonics”. In: Bifurcation and localization in soils and rocks (2001), pp. 337–344.

[2024]

Louis Moresi and Adrian Lenardic. “Three-dimensional mantle convection with continental crust: first-generation numerical simulations”. In: Earth Interactions 3.2 (1999), pp. 1–14.

[2025]

Louis Moresi and Barry Parsons. “Interpreting gravity, geoid, and topography for convection with temperature dependent viscosity: Application to surface features on Venus”. In: J. Geophys. Res.: Planets 100.E10 (1995), pp. 21155–21171. doi: 10.1029/95JE01622.

[2026]

Isabelle Moretti and Claude Froidevaux. “Thermomechanical models of active rifting”. In: Tectonics 5.4 (1986), pp. 501–511.

[2027]

Jason Phipps Morgan and Donald W Forsyth. “Three-dimensional flow and temperature perturbations due to a transform offset: Effects on oceanic crustal and upper mantle structure”. In: J. Geophys. Res.: Solid Earth 93.B4 (1988), pp. 2955–2966. doi: 10.1029/ JB093iB04p02955.

[2028]

Jason Phipps Morgan and W Jason Morgan. “Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding”. In: Earth Planet. Sci. Lett. 170.3 (1999), pp. 215–239. doi: 10.1016/S0012-821X(99)00114-4.

[2029]

W Jason Morgan. “Convection plumes in the lower mantle”. In: Nature 230.5288 (1971), pp. 42–43. doi: 10.1038/230042a0.

[2030]

W.J. Morgan. “Gravity Anomalies and Convection Currents. 1: A Sphere and Cylinder Sinking beneath the Surface of a Viscous Fluid”. In: J. Geophys. Res.: Solid Earth 70.24 (1965). doi: 10.1029/JZ070i024p06175.

[2031]

C Moriceau, U Christensen, and L Fleitout. “Geoid and topography associated with sublithospheric convection: negligible contribution from deep currents”. In: Earth Planet. Sci. Lett. 103.1-4 (1991), pp. 395–408. doi: 10.1016/0012-821X(91)90175-H.

[2032]

M Morishige. “Spatial variations in the degree of upper-mantle depletion in a mid-ocean ridge–Transform fault system”. In: Geochem. Geophys. Geosyst. 25.2 (2024), e2023GC011227. doi: 10.1029/2023GC011227.

[2033]

M Morishige. “The thermal structure of subduction zones predicted by plate cooling models with variable thermal properties”. In: Geophy. J. Int. 229.3 (2022), pp. 1490–1502. doi: 10.1093/gji/ggac008.

[2034]

M Morishige and S Honda. “Three-dimensional structure of P-wave anisotropy in the presence of small-scale convection in the mantle wedge”. In: Geochem. Geophys. Geosyst. 12.12 (2011). doi: 10.1029/2011GC003866.

[2035]

M Morishige, S Honda, and Paul J Tackley. “Construction of semi-dynamic model of subduction zone with given plate kinematics in 3D sphere”. In: Earth, planets and space 62.9 (2010), pp. 665–673. doi: 10.5047/eps.2010.09.002.

[2036]

M Morishige, S Honda, and M Yoshida. “Possibility of hot anomaly in the sub-slab mantle as an origin of low seismic velocity anomaly under the subducting Pacific plate”. In: Phys. Earth. Planet. Inter. 183.1-2 (2010), pp. 353–365. doi: 10.1016/j.pepi.2010.04.002.

[2037]

M Morishige and PE van Keken. “Fluid migration in a subducting viscoelastic slab”. In: Geochem. Geophys. Geosyst. 19.2 (2018), pp. 337–355. doi: 10.1002/2017GC007236.

[2038]

M Morishige and Peter E van Keken. “Along-arc variation in short-term slow slip events caused by 3-D fluid migration in subduction zones”. In: J. Geophys. Res.: Solid Earth 122.2 (2017), pp. 1434–1448. doi: 10.1002/2016JB013091.

[2039]

M Morishige and T Kuwatani. “Bayesian inversion of surface heat flow in subduction zones: a framework to refine geodynamic models based on observational constraints”. In: Geophy. J. Int. 222.1 (2020), pp. 103–109. doi: 10.1093/gji/ggaa149.

[2040]

M Morishige and M Tasaka. “Limited impact of anisotropic thermal conductivity in the mantle wedge on the slab temperature in the Tohoku subduction zone, Northeast Japan”. In: Tectonophysics 820 (2021), p. 229110. doi: 10.1016/j.tecto.2021.229110.

[2041]

M. Morishige and P.E. van Keken. “Along-arc variation in the 3-D thermal structure around the junction between the Japan and Kurile arcs”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 2225–2240. doi: 10.1002/2014GC005394.

[2042]

Manabu Morishige. “A new regime of slab-mantle coupling at the plate interface and its possible implications for the distribution of volcanoes”. In: Earth Planet. Sci. Lett. 427 (2015), pp. 262–271. doi: 10.1016/j.epsl.2015.07.011.

[2043]

Manabu Morishige and Satoru Honda. “Mantle flow and deformation of subducting slab at a plate junction”. In: Earth Planet. Sci. Lett. 365 (2013), pp. 132–142. doi: 10.1016/j. epsl.2013.01.033.

[2044]

Gabriele Morra, Philippe Chatelain, Paul Tackley, and Petros Koumoutsakos. “Earth curvature effects on subduction morphology: Modeling subduction in a spherical setting”. In: Acta Geotechnica 4.2 (2009), pp. 95–105. doi: 10.1007/s11440-008-0060-5.

[2045]

Gabriele Morra, Philippe Chatelain, Paul Tackley, and Petros Koumoutsakos. “Large scale three-dimensional boundary element simulation of subduction”. In: International Conference on Computational Science. 2007, pp. 1122–1129. doi: 10.1007/978-3-540-72588-6_178.

[2046]

Gabriele Morra, Maria Seton, Leonardo Quevedo, and R Dietmar Müller. “Organization of the tectonic plates in the last 200 Myr”. In: Earth Planet. Sci. Lett. 373 (2013), pp. 93–101. doi: 10.1016/j.epsl.2013.04.020.

[2047]

Gabriele Morra, David A Yuen, L Boschi, P Chatelain, P Koumoutsakos, and PJ Tackley. “The fate of the slabs interacting with a density/viscosity hill in the mid-mantle”. In: Phys. Earth. Planet. Inter. 180.3-4 (2010), pp. 271–282. doi: 10.1016/j.pepi.2010.04.001.

[2048]

S Morris and D Canright. “A boundary-layer analysis of Benard convection in a fluid of strongly temperature-dependent viscosity”. In: Phys. Earth. Planet. Inter. 36.3-4 (1984), pp. 355–373.

[2049]

M. H. Motoki and M. D. Ballmer. “Intraplate volcanism due to convective instability of stagnant slabs in the mantle transition zone”. In: Geochem. Geophys. Geosyst. 16.2 (2015), pp. 538–551. doi: 10.1002/2014GC005608.

[2050]

R. Moucha, A.M. Forte, J.X. Mitrovica, and A. Daradich. “Lateral variations in mantle rheology: implications for convection related surface observables and inferred viscosity models”. In: Geophy. J. Int. 169 (2007), pp. 113–135.

[2051]

Evangelos Moulas, Stefan M Schmalholz, Yury Podladchikov, Lucie Tajčmanová, Dimitrios Kostopoulos, and Lukas Baumgartner. “Relation between mean stress, thermodynamic, and lithostatic pressure”. In: Journal of metamorphic geology 37.1 (2018), pp. 1–14. doi: 10.1111/jmg.12446.

[2052]

P. Moulik and G. Ekström. “The relationships between large-scale variations in shear velocity, density, and compressional velocity in the Earth’s mantle”. In: J. Geophys. Res.: Solid Earth 121 (2016). doi: 10.1002/2015JB012679.

[2053]

S. Mueller and R.J. Phillips. “On the initiation of subduction”. In: J. Geophys. Res.: Solid Earth 96.B1 (1991), pp. 651–665. doi: 10.1029/90JB02237.

[2054]

H-B Mühlhaus, Frédéric Dufour, Louis Moresi, and Bruce Hobbs. “A director theory for visco-elastic folding instabilities in multilayered rock”. In: International Journal of Solids and Structures 39.13-14 (2002), pp. 3675–3691.

[2055]

H-B Mühlhaus, L Moresi, and Miroslav Cada. “Emergent anisotropy and flow alignment in viscous rock”. In: Pure Appl. Geophys. 161.11-12 (2004), pp. 2451–2463.

[2056]

H-B Mühlhaus, L Moresi, and M Čada. “Anisotropy model for mantle convection”. In: Computational Fluid and Solid Mechanics 2003. 2003, pp. 1044–1046. doi: 10.1016/B978- 008044046-0.50255-4.

[2057]

H.-B. Mühlhaus, L. Moresi, B. Hobbs, and F. Dufour. “Large amplitude folding in finely layered viscoelastic rock structures”. In: Pure Appl. Geophys. 159 (2002), pp. 2311–2333.

[2058]

H.B. Mühlhaus and K. Regenauer-Lieb. “Towards a self-consistent plate mantle model that includes elasticity: simple benchmarks and application to basic modes of convection”. In: Geophy. J. Int. 163 (2005), pp. 788–800. doi: 10.1111/j.1365-246X.2005.02742.x.

[2059]

Hans-Bernd Mühlhaus, Matt Davies, and Louis Moresi. “Elasticity, yielding and episodicity in simple models of mantle convection”. In: Computational Earthquake Physics: Simulations, Analysis and Infrastructure, Part I. Springer, 2006, pp. 2031–2047.

[2060]

G Mulugeta and D Sokoutis. “Hanging wall accommodation styles in ramp-flat thrust models”. In: Geological Society, London, Special Publications 212.1 (2003), pp. 197–207. doi: 10.1144/GSL.SP.2003.212.01.13.

[2061]

E. Mulyukova and D. Bercovici. “A theoretical model for the evolution of microstructure in lithospheric shear zones”. In: Geophy. J. Int. 216 (2019), pp. 803–819. doi: 10.1093/ gji/ggy467.

[2062]

E. Mulyukova and D. Bercovici. “Collapse of passive margins by lithospheric damage and plunging grain size”. In: Earth Planet. Sci. Lett. 484 (2018), pp. 341–352. doi: 10.1016/ j.epsl.2017.12.022.

[2063]

E. Mulyukova and D. Bercovici. “Formation of lithospheric shear zones: Effect of temperature on two-phase grain damage”. In: Phys. Earth. Planet. Inter. 270 (2017), pp. 195–212. doi: 10.1016/j.pepi.2017.07.011.

[2064]

E. Mulyukova and D. Bercovici. “Mantle Convection in Terrestrial Planets”. In: Oxford Research Encyclopedia, Planetary Science (2020). doi: 10 . 1093 / acrefore / 9780190647926.013.109.

[2065]

E. Mulyukova, B. Steinberger, M. Dabrowski, and S.V. Sobolev. “Survival of LLSVPs for billions of years in a vigorously convecting mantle: Replenishment and destruction of chemical anomaly”. In: J. Geophys. Res.: Solid Earth 120 (2015), pp. 3824–3847. doi: 10.1002/ 2014JB011688.

[2066]

Jessica Munch, Taras Gerya, and Kosuke Ueda. “Oceanic crust recycling controlled by weakening at slab edges”. In: Nature Communications 11.1 (2020), pp. 1–6. doi: 10. 1038/s41467-020-15750-7.

[2067]

Jessica Munch, Kosuke Ueda, Stephanie Schnydrig, Dave A May, and Taras V Gerya. “Contrasting influence of sediments vs surface processes on retreating subduction zones dynamics”. In: Tectonophysics 836 (2022), p. 229410. doi: 10.1016/j.tecto.2022. 229410.

[2068]

M.A. Murphy, M.H. Taylor, J. Gosse, C.R.P. Silver, D.M. Whipp, and C. Beaumont. “Limit of strain partitioning in the Himalaya marked by large earthquakes in western Nepal”. In: Nature Geoscience 7.1 (2014), pp. 38–42. doi: 10.1038/ngeo2017.

[2069]

Jun Muto et al. “Two-dimensional viscosity structure of the northeastern Japan islands arc-trench system”. In: Geophys. Res. Lett. 40.17 (2013), pp. 4604–4608.

[2070]

R Myhill. “Slab buckling and its effect on the distributions and focal mechanisms of deep-focus earthquakes”. In: Geophy. J. Int. 192.2 (2012), pp. 837–853. doi: 10.1093/ gji/ggs054.

[2071]

Robert Myhill et al. “BurnMan – a Python toolkit for planetary geophysics, geochemistry and thermodynamics”. In: Journal of Open Source Software 8.87 (2023), p. 5389. doi: 10.21105/joss.05389.

[2072]

Seyed Tohid Nabavi, Seyed Ahmad Alavi, Soheil Mohammadi, and Mohammad Reza Ghassemi. “Mechanical evolution of transpression zones affected by fault interactions: insights from 3D elasto-plastic finite element models”. In: Journal of Structural Geology 106 (2018), pp. 19–40. doi: 10.1016/j.jsg.2017.11.003.

[2073]

Seyed Tohid Nabavi, Seyed Ahmad Alavi, Soheil Mohammadi, Mohammad Reza Ghassemi, and Marcel Frehner. “Analysis of transpression within contractional fault steps using finite-element method”. In: Journal of Structural Geology 96 (2017), pp. 1–20. doi: 10. 1016/j.jsg.2017.01.004.

[2074]

Seyed Tohid Nabavi and Haakon Fossen. “Fold geometry and folding–a review”. In: Earth-Science Reviews 222 (2021), p. 103812. doi: 10.1016/j.earscirev.2021.103812.

[2075]

Seyed Tohid Nabavi and Jonas B Ruh. “Hybrid thrust sequences–a new structural perspective”. In: Journal of Asian Earth Sciences 253 (2023), p. 105701. doi: 10.1016/ j.jseaes.2023.105701.

[2076]

Thorsten J Nagel and W Roger Buck. “Control of rheological stratification on rifting geometry: a symmetric model resolving the upper plate paradox”. In: International Journal of Earth Sciences 96.6 (2007), pp. 1047–1057. doi: 10.1007/s00531-007-0195-x.

[2077]

Boris M Naimark, Ali T Ismail-Zadeh, and Wolfgang R Jacoby. “Numerical approach to problems of gravitational instability of geostructures with advected material boundaries”. In: Geophy. J. Int. 134.2 (1998), pp. 473–483. doi: 10.1111/j.1365-246X.1998.tb07140.x.

[2078]

Masao Nakada, Jun’ichi Okuno, and Yoshiya Irie. “Inference of viscosity jump at 670 km depth and lower mantle viscosity structure from GIA observations”. In: Geophy. J. Int. 212.3 (2018), pp. 2206–2225. doi: 10.1093/gji/ggx519.

[2079]

T. Nakagawa and B.A. Buffett. “Mass transport mechanism between the upper and lower mantle in numerical simulations of thermochemical mantle convection with multicomponent phase changes”. In: Earth Planet. Sci. Lett. 230 (2005), pp. 11–27. doi: 10.1016/j. epsl.2004.11.005.

[2080]

Takashi Nakagawa. “An implication for the origin of stratification below the core–mantle boundary region in numerical dynamo simulations in a rotating spherical shell”. In: Phys. Earth. Planet. Inter. 247 (2015), pp. 94–104. doi: 10.1016/j.pepi.2015.02.007.

[2081]

Takashi Nakagawa. “Effect of a stably stratified layer near the outer boundary in numerical simulations of a magnetohydrodynamic dynamo in a rotating spherical shell and its implications for Earth’s core”. In: Phys. Earth. Planet. Inter. 187.3-4 (2011), pp. 342–352. doi: 10.1016/j.pepi.2011.06.001.

[2082]

Takashi Nakagawa. “Numerical modeling on global-scale mantle water cycle and its impact on the sea-level change”. In: Earth Planet. Sci. Lett. 619 (2023), p. 118312. doi: 10. 1016/j.epsl.2023.118312.

[2083]

Takashi Nakagawa. “On the numerical modeling of the deep mantle water cycle in global-scale mantle dynamics: The effects of the water solubility limit of lower mantle minerals”. In: Journal of Earth Science 28.4 (2017), pp. 563–577. doi: 10.1007/s12583-017-0755-3.

[2084]

Takashi Nakagawa. “On the thermo-chemical origin of the stratified region at the top of the Earth’s core”. In: Phys. Earth. Planet. Inter. 276 (2018), pp. 172–181. doi: 10.1016/j. pepi.2017.05.011.

[2085]

Takashi Nakagawa and Christopher J Davies. “Combined dynamical and morphological characterisation of geodynamo simulations”. In: Earth Planet. Sci. Lett. 594 (2022), p. 117752. doi: 10.1016/j.epsl.2022.117752.

[2086]

Takashi Nakagawa and Hikaru Iwamori. “Long-term stability of plate-like behavior caused by hydrous mantle convection and water absorption in the deep mantle”. In: J. Geophys. Res.: Solid Earth 122.10 (2017), pp. 8431–8445. doi: 10.1002/2017JB014052.

[2087]

Takashi Nakagawa and Hikaru Iwamori. “On the implications of the coupled evolution of the deep planetary interior and the presence of surface ocean water in hydrous mantle convection”. In: Comptes Rendus. Géoscience 351.2-3 (2019), pp. 197–208. doi: 10.1016/ j.crte.2019.02.001.

[2088]

Takashi Nakagawa, Hikaru Iwamori, Ryunosuke Yanagi, and Atsushi Nakao. “On the evolution of the water ocean in the plate-mantle system”. In: Progress in Earth and Planetary Science 5 (2018), pp. 1–16. doi: 10.1186/s40645-018-0209-2.

[2089]

Takashi Nakagawa and Shun-ichiro Karato. “Influence of realistic rheological properties on the style of mantle convection: roles of dynamic friction and depth-dependence of rheological properties”. In: Geophy. J. Int. 226.3 (2021), pp. 1986–1996. doi: 10.1093/gji/ggab197.

[2090]

Takashi Nakagawa and Tomoeki Nakakuki. “Dynamics in the uppermost lower mantle: insights into the deep mantle water cycle based on the numerical modeling of subducted slabs and global-scale mantle dynamics”. In: Annual Review of Earth and Planetary Sciences 47 (2019), pp. 41–66. doi: 10.1146/annurev-earth-053018-060305.

[2091]

Takashi Nakagawa, Tomoeki Nakakuki, and Hikaru Iwamori. “Water circulation and global mantle dynamics: Insight from numerical modeling”. In: Geochem. Geophys. Geosyst. 16.5 (2015), pp. 1449–1464. doi: 10.1002/2014GC005701.

[2092]

Takashi Nakagawa and Marc W Spiegelman. “Global-scale water circulation in the Earth’s mantle: Implications for the mantle water budget in the early Earth”. In: Earth Planet. Sci. Lett. 464 (2017), pp. 189–199. doi: 10.1016/j.epsl.2017.02.010.

[2093]

Takashi Nakagawa and Paul J Tackley. “Deep mantle heat flow and thermal evolution of the Earth’s core in thermochemical multiphase models of mantle convection”. In: Geochem. Geophys. Geosyst. 6.8 (2005). doi: 10.1029/2005GC000967.

[2094]

Takashi Nakagawa and Paul J Tackley. “Effects of a perovskite-post perovskite phase change near core-mantle boundary in compressible mantle convection”. In: Geophys. Res. Lett. 31.16 (2004). doi: 10.1029/2004GL020648.

[2095]

Takashi Nakagawa and Paul J Tackley. “Effects of low-viscosity post-perovskite on thermo-chemical mantle convection in a 3-D spherical shell”. In: Geophys. Res. Lett. 38.4 (2011). doi: 10.1029/2010GL046494.

[2096]

Takashi Nakagawa and Paul J Tackley. “Effects of thermo-chemical mantle convection on the thermal evolution of the Earth’s core”. In: Earth Planet. Sci. Lett. 220.1-2 (2004), pp. 107–119. doi: 10.1016/S0012-821X(04)00055-X.

[2097]

Takashi Nakagawa and Paul J Tackley. “Implications of high core thermal conductivity on Earth’s coupled mantle and core evolution”. In: Geophys. Res. Lett. 40.11 (2013), pp. 2652–2656. doi: 10.1002/grl.50574.

[2098]

Takashi Nakagawa and Paul J Tackley. “Influence of combined primordial layering and recycled MORB on the coupled thermal evolution of Earth’s mantle and core”. In: Geochem. Geophys. Geosyst. 15.3 (2014), pp. 619–633. doi: 10.1002/2013GC005128.

[2099]

Takashi Nakagawa and Paul J Tackley. “Influence of initial CMB temperature and other parameters on the thermal evolution of Earth’s core resulting from thermochemical spherical mantle convection”. In: Geochem. Geophys. Geosyst. 11.6 (2010). doi: 10.1029/ 2010GC003031.

[2100]

Takashi Nakagawa and Paul J Tackley. “Influence of magmatism on mantle cooling, surface heat flow and Urey ratio”. In: Earth Planet. Sci. Lett. 329 (2012), pp. 1–10. doi: 10. 1016/j.epsl.2012.02.011.

[2101]

Takashi Nakagawa and Paul J Tackley. “Influence of plate tectonic mode on the coupled thermochemical evolution of Earth’s mantle and core”. In: Geochem. Geophys. Geosyst. 16.10 (2015), pp. 3400–3413. doi: 10.1002/2015GC005996.

[2102]

Takashi Nakagawa and Paul J Tackley. “Lateral variations in CMB heat flux and deep mantle seismic velocity caused by a thermal–chemical-phase boundary layer in 3D spherical convection”. In: Earth Planet. Sci. Lett. 271.1-4 (2008), pp. 348–358. doi: 10.1016/j. epsl.2008.04.013.

[2103]

Takashi Nakagawa and Paul J Tackley. “The interaction between the post-perovskite phase change and a thermo-chemical boundary layer near the core–mantle boundary”. In: Earth Planet. Sci. Lett. 238.1-2 (2005), pp. 204–216. doi: 10.1016/j.epsl.2005.06.048.

[2104]

Takashi Nakagawa and Paul J Tackley. “Thermo-chemical structure in the mantle arising from a three-component convective system and implications for geochemistry”. In: Phys. Earth. Planet. Inter. 146.1-2 (2004), pp. 125–138. doi: 10.1016/j.pepi.2003.05.006.

[2105]

Takashi Nakagawa and Paul J Tackley. “Three-dimensional structures and dynamics in the deep mantle: Effects of post-perovskite phase change and deep mantle layering”. In: Geophys. Res. Lett. 33.12 (2006). doi: 10.1029/2006GL025719.

[2106]

Takashi Nakagawa, Paul J Tackley, Frederic Deschamps, and James AD Connolly. “Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth’s mantle”. In: Geochem. Geophys. Geosyst. 10.3 (2009). doi: 10.1029/ 2008GC002280.

[2107]

Takashi Nakagawa, Paul J Tackley, Frédéric Deschamps, and James AD Connolly. “Radial 1-D seismic structures in the deep mantle in mantle convection simulations with self-consistently calculated mineralogy”. In: Geochem. Geophys. Geosyst. 13.11 (2012). doi: 10.1029/2012GC004325.

[2108]

Tomoeki Nakakuki, Chiho Hamada, and Michio Tagawa. “Generation and driving forces of plate-like motion and asymmetric subduction in dynamical models of an integrated mantle–lithosphere system”. In: Phys. Earth. Planet. Inter. 166.3-4 (2008), pp. 128–146. doi: 10.1016/j.pepi.2007.12.004.

[2109]

Tomoeki Nakakuki and Erika Mura. “Dynamics of slab rollback and induced back-arc basin formation”. In: Earth Planet. Sci. Lett. 361 (2013), pp. 287–297. doi: 10.1016/j.epsl. 2012.10.031.

[2110]

Tomoeki Nakakuki, Hiroki Sato, and Hiromi Fujimoto. “Interaction of the upwelling plume with the phase and chemical boundary at the 670 km discontinuity: Effects of temperature-dependent viscosity”. In: Earth Planet. Sci. Lett. 121.3–4 (1994), pp. 369–384. doi: 10.1016/0012-821X(94)90078-7.

[2111]

Tomoeki Nakakuki, Michio Tagawa, and Yasuyuki Iwase. “Dynamical mechanisms controlling formation and avalanche of a stagnant slab”. In: Phys. Earth. Planet. Inter. 183.1-2 (2010), pp. 309–320. doi: 10.1016/j.pepi.2010.02.003.

[2112]

J. Naliboff and S.J.H. Buiter. “Rift reactivation and migration during multiphase extension”. In: Earth Planet. Sci. Lett. 421 (2015), pp. 58–67. doi: 10.1016/j.epsl.2015.03.050.

[2113]

J. B. Naliboff and L. H. Kellogg. “Can large increases in viscosity and thermal conductivity preserve large-scale heterogeneity in the mantle?” In: Phys. Earth. Planet. Inter. 161.1-2 (2007), pp. 86–102. doi: 10.1016/j.pepi.2007.01.009.

[2114]

J. B. Naliboff and L. H. Kellogg. “Dynamic effects of a step-wise increase in thermal conductivity and viscosity in the lowermost mantle”. In: Geophys. Res. Lett. 33.12 (2006). doi: 10.1029/2006GL025717.

[2115]

J.B. Naliboff, M.I. Billen, T. Gerya, and J. saunders. “Dynamics of outer-rise faulting in oceanic-continental subduction systems”. In: Geochem. Geophys. Geosyst. 14.7 (2013). doi: 10.1002/ggge.20155.

[2116]

J.B. Naliboff, S.J.H. Buiter, G. Péron-Pinvidic, P.T. Osmundsen, and J. Tetreault. “Complex fault interaction controls continental rifting”. In: Nature Communications 8 (2017), p. 1179. doi: 10.1038/s41467-017-00904-x.

[2117]

J.B. Naliboff, C.P. Conrad, and C. Lithgow-Bertelloni. “Modification of the lithospheric stress field by lateral variations in plate-mantle coupling”. In: Geophys. Res. Lett. 36.L22307 (2009). doi: 10.1029/2009GL040484.

[2118]

J.B. Naliboff, C. Lithgow-Bertelloni, L.J. Ruff, and N. de Koker. “The effects of lithospheric thickness and density structure on Earth’s stress field”. In: Geophy. J. Int. 188 (2012), pp. 1–17. doi: 10.1111/j.1365-246X.2011.05248.x.

[2119]

JB Naliboff, A Glerum, S Brune, G Péron-Pinvidic, and T Wrona. “Development of 3D rift heterogeneity through fault network evolution”. In: Geophys. Res. Lett. 47 (2020), e2019GL086611. doi: 10.1029/2019GL086611.

[2120]

T Nalpas and J-P Brun. “Salt flow and diapirism related to extension at crustal scale”. In: Tectonophysics 228.3-4 (1993), pp. 349–362. doi: 10.1016/0040-1951(93)90348-N.

[2121]

T Nalpas et al. “Effects of rate and nature of synkinematic sedimentation on the growth of compressive structures constrained by analogue models and field examples”. In: Geological Society, London, Special Publications 208.1 (2003), pp. 307–319. doi: 10.1144/GSL.SP. 2003.208.01.15.

[2122]

Thierry Nalpas, Istvan Gyorfi, Francois Guillocheau, Francois Lafont, and Peter Homewood. “Influence de la charge sedimentaire sur le developpement d’anticlinaux synsedimentaires; modelisation analogique et exemple de terrain (bordure sud du bassin de Jaca)”. In: Bulletin de la Société Géologique de France 170.5 (1999), pp. 733–740. doi: xxxx.

[2123]

Günter Nauheimer, Anatoly S Fradkov, and Horst J Neugebauer. “Mantle convection behavior with segregation in the core-mantle boundary”. In: Geophys. Res. Lett. 23.16 (1996), pp. 2061–2064. doi: 10.1029/96GL02062.

[2124]

A. M. Negredo, F. de Lis Mancilla, C. Clemente, J. Morales, and J. Fullea. “Geodynamic Modeling of Edge-Delamination Driven by Subduction-Transform Edge Propagator Faults: The Westernmost Mediterranean Margin (Central Betic Orogen) Case Study”. In: Frontiers in Earth Science 8 (2020), p. 435. doi: 10.3389/feart.2020.533392.

[2125]

A.M. Negredo, R. Sabadini, G. Bianco, and M. Fernandez. “Three-dimensional modelling of crustal motions caused by subduction and continental convergence in the central Mediterranean”. In: Geophy. J. Int. 136 (1999), pp. 261–274. doi: 10.1046/j.1365- 246X.1999.00726.x.

[2126]

A.M. Negredo, R. Sabadini, and C. Giunchi. “Interplay between subduction and continental convergence:a three-dimensional dynamic model for the Central Mediterranean”. In: Geophy. J. Int. 131 (1997), F9–F13. doi: 10.1111/j.1365-246X.1997.tb00590.x.

[2127]

AM Negredo, M Fernandez, and H Zeyen. “Thermo-mechanical constraints on kinematic models of lithospheric extension”. In: Earth Planet. Sci. Lett. 134.1-2 (1995), pp. 87–98. doi: 10.1016/0012-821X(95)00107-N.

[2128]

AM Negredo, JL Valera, and E Carminati. “TEMSPOL: a MATLAB thermal model for deep subduction zones including major phase transformations”. In: Computers and Geosciences 30.3 (2004), pp. 249–258. doi: 10.1016/j.cageo.2004.01.002.

[2129]

Emily A Neil and Gregory A Houseman. “Rayleigh–Taylor instability of the upper mantle and its role in intraplate orogeny”. In: Geophy. J. Int. 138.1 (1999), pp. 89–107. doi: 10.1046/j.1365-246x.1999.00841.x.

[2130]

R. Nerlich, L. Colli, S. Ghelichkhan, B. Schuberth, and H.-P. Bunge. “Constraining central Neo-Tethys Ocean reconstructions with mantle convection models”. In: Geophys. Res. Lett. 43.18 (2016), pp. 9595–9603. doi: 10.1002/2016GL070524.

[2131]

Dan Nettelfield and Julian P Lowman. “The influence of plate-like surface motion on upwelling dynamics in numerical mantle convection models”. In: Phys. Earth. Planet. Inter. 161.3-4 (2007), pp. 184–201. doi: 10.1016/j.pepi.2007.02.003.

[2132]

M. Nettesheim, T.A. Ehlers, D.M. Whipp, and A. Koptev. “The influence of upper-plate advance and erosion on overriding plate deformation in orogen syntaxes”. In: Solid Earth 9 (2018), pp. 1207–1224. doi: 10.5194/se-9-1207-2018.

[2133]

Derek Neuharth, Sascha Brune, Anne Glerum, Christian Heine, and J Kim Welford. “Formation of continental microplates through rift linkage: Numerical modeling and its application to the Flemish Cap and Sao Paulo Plateau”. In: Geochem. Geophys. Geosyst. 22.4 (2021), e2020GC009615. doi: 10.1029/2020GC009615.

[2134]

Derek Neuharth, Sascha Brune, Anne Glerum, Chris K Morley, Xiaoping Yuan, and Jean Braun. “Flexural strike-slip basins”. In: Geology 50.3 (2022), pp. 361–365. doi: 10.1130/ G49351.1.

[2135]

Derek Neuharth, Sascha Brune, Thilo Wrona, Anne Glerum, Jean Braun, and Xiaoping Yuan. “Evolution of rift systems and their fault networks in response to surface processes”. In: Tectonics 41.3 (2022), e2021TC007166. doi: 10.1029/2021TC007166.

[2136]

Derek Neuharth and Eric Mittelstaedt. “Temporal variations in plume flux: characterizing pulsations from tilted plume conduits in a rheologically complex mantle”. In: Geophy. J. Int. 233.1 (2023), pp. 338–358. doi: 10.1093/gji/ggac455.

[2137]

Gregory A Neumann and Donald W Forsyth. “The paradox of the axial profile: Isostatic compensation along the axis of the Mid-Atlantic Ridge?” In: J. Geophys. Res.: Solid Earth 98.B10 (1993), pp. 17891–17910. doi: 10.1029/93JB01550.

[2138]

Wladimir Neumann. “Towards 3D modelling of convection in planetesimals and meteorite parent bodies”. In: Monthly Notices of the Royal Astronomical Society: Letters 490.1 (2019), pp. L47–L51. doi: 10.1093/mnrasl/slz147.

[2139]

Sérgio P Neves, Andréa Tommasi, Alain Vauchez, and Riad Hassani. “Intraplate continental deformation: influence of a heat-producing layer in the lithospheric mantle”. In: Earth Planet. Sci. Lett. 274.3-4 (2008), pp. 392–400. doi: 10.1016/j.epsl.2008.07.040.

[2140]

Sidao Ni, Eh Tan, Michael Gurnis, and Don Helmberger. “Sharp sides to the African superplume”. In: Science 296.5574 (2002), pp. 1850–1852. doi: 10.1126/science. 1070698.

[2141]

Nicolai Nijholt and Rob Govers. “The role of passive margins on the evolution of Subduction-Transform Edge Propagators (STEPs)”. In: J. Geophys. Res.: Solid Earth 120.10 (2015), pp. 7203–7230. doi: 10.1002/2015JB012202.

[2142]

Nicolai Nijholt, Rob Govers, and Rinus Wortel. “On the forces that drive and resist deformation of the south-central Mediterranean: a mechanical model study”. In: Geophy. J. Int. 214.2 (2018), pp. 876–894. doi: 10.1093/gji/ggy144.

[2143]

K. Nikolaeva, T.V. Gerya, and F.O. Marques. “Subduction initiation at passive margins: numerical modeling”. In: J. Geophys. Res.: Solid Earth 115.B03406 (2010). doi: 10.1029/ 2009JB006549.

[2144]

Ksenia Nikolaeva, Taras V Gerya, and James AD Connolly. “Numerical modelling of crustal growth in intraoceanic volcanic arcs”. In: Phys. Earth. Planet. Inter. 171.1-4 (2008), pp. 336–356. doi: 10.1016/j.pepi.2008.06.026.

[2145]

Ksenia Nikolaeva, Taras V Gerya, and Fernando O Marques. “Numerical analysis of subduction initiation risk along the Atlantic American passive margins”. In: Geology 39.5 (2011), pp. 463–466. doi: 10.1130/G31972.1.

[2146]

Maria A Nikolinakou, Peter B Flemings, and Michael R Hudec. “Modeling stress evolution around a rising salt diapir”. In: Marine and Petroleum Geology 51 (2014), pp. 230–238. doi: 10.1016/j.marpetgeo.2013.11.021.

[2147]

F. Nilfouroushan, R. Pysklywec, A. Cruden, and H. Koyi. “Thermal-mechanical modeling of salt-based mountain belts with pre-existing basement faults: Application to the Zagros fold and thrust belt, southwest Iran”. In: Tectonics 32 (2013), pp. 1212–1226. doi: 10.1002/ tect.20075.

[2148]

Yaoling Niu. “On the cause of continental breakup: A simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes”. In: Journal of Asian Earth Sciences 194 (2020), p. 104367. doi: 10.1016/j.jseaes.2020.104367.

[2149]

Yaoling Niu, Michael J O’Hara, and Julian A Pearce. “Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrological perspective”. In: Journal of Petrology 44.5 (2003), pp. 851–866. doi: 10.1093/petrology/ 44.5.851.

[2150]

Guust Nolet, Shun-Ichiro Karato, and Raffaella Montelli. “Plume fluxes from seismic tomography”. In: Earth Planet. Sci. Lett. 248.3-4 (2006), pp. 685–699. doi: 10.1016/j. epsl.2006.06.011.

[2151]

Richard J O’Connell. “The effects of mantle phase changes on postglacial rebound”. In: J. Geophys. Res.: Solid Earth 81.5 (1976), pp. 971–974.

[2152]

K.A. O’Farrell, J.P. Lowman, and H.-P. Bunge. “Comparison of spherical-shell and plane-layer mantle convection thermal structure in viscously stratified models with mixed-mode heating: Implications for the incorporation of temperature-dependent parameters”. In: Geophy. J. Int. 192.2 (2013), pp. 456–472. doi: 10.1093/gji/ggs053.

[2153]

Keely A O’Farrell and Julian P Lowman. “Emulating the thermal structure of spherical shell convection in plane-layer geometry mantle convection models”. In: Phys. Earth. Planet. Inter. 182.1-2 (2010), pp. 73–84. doi: 10.1016/j.pepi.2010.06.010.

[2154]

C O’Neill, Julian Lowman, and Jonathon Wasiliev. “The effect of galactic chemical evolution on terrestrial exoplanet composition and tectonics”. In: Icarus 352 (2020), p. 114025. doi: 10.1016/j.icarus.2020.114025.

[2155]

C. O’Neill, A. Lenardic, M. Weller, L. Moresi, S. Quenette, and S. Zhang. “A window for plate tectonics in terrestrial planet evolution?” In: Phys. Earth. Planet. Inter. 255 (2016), pp. 80–92. doi: 10.1016/j.pepi.2016.04.002.

[2156]

C. O’Neill, L. Moresi, D. Müller, R. Albert, and F. Dufour. “Ellipsis 3D: a particle-in-cell finite element hybrid code for modelling mantle convection and lithospheric deformation”. In: Computers and Geosciences 32 (2006), pp. 1769–1779. doi: 10.1016/j.cageo.2006. 04.006.

[2157]

C.J. O’Neill, A. Lenardic, W.L. Griffin, and S.Y. O’Reilly. “Dynamics of cratons in an evolving mantle”. In: Lithos 102 (2008), pp. 12–24. doi: 10.1016/j.lithos.2007.04. 006.

[2158]

Craig O’Neill and Vinciane Debaille. “The evolution of Hadean–Eoarchaean geodynamics”. In: Earth Planet. Sci. Lett. 406 (2014), pp. 49–58. doi: 10.1016/j.epsl.2014.08.034.

[2159]

Craig O’Neill, Vinciane Debaille, and William Griffin. “Deep earth recycling in the Hadean and constraints on surface tectonics”. In: American Journal of Science 313.9 (2013), pp. 912–932. doi: 10.2475/09.2013.04.

[2160]

Craig O’Neill, Adrian Lenardic, AM Jellinek, and Louis Moresi. “Influence of supercontinents on deep mantle flow”. In: Gondwana Research 15.3-4 (2009), pp. 276–287. doi: 10.1016/ j.gr.2008.11.005.

[2161]

Craig O’Neill, Adrian Lenardic, L Moresi, Trond Helge Torsvik, and C-TA Lee. “Episodic precambrian subduction”. In: Earth Planet. Sci. Lett. 262.3-4 (2007), pp. 552–562. doi: 10.1016/j.epsl.2007.04.056.

[2162]

Craig O’Neill, L Moresi, and Adrian Lenardic. “Insulation and depletion due to thickened crust: effects on melt production on Mars and Earth”. In: Geophys. Res. Lett. 32.14 (2005), p. L14304. doi: 10.1029/2005GL022855.

[2163]

Craig J O’Neill and Louis Moresi. “How long can diamonds remain stable in the continental lithosphere?” In: Earth Planet. Sci. Lett. 213.1-2 (2003), pp. 43–52. doi: 10.1016/S0012- 821X(03)00294-2.

[2164]

C. O’Neill, S. Marchi, S. Zhang, and W. Bottke. “Impact-driven subduction on the Hadean Earth”. In: Nature Geoscience 10.10 (2017), p. 793. doi: 10.1038/ngeo3029.

[2165]

C. J. O’Neill and S. Zhang. “Lateral mixing processes in the Hadean”. In: J. Geophys. Res.: Solid Earth 123 (2018), pp. 7074–7089. doi: 10.1029/2018JB015698.

[2166]

Craig O’Neill and Sonja Aulbach. “Destabilization of deep oxidized mantle drove the Great Oxidation Event”. In: Science Advances 8.7 (2022), eabg1626. doi: 10.1126/sciadv. abg1626.

[2167]

H. Obermaier, M. I. Billen, H. Hagen, M. Hering-Bertram, and B. Hamann. “Visualizing Strain Anisotropy in Mantle Flow Fields”. In: Computer Graphics Forum 30.8 (2011), pp. 2301–2313. doi: 10.1111/j.1467-8659.2011.02036.x.

[2168]

J. Oeser, H.-P. Bunge, M. Mohr, and H. Igel. “Frontiers in computational geophysics: Simulations of mantle circulation, plate tectonics and seismic wave propagation”. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design 100 (2009), pp. 387–397. doi: 10.1007/978-3-540-70805-6_30.

[2169]

Masaki Ogawa. “Chemical stratification in a two-dimensional convecting mantle with magmatism and moving plates”. In: J. Geophys. Res.: Solid Earth 108.B12 (2003). doi: 10.1029/2002JB002205.

[2170]

Masaki Ogawa. “Perturbation analysis of convective instability of oceanic lithosphere and initiation of subduction zones”. In: J. Geophys. Res.: Solid Earth 95.B1 (1990), pp. 409–420.

[2171]

Masaki Ogawa. “Plate-like regime of a numerically modeled thermal convection in a fluid with temperature-, pressure-, and stress-history-dependent viscosity”. In: J. Geophys. Res.: Solid Earth 108.B2 (2003). doi: 10.1029/2000JB000069.

[2172]

Masaki Ogawa. “Superplumes, plates, and mantle magmatism in two-dimensional numerical models”. In: J. Geophys. Res.: Solid Earth 112.B6 (2007). doi: 10.1029/2006JB004533.

[2173]

Masaki Ogawa. “Two-stage evolution of the Earth’s mantle inferred from numerical simulation of coupled magmatism-mantle convection system with tectonic plates”. In: J. Geophys. Res.: Solid Earth 119.3 (2014), pp. 2462–2486. doi: 10.1002/2013JB010315.

[2174]

Tomohiro Ohuchi et al. “Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth’s upper mantle”. In: Science advances 1.9 (2015), e1500360. doi: 10.1126/sciadv.1500360.

[2175]

M Okabe. “Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies”. In: Geophysics 44.4 (1979), pp. 730–741. doi: 10.1190/1.1440973.

[2176]

D. Olbertz, M.J.R. Wortel, and U. Hansen. “Trench migration and subduction zone geometry”. In: Geophys. Res. Lett. 24.3 (1997), pp. 221–224. doi: 10.1029/96GL03971.

[2177]

J.-A. Olive and M.D. Behn. “Rapid rotation of normal faults due to flexural stresses: An explanation for the global distribution of normal fault dips”. In: J. Geophys. Res.: Solid Earth 119.4 (2014), pp. 3722–3739. doi: 10.1002/2013JB010512.

[2178]

J.-A. Olive, M.D. Behn, G. Ito, W.R. Buck, J. Escartin, and S. Howell. “Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply”. In: Science 350.6258 (2015), pp. 310–313. doi: 10.1126/science.aad0715.

[2179]

J.-A. Olive, M.D. Behn, and L.C. Malatesta. “Modes of extensional faulting controlled by surface processes”. In: Geophys. Res. Lett. 41.19 (2014), pp. 6725–6733. doi: 10.1002/ 2014GL061507.

[2180]

J.-A. Olive, M.D. Behn, E. Mittelstaedt, G. Ito, and B.Z. Klein. “The role of elasticity in simulating long-term tectonic extension”. In: Geophy. J. Int. 205 (2016), pp. 728–743. doi: 10.1093/gji/ggw044.

[2181]

J.-A. Olive, M.D. Behn, and B.E. Tucholke. “The structure of oceanic core complexes controlled by the depth distribution of magmaemplacement”. In: Nature Geoscience 3.7 (2010), pp. 491–495. doi: 10.1038/ngeo888.

[2182]

J.-A. Olive and J. Escartin. “Dependence of seismic coupling on normal fault style along the Northern Mid-Atlantic Ridge”. In: Geochem. Geophys. Geosyst. 17.10 (2016), pp. 4128–4152. doi: 10.1002/2016GC006460.

[2183]

J.-A. Olive, F. Pearce, S. Rondenay, and M.D. Behn. “Pronounced zonation of seismic anisotropy in the Western Hellenic subduction zone and its geodynamic significance”. In: Earth Planet. Sci. Lett. 391 (2014), pp. 100–109. doi: 10.1016/j.epsl.2014.01.029.

[2184]

Magda E Oliveira et al. “Impact of crustal rheology and inherited mechanical weaknesses on early continental rifting and initial evolution of double graben structural configurations: Insights from 2D numerical models”. In: Tectonophysics 831 (2022), p. 229281. doi: 10. 1016/j.tecto.2022.229281.

[2185]

Peter Olson. “A comparison of heat transfer laws for mantle convection at very high Rayleigh numbers”. In: Phys. Earth. Planet. Inter. 48.1-2 (1987), pp. 153–160. doi: 10.1016/0031- 9201(87)90118-X.

[2186]

Peter Olson and GM Corcos. “A boundary layer model for mantle convection with surface plates”. In: Geophy. J. Int. 62.1 (1980), pp. 195–219.

[2187]

Peter Olson, Gerald Schubert, and Charles Anderson. “Plume formation in the D”-layer and the roughness of the core–mantle boundary”. In: Nature 327.6121 (1987), pp. 409–413. doi: 10.1038/327409a0.

[2188]

Peter Olson, Gerald Schubert, and Charles Anderson. “Structure of axisymmetric mantle plumes”. In: J. Geophys. Res.: Solid Earth 98.B4 (1993), pp. 6829–6844. doi: 10.1029/ 92JB01013.

[2189]

Peter Olson, Gerald Schubert, Charles Anderson, and Peggy Goldman. “Plume formation and lithosphere erosion: A comparison of laboratory and numerical experiments”. In: J. Geophys. Res.: Solid Earth 93.B12 (1988), pp. 15065–15084. doi: 10.1029/JB093iB12p15065.

[2190]

Peter Olson, David A Yuen, and Derick Balsiger. “Mixing of passive heterogeneities by mantle convection”. In: J. Geophys. Res.: Solid Earth 89.B1 (1984), pp. 425–436. doi: 10.1029/JB089iB01p00425.

[2191]

Peter Olson, David A. Yuen, and Derick Balsiger. “Convective mixing and the fine structure of mantle heterogeneity”. In: Phys. Earth. Planet. Inter. 36.3–4 (1984), pp. 291–304. doi: 10.1016/0031-9201(84)90053-0.

[2192]

Éva Oravecz, Attila Balázs, Taras Gerya, Dave A. May, and László Fodor. “Competing effects of crustal shortening, thermal inheritance, and surface processes explain subsidence anomalies in inverted rift basins”. In: Geology xxx (2024), p. xxx. doi: 10.1130/G51971.1.

[2193]

A. Ord and B.E. Hobbs. “The strength of the continental crust, detachment zones and the development of plastic instabilities”. In: Tectonophysics 158 (1989), pp. 269–289.

[2194]

B Orlic and BBT Wassing. “A study of stress change and fault slip in producing gas reservoirs overlain by elastic and viscoelastic caprocks”. In: Rock Mechanics and Rock Engineering 46.3 (2013), pp. 421–435.

[2195]

C. P. Orth and V. S. Solomatov. “The isostatic stagnant lid approximation and global variations in the Venusian lithospheric thickness”. In: Geochem. Geophys. Geosyst. 12.7 (2011). doi: 10.1029/2011GC003582.

[2196]

JM Ottino, CW Leong, H Rising, and PD Swanson. “Morphological structures produced by mixing in chaotic flows”. In: Nature 333.6172 (1988), pp. 419–425. doi: 10.1038/ 333419a0.

[2197]

E Ro Oxburgh and DL Turcotte. “Mid-ocean ridges and geotherm distribution during mantle convection”. In: J. Geophys. Res.: Solid Earth 73.8 (1968), pp. 2643–2661. doi: 10.1029/ JB073i008p02643.

[2198]

Ali Değer Özbakir, Rob Govers, and Rinus Wortel. “Active faults in the Anatolian-Aegean plate boundary region with Nubia”. In: Turkish Journal Of Earth Sciences (2017), pp. 30–56. doi: 10.3906/yer-1603-4.

[2199]

M. OzBench et al. “A model comparison study of large-scale mantle-lithosphere dynamics driven by subduction”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 224–234. doi: 10. 1016/j.pepi.2008.08.011.

[2200]

Karen Paczkowski, Laurent GJ Montési, Maureen D Long, and Christopher J Thissen. “Three-dimensional flow in the subslab mantle”. In: Geochem. Geophys. Geosyst. 15.10 (2014), pp. 3989–4008. doi: 10.1002/2014GC005441.

[2201]

Roland Pail et al. “Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society”. In: Surveys in Geophysics 36.6 (2015), pp. 743–772. doi: 10.1007/s10712-015-9348-9.

[2202]

Debanjan Pal and Attreyee Ghosh. “How the Indian Ocean geoid low was formed”. In: Geophys. Res. Lett. 50.9 (2023), e2022GL102694. doi: 10.1029/2022GL102694.

[2203]

Sophie Pan, John Naliboff, Rebecca E Bell, and Chris Jackson. “Bridging spatiotemporal scales of normal fault growth during continental extension using high-resolution 3D numerical models”. In: Geochem. Geophys. Geosyst. 23 (2022), e2021GC010316. doi: 10.1029/ 2021GC010316.

[2204]

Svetlana V Panasyuk and Bradford H Hager. “Inversion for mantle viscosity profiles constrained by dynamic topography and the geoid, and their estimated errors”. In: Geophy. J. Int. 143.3 (2000), pp. 821–836. doi: 10.1046/j.0956-540X.2000.01286.x.

[2205]

Svetlana V Panasyuk and Bradford H Hager. “Models of isostatic and dynamic topography, geoid anomalies, and their uncertainties”. In: J. Geophys. Res.: Solid Earth 105.B12 (2000), pp. 28199–28209. doi: 10.1029/2000JB900249.

[2206]

Svetlana V Panasyuk, Bradford H Hager, and Alessandro M Forte. “Understanding the effects of mantle compressibility on geoid kernels”. In: Geophy. J. Int. 124.1 (1996), pp. 121–133. doi: 10.1111/j.1365-246X.1996.tb06357.x.

[2207]

Isabelle Panet, Sylvain Bonvalot, Clément Narteau, Dominique Remy, and Jean-Michel Lemoine. “Migrating pattern of deformation prior to the Tohoku-Oki earthquake revealed by GRACE data”. In: Nature Geoscience 11.5 (2018), p. 367. doi: 10.1038/s41561- 018-0099-3.

[2208]

Fengping Pang, Jie Liao, Maxim D Ballmer, and Lun Li. “Plume–ridge interactions: ridgeward versus plate-drag plume flow”. In: Solid Earth 14.3 (2023), pp. 353–368. doi: 10.5194/se-14-353-2023.

[2209]

Yajin Pang, Huai Zhang, Yaolin Shi, and Taras Gerya. “Plume-induced rifting of thickened crust: 2D numerical model and implications for N–S rifts in southern Tibet”. In: Geophys. Res. Lett. 49 (2022), e2022GL101479. doi: 10.1029/2022GL101479.

[2210]

Marion Panien, SJH Buiter, Guido Schreurs, and Othmar-Adrian Pfiffner. “Inversion of a symmetric basin: insights from a comparison between analogue and numerical experiments”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 253–270. doi: 10. 1144/GSL.SP.2006.253.01.13.

[2211]

James Panton, J Huw Davies, Tim Elliott, Morten Andersen, Don Porcelli, and Matthew G Price. “Investigating influences on the Pb Pseudo-Isochron using three-dimensional mantle convection models with a continental reservoir”. In: Geochem. Geophys. Geosyst. 23.8 (2022), e2021GC010309. doi: 10.1029/2021GC010309.

[2212]

James Panton, J Huw Davies, and Robert Myhill. “The stability of dense oceanic crust near the core-mantle boundary”. In: J. Geophys. Res.: Solid Earth 128.2 (2023), e2022JB025610. doi: 10.1029/2022JB025610.

[2213]

Giovanni Pari. “Crust 5.1-based inference of the Earth’s dynamic surface topography: geodynamic implications”. In: Geophy. J. Int. 144.3 (2001), pp. 501–516. doi: 10.1046/ j.1365-246x.2001.01328.x.

[2214]

Giovanni Pari and W Richard Peltier. “Global surface heat flux anomalies from seismic tomography-based models of mantle flow: Implications for mantle convection”. In: J. Geophys. Res.: Solid Earth 103.B10 (1998), pp. 23743–23780. doi: 10.1029/98JB01668.

[2215]

Giovanni Pari and W Richard Peltier. “Subcontinental mantle dynamics: A further analysis based on the joint constraints of dynamic surface topography and free-air graviy”. In: J. Geophys. Res.: Solid Earth 105.B3 (2000), pp. 5635–5662. doi: 10.1029/1999JB900349.

[2216]

Giovanni Pari and W Richard Peltier. “The free-air gravity constraint on subcontinental mantle dynamics”. In: J. Geophys. Res.: Solid Earth 101.B12 (1996), pp. 28105–28132. doi: 10.1029/96JB02099.

[2217]

Giovanni Pari and W Richard Peltier. “The heat flow constraint on mantle tomography-based convection models: Towards a geodynamically self-consistent inference of mantle viscosity”. In: J. Geophys. Res.: Solid Earth 100.B7 (1995), pp. 12731–12751. doi: 10.1029/ 95JB01078.

[2218]

EM Parmentier, C Sotin, and BJ Travis. “Turbulent 3-D thermal convection in an infinite Prandtl number, volumetrically heated fluid: implications for mantle dynamics”. In: Geophy. J. Int. 116.2 (1994), pp. 241–251. doi: 10.1111/j.1365-246X.1994.tb01795.x.

[2219]

EM Parmentier, DL Turcotte, and KE Torrance. “Numerical experiments on the structure of mantle plumes”. In: J. Geophys. Res.: Solid Earth 80.32 (1975), pp. 4417–4424. doi: 10.1029/JB080i032p04417.

[2220]

EM Parmentier, DL Turcotte, and KE Torrance. “Studies of finite amplitude non-Newtonian thermal convection with application to convection in the Earth’s mantle”. In: J. Geophys. Res.: Solid Earth 81.11 (1976), pp. 1839–1846. doi: 10.1029/JB081i011p01839.

[2221]

Barry Parsons and Dan McKenzie. “Mantle convection and the thermal structure of the plates”. In: J. Geophys. Res.: Solid Earth 83.B9 (1978), pp. 4485–4496. doi: 10.1029/ JB083iB09p04485.

[2222]

Barry Parsons and John G Sclater. “An analysis of the variation of ocean floor bathymetry and heat flow with age”. In: J. Geophys. Res.: Solid Earth 82.5 (1977), pp. 803–827. doi: 10.1029/JB082i005p00803.

[2223]

Daniel Pastor-Galán, R. Damian Nance, J. Brendan Murphy, and Christopher J. Spencer. “Supercontinents: myths, mysteries, and milestones”. In: Geological Society, London, Special Publications 470.1 (2019), pp. 39–64. doi: 10.1144/SP470.16.

[2224]

M.E. Pasyanos, T.G. Masters, G. Laske, and Z. Ma. “LITHO1.0: An updated crust and lithospheric model of the Earth”. In: J. Geophys. Res.: Solid Earth 119 (3 2014), pp. 2153–2173. doi: 10.1002/2013JB010626.

[2225]

WSB Paterson and WF Budd. “Flow parameters for ice sheet modeling”. In: Cold Regions Science and Technology 6.2 (1982), pp. 175–177. doi: 10.1016/0165-232X(82)90010-6.

[2226]

V Patočka, O Čadek, Paul J Tackley, and H Č´i  žková. “Stress memory effect in viscoelastic stagnant lid convection”. In: Geophy. J. Int. 209.3 (2017), pp. 1462–1475. doi: 10.1093/ gji/ggx102.

[2227]

V Patočka, H Č´i    žková, and PJ Tackley. “Do elasticity and a free surface affect lithospheric stresses caused by upper-mantle convection?” In: Geophy. J. Int. 216.3 (2019), pp. 1740–1760. doi: 10.1093/gji/ggy513.

[2228]

Vojtěch Patočka, Enrico Calzavarini, and Nicola Tosi. “Settling of inertial particles in turbulent Rayleigh-Bénard convection”. In: Physical Review Fluids 5.11 (2020), p. 114304. doi: 10.1103/PhysRevFluids.5.114304.

[2229]

Vojtěch Patočka, Nicola Tosi, and Enrico Calzavarini. “Residence time of inertial particles in 3D thermal convection: implications for magma reservoirs”. In: Earth Planet. Sci. Lett. 591 (2022), p. 117622. doi: 10.1016/j.epsl.2022.117622.

[2230]

Jyotirmoy Paul, Clinton P Conrad, Thorsten W Becker, and Attreyee Ghosh. “Convective Self-Compression of Cratons and the Stabilization of Old Lithosphere”. In: Geophys. Res. Lett. 50.4 (2023), e2022GL101842. doi: 10.1029/2022GL101842.

[2231]

Jyotirmoy Paul and Attreyee Ghosh. “Evolution of cratons through the ages: A time-dependent study”. In: Earth Planet. Sci. Lett. 531 (2020), p. 115962. doi: 10.1016/ j.epsl.2019.115962.

[2232]

Jyotirmoy Paul, Attreyee Ghosh, and Clinton P Conrad. “Traction and strain-rate at the base of the lithosphere: an insight into cratonic survival”. In: Geophy. J. Int. 217.2 (2019), pp. 1024–1033. doi: 10.1093/gji/ggz079.

[2233]

Archie Paulson, Shijie Zhong, and John Wahr. “Inference of mantle viscosity from GRACE and relative sea level data”. In: Geophy. J. Int. 171.2 (2007), pp. 497–508. doi: 10.1111/ j.1365-246X.2007.03556.x.

[2234]

Archie Paulson, Shijie Zhong, and John Wahr. “Modelling post-glacial rebound with lateral viscosity variations”. In: Geophy. J. Int. 163.1 (2005), pp. 357–371. doi: 10.1111/j.1365- 246X.2005.02645.x.

[2235]

Nikolaos K Pavlis, Simon A Holmes, Steve C Kenyon, and John K Factor. “The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)”. In: J. Geophys. Res.: Solid Earth 117.B4 (2012). doi: 10.1029/2011JB008916.

[2236]

AJ Payne et al. “Results from the EISMINT model intercomparison: the effects of thermomechanical coupling”. In: Journal of Glaciology 46.153 (2000), pp. 227–238. doi: 10.3189/172756500781832891.

[2237]

Simon A Peacock. “Fluid processes in subduction zones”. In: Science 248.4953 (1990), pp. 329–337. doi: 10.1126/science.248.4953.329.

[2238]

Simon M Peacock. “Creation and preservation of subduction-related inverted metamorphic gradients”. In: J. Geophys. Res.: Solid Earth 92.B12 (1987), pp. 12763–12781. doi: 10. 1029/JB092iB12p12763.

[2239]

Simon M Peacock. “Numerical simulation of metamorphic pressure-temperature-time paths and fluid production in subducting slabs”. In: Tectonics 9.5 (1990), pp. 1197–1211. doi: 10.1029/TC009i005p01197.

[2240]

Simon M Peacock. “Numerical simulation of subduction zone pressure-temperature-time paths: constraints on fluid production and arc magmatism”. In: Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences 335.1638 (1991), pp. 341–353. doi: 10.1098/rsta.1991.0050.

[2241]

Simon M Peacock. “Thermal effects of metamorphic fluids in subduction zones”. In: Geology 15.11 (1987), pp. 1057–1060. doi: 10.1130/0091-7613(1987)15<1057:TEOMFI>2.0. CO;2.

[2242]

Simon M Peacock and Kelin Wang. “Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan”. In: Science 286.5441 (1999), pp. 937–939. doi: 10.1126/science.286.5441.937.

[2243]

F.J. Peel. “How do salt withdrawal minibasins form? Insights from forward modelling, and implications for hydrocarbon migration”. In: Tectonophysics 630 (2014), pp. 222–235. doi: 10.1016/j.tecto.2014.05.027.

[2244]

W.R. Peltier and L.P. Solheim. “Dynamics of the ice age Earth: Solid mechanics and fluid mechanics”. In: J. Phys. IV France. Vol. 12. 1982, pp. 85–104. doi: 10.1051/jp4: 20020454.

[2245]

WR Peltier. “Mantle Dynamics and the D” Layer: Impacts of the Post Perovskite Phase”. In: GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION 174 (2007), p. 217. doi: 10.1029/174GM15.

[2246]

WR Peltier. “Penetrative convection in the planetary mantle”. In: Geophysical Fluid Dynamics 5.1 (1972), pp. 47–88. doi: 10.1080/03091927308236108.

[2247]

WR Peltier. “Phase-transition modulated mixing in the mantle of the Earth”. In: Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 354.1711 (1996), pp. 1425–1447. doi: 10.1098/rsta.1996. 0056.

[2248]

WR Peltier, S Butler, and LP Solheim. “The influence of phase transformations on mantle mixing and plate tectonics”. In: Earth’s Deep Interior. Gordon & Breach, Amsterdam (1997), pp. 405–430.

[2249]

WR Peltier, WE Farrell, and JA Clark. “Glacial isostasy and relative sea level: a global finite element model”. In: Tectonophysics 50.2-3 (1978), pp. 81–110.

[2250]

G. Peltzer and P. Tapponnier. “Formation and evolution of strike-slip faults, rifts, and basins during the india-asia collision: an experimental approach”. In: J. Geophys. Res.: Solid Earth 93.B12 (1988), pp. 15085–15177. doi: 10.1029/JB093iB12p15085.

[2251]

Diandian Peng and Lijun Liu. “Importance of global spherical geometry for studying slab dynamics and evolution in models with data assimilation”. In: Earth-Science Reviews 241 (2023), p. 104414. doi: 10.1016/j.earscirev.2023.104414.

[2252]

Diandian Peng and Lijun Liu. “Quantifying slab sinking rates using global geodynamic models with data-assimilation”. In: Earth-Science Reviews 230 (2022), p. 104039. doi: 10.1016/j.earscirev.2022.104039.

[2253]

Diandian Peng and Dave Stegman. “Modeling subduction with extremely fast trench retreat”. In: J. Geophys. Res.: Solid Earth 129 (2024), e2024JB029240. doi: https: //doi.org/10.1029/2024JB029240.

[2254]

Mireia Peral et al. “Analog and numerical experiments of double subduction systems with opposite polarity in adjacent segments”. In: Geochem. Geophys. Geosyst. 21.6 (2020), e2020GC009035. doi: 10.1029/2020GC009035.

[2255]

AL Perchuk, TV Gerya, VS Zakharov, and WL Griffin. “Building cratonic keels in Precambrian plate tectonics”. In: Nature 586.7829 (2020), pp. 395–401. doi: 10.1038/ s41586-020-2806-7.

[2256]

AL Perchuk, TV Gerya, VS Zakharov, and WL Griffin. “Depletion of the upper mantle by convergent tectonics in the Early Earth”. In: Scientific Reports 11.1 (2021), pp. 1–12. doi: 10.1038/s41598-021-00837-y.

[2257]

Alexei L Perchuk, Vladimir S Zakharov, Taras V Gerya, and William L Griffin. “Flat subduction in the Early Earth: The key role of discrete eclogitization kinetics”. In: Gondwana Research 119 (2023), pp. 186–203. doi: 10.1016/j.gr.2023.03.015.

[2258]

Leonid L Perchuk and Taras V Gerya. “Formation and evolution of Precambrian granulite terranes: a gravitational redistribution model”. In: Geological Society of America Memoirs 207 (2011), pp. 289–310. doi: 10.1130/2011.1207(15).

[2259]

LL Perchuk, Y Yu Podladchikov, and AN Polyakov. “Hydrodynamic modelling of some metamorphic processes”. In: Journal of Metamorphic Geology 10.3 (1992), pp. 311–319. doi: 10.1111/j.1525-1314.1992.tb00086.x.

[2260]

Xyoli Pérez-Campos et al. “Horizontal subduction and truncation of the Cocos Plate beneath central Mexico”. In: Geophys. Res. Lett. 35.18 (2008). doi: 10.1029/2008GL035127.

[2261]

Marta Pérez-Gussinyé et al. “Synrift and postrift thermal evolution of rifted margins: a re-evaluation of classic models of extension”. In: Geological Society, London, Special Publications 547.1 (2024), SP547–2023. doi: 10.1144/SP547-2023-128.

[2262]

G Peron-Pinvidic, L Fourel, and SJH Buiter. “The influence of orogenic collision inheritance on rifted margin architecture: Insights from comparing numerical experiments to the Mid-Norwegian margin”. In: Tectonophysics 828 (2022), p. 229273. doi: 10.1016/j. tecto.2022.229273.

[2263]

Gwenn Peron-Pinvidic and John Naliboff. “The exhumation detachment factory”. In: Geology (2020). doi: 10.1130/G47174.1.

[2264]

Alexander Perrin, Saskia Goes, Julie Prytulak, D Rhodri Davies, Cian Wilson, and Stephan Kramer. “Reconciling mantle wedge thermal structure with arc lava thermobarometric determinations in oceanic subduction zones”. In: Geochem. Geophys. Geosyst. 17.10 (2016), pp. 4105–4127. doi: 10.1002/2016GC006527.

[2265]

Alexander Perrin, Saskia Goes, Julie Prytulak, Stéphane Rondenay, and D Rhodri Davies. “Mantle wedge temperatures and their potential relation to volcanic arc location”. In: Earth Planet. Sci. Lett. 501 (2018), pp. 67–77. doi: 10.1029/2001GC000256.

[2266]

Paul Perron, Laetitia Le Pourhiet, Anthony Jourdon, Tristan Cornu, and Claude Gout. “Toward the calibration of 2D thermomechanical simulations of magma poor passive continental margins: method, validation and case example”. In: Comptes Rendus. Géoscience 356.S2 (2024), pp. 1–22. doi: 10.5802/crgeos.258.

[2267]

Paul Perron et al. “Control of inherited accreted lithospheric heterogeneity on the architecture and the low, long-term subsidence rate of intracratonic basins”. In: Bulletin de la Société Géologique de France 192.1 (2021). doi: 10.1051/bsgf/2020038.

[2268]

J. Perry-Houts and L. Karlstrom. “Anisotropic viscosity and time-evolving lithospheric instabilities due to aligned igneous intrusions”. In: Geophy. J. Int. 216.2 (2018), pp. 794–802. doi: 10.1093/gji/ggy466.

[2269]

Jonathan Perry-Houts and Eugene Humphreys. “Eclogite-driven subsidence of the Columbia Basin (Washington State, USA) caused by deposition of Columbia River Basalt”. In: Geology 46.7 (2018), pp. 651–654. doi: 10.1130/G40328.1.

[2270]

Diego Perugini, CP De Campos, Maurizio Petrelli, Daniele Morgavi, Francesco Pasqualino Vetere, and DB Dingwell. “Quantifying magma mixing with the Shannon entropy: Application to simulations and experiments”. In: Lithos 236 (2015), pp. 299–310. doi: 10.1016/j.lithos.2015.09.008.

[2271]

M. Peters, M. Veveakis, T. Poulet, A. Karrech, M. Herwegh, and K. Regenauer-Lieb. “Boudinage as a material instability of elasto-visco-plastic rocks”. In: Journal of Structural Geology 78 (2015), pp. 86–102. doi: 10.1016/j.jsg.2015.06.005.

[2272]

Kenni Dinesen Petersen, JJ Armitage, SB Nielsen, and H Thybo. “Mantle temperature as a control on the time scale of thermal evolution of extensional basins”. In: Earth Planet. Sci. Lett. 409 (2015), pp. 61–70. doi: 10.1016/j.epsl.2014.10.043.

[2273]

Kenni Dinesen Petersen and W Roger Buck. “Eduction, extension, and exhumation of ultrahigh-pressure rocks in metamorphic core complexes due to subduction initiation”. In: Geochem. Geophys. Geosyst. 16.8 (2015), pp. 2564–2581. doi: 10.1002/2015GC005847.

[2274]

Kenni Dinesen Petersen, Christian Schiffer, and Thorsten Nagel. “LIP formation and protracted lower mantle upwelling induced by rifting and delamination”. In: Scientific Reports 8.1 (2018), p. 16578. doi: 10.1038/s41598-018-34194-0.

[2275]

R.I. Petersen, D.R. Stegman, and P.J. Tackley. “A regime diagram of mobile lid convection with plate-like behavior”. In: Phys. Earth. Planet. Inter. 241 (2015), pp. 65–76. doi: 10.1016/j.pepi.2015.01.002.

[2276]

Robert I Petersen, Dave R Stegman, and Paul J Tackley. “The subduction dichotomy of strong plates and weak slabs”. In: Solid Earth 8.2 (2017), pp. 339–350. doi: 10.5194/se- 8-339-2017.

[2277]

N. Petford, T. Rushmer, and D.A. Yuen. “Deformation-induced mechanical instabilities at the core-mantle boundary”. In: Geophysical Monograph Series 174 (2007), pp. 271–287. doi: 10.1029/174GM18.

[2278]

Benoˆi  t Petri, Thibault Duretz, Geoffroy Mohn, Stefan M Schmalholz, Garry D Karner, and Othmar Müntener. “Thinning mechanisms of heterogeneous continental lithosphere”. In: Earth Planet. Sci. Lett. 512 (2019), pp. 147–162. doi: 10.1016/j.epsl.2019.02.007.

[2279]

Claudio Petrini, Taras Gerya, Viktoriya Yarushina, Ylona van Dinther, James Connolly, and Claudio Madonna. “Seismo-hydro-mechanical modelling of the seismic cycle: Methodology and implications for subduction zone seismicity”. In: Tectonophysics 791 (2020), p. 228504. doi: 10.1016/j.tecto.2020.228504.

[2280]

K Petrini and YY Podladchikov. “Lithospheric pressure-depth relationship in compressive regions of thickened crust”. In: Journal of Metamorphic Geology 18 (2000), pp. 67–77.

[2281]

A.G. Petrunin and S.V. Sobolev. “Three-dimensional numerical models of the evolution of pull-apart basins”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 387–399. doi: 10. 1016/j.pepi.2008.08.017.

[2282]

Alexey Petrunin and Stephan V Sobolev. “What controls thickness of sediments and lithospheric deformation at a pull-apart basin?” In: Geology 34.5 (2006), pp. 389–392. doi: 10.1130/G22158.1.

[2283]

K. Petschel, S. Stellmach, M. Wilczek, J. Lülff, and U. Hansen. “Kinetic energy transport in Rayleigh-Benard convection”. In: Journal of Fluid Mechanics 773 (2015), pp. 395–417. doi: 10.1017/jfm.2015.216.

[2284]

K. Petschel, M. Wilczek, M. Breuer, R. Friedrich, and U. Hansen. “Statistical analysis of global wind dynamics in vigorous Rayleigh-Benard convection”. In: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 84.2 (2011). doi: 10.1103/PhysRevE.84. 026309.

[2285]

B.R. Phillips and H.-P. Bunge. “Heterogeneity and time dependence in 3D spherical mantle convection models with continental drift”. In: Earth Planet. Sci. Lett. 233.1-2 (2005), pp. 121–135. doi: 10.1016/j.epsl.2005.01.041.

[2286]

B.R. Phillips and H.-P. Bunge. “Supercontinent cycles disrupted by strong mantle plumes”. In: Geology 35.9 (2007), pp. 847–850. doi: 10.1130/G23686A.1.

[2287]

RJ Phillips and ER Ivins. “Geophysical observations pertaining to solid-state convection in the terrestrial planets”. In: Phys. Earth. Planet. Inter. 19.2 (1979), pp. 107–148. doi: 10.1016/0031-9201(79)90078-5.

[2288]

Thomas B Phillips, John B Naliboff, Ken JW McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen. “The influence of crustal strength on rift geometry and development–insights from 3D numerical modelling”. In: Solid Earth 14.4 (2023), pp. 369–388. doi: 10.5194/se-14-369-2023.

[2289]

A.S. Piazzoni, G. Steinle-Neumann, H.-P. Bunge, and D. Dolejs. “A mineralogical model for density and elasticity of the Earth’s mantle”. In: Geochem. Geophys. Geosyst. 8.11 (2007). doi: 10.1029/2007GC001697.

[2290]

Andrea Piccolo, Boris JP Kaus, Richard W White, Richard M Palin, and Georg S Reuber. “Plume-Lid interactions during the Archean and implications for the generation of early continental terranes”. In: Gondwana Research 88 (2020), pp. 150–168. doi: 10.1016/j. gr.2020.06.024.

[2291]

Leonardo M Pichel, Ritske S Huismans, Robert Gawthorpe, and Jan Inge Faleide. “How post-salt sediment flux and progradation rate influence salt tectonics on rifted margins: Insights from geodynamic modelling”. In: Basin Research (2023). doi: 10.1111/bre. 12802.

[2292]

Leonardo M Pichel, Ritske S Huismans, Robert Gawthorpe, Jan Inge Faleide, and Thomas Theunissen. “Coupling Crustal-Scale Rift Architecture With Passive Margin Salt Tectonics: A Geodynamic Modeling Approach”. In: J. Geophys. Res.: Solid Earth 127.11 (2022), e2022JB025177. doi: 10.1029/2022JB025177.

[2293]

Leonardo M Pichel, Ritske S Huismans, Robert Gawthorpe, Jan Inge Faleide, and Thomas Theunissen. “Late-Syn-to Post-Rift Salt Tectonics on Wide Rifted Margins—Insights From Geodynamic Modeling”. In: Tectonics 41.8 (2022), e2021TC007158. doi: 10.1029/ 2021TC007158.

[2294]

Thibaud Pichot and Thierry Nalpas. “Influence of synkinematic sedimentation in a thrust system with two decollement levels; analogue modelling”. In: Tectonophysics 473.3-4 (2009), pp. 466–475. doi: 10.1016/j.tecto.2009.04.003.

[2295]

RT Pierrehumbert. “Large-scale horizontal mixing in planetary atmospheres”. In: Physics of Fluids A: Fluid Dynamics 3.5 (1991), pp. 1250–1260. doi: 10.1063/1.858053.

[2296]

Simone Pilia et al. “Post-subduction tectonics induced by extension from a lithospheric drip”. In: Nature Geoscience (2023), pp. 1–7. doi: 10.1038/s41561-023-01201-7.

[2297]

C. Piromallo, T.W. Becker, F. Funiciello, and C. Faccenna. “Three-dimensional instantaneous mantle flow induced by subduction”. In: Geophys. Res. Lett. 33.L08304 (2006). doi: 10.1029/2005GL025390.

[2298]

Claudia Piromallo and Andrea Morelli. “P wave tomography of the mantle under the Alpine-Mediterranean area”. In: J. Geophys. Res.: Solid Earth 108.B2 (2003).

[2299]

T. Plank and P.E. van Keken. “The ups and downs of sediments”. In: Nature Geoscience 1 (2008), p. 17. doi: 10.1038/ngeo.2007.68.

[2300]

C Plattner, R Malservisi, K P Furlong, and Rob Govers. “Development of the Eastern California Shear Zone — Walker Lane belt: The effects of microplate motion and pre-existing weakness in the Basin and Range”. In: Tectonophysics 485.1-4 (2010), pp. 78–84. doi: 10.1016/j.tecto.2009.11.021.

[2301]

C Plattner, R Malservisi, and Rob Govers. “On the plate boundary forces that drive and resist Baja California motion”. In: GEOLOGY 37.4 (2009), pp. 359–362. doi: 10.1130/ G25360A.1.

[2302]

Ana-Catalina Plesa, Nicola Tosi, and Christian Hüttig. “Thermo-chemical convection in planetary mantles: advection methods and magma ocean overturn simulations”. In: Integrated Information and Computing Systems for Natural, Spatial, and Social Sciences. IGI Global, 2013, pp. 302–323. doi: 10.4018/978-1-4666-2190-9.ch015.

[2303]

Meredith Plumley and Keith Julien. “Scaling laws in Rayleigh-Benard convection”. In: Earth and Space Science 6.9 (2019), pp. 1580–1592. doi: 10.1029/2019EA000583.

[2304]

A. Plunder, C. Thieulot, and D.J.J. van Hinsbergen. “The effect of obliquity on temperature in subduction zones: insights from 3D numerical modeling”. In: Solid Earth 9 (2018), pp. 759–776. doi: 10.5194/se-2017-134.

[2305]

Yu. Podlachikov, C. Talbot, and A.N.B. Poliakov. “Numerical models of complex diapirs”. In: Tectonophysics 228 (1993), pp. 189–198. doi: 10.1016/0040-1951(93)90340-P.

[2306]

Yu Yu Podladchikov, ANB Poliakov, and David A Yuen. “The effect of lithospheric phase transitions on subsidence of extending continental lithosphere”. In: Earth Planet. Sci. Lett. 124.1-4 (1994), pp. 95–103. doi: 10.1016/0012-821X(94)00074-3.

[2307]

Jonathan Poh, Philippe Yamato, Thibault Duretz, Denis Gapais, and Patrick Ledru. “Precambrian deformation belts in compressive tectonic regimes: A numerical perspective”. In: Tectonophysics 777 (2020), p. 228350. doi: 10.1016/j.tecto.2020.228350.

[2308]

Jonathan Poh, Philippe Yamato, Thibault Duretz, Denis Gapais, and Patrick Ledru. “The transition from ancient to modern-style tectonics: insights from lithosphere dynamics modelling in compressional regimes”. In: Gondwana Research 99 (2021), pp. 77–92. doi: 10.1016/j.gr.2021.06.016.

[2309]

Jakub Pokornỳ, Hana Č´i  žková, and Arie van den Berg. “Feedbacks between subduction dynamics and slab deformation: Combined effects of nonlinear rheology of a weak decoupling layer and phase transitions”. In: Phys. Earth. Planet. Inter. 313 (2021), p. 106679. doi: 10.1016/j.pepi.2021.106679.

[2310]

A. Poliakov, P. Cundall, P. Podlachikov, and V. Lyakhovsky. “An explicit inertial method for the simulation of viscoelastic flow: an evaluation of elastic effects on diapiric flow in two- and three-layers models”. In: Flow and creep in the solar system: Observations, Modeling and theory. Kluwer Academic Publishers, 1993, pp. 175–195.

[2311]

A.N.B. Poliakov, R. van Balen, Yu. Podladchikov, B. Daudre, S. Cloetingh, and C. Talbot. “Numerical analysis of how sedimentation and redistribution of surficial sediments affects salt diapirism”. In: Tectonophysics 226 (1993), pp. 199–216. doi: 10.1016/0040- 1951(93)90118-4.

[2312]

D. Pollard and R.M. DeConto. “Description of a hybrid ice sheet-shelf model, and application to Antarctica”. In: Geosci. Model. Dev. 5 (2012), pp. 1273–1295. doi: 10.5194/gmd-5- 1273-2012.

[2313]

David D Pollard and Atilla Aydin. “Propagation and linkage of oceanic ridge segments”. In: J. Geophys. Res.: Solid Earth 89.B12 (1984), pp. 10017–10028.

[2314]

OP Polyansky, SN Korobeynikov, AV Babichev, and VV Reverdatto. “Formation and upwelling of mantle diapirs through the cratonic lithosphere: Numerical thermomechanical modeling”. In: Petrology 20.2 (2012), pp. 120–137. doi: 10.1134/S086959111202004X.

[2315]

OP Polyansky, SN Korobeynikov, AV Babichev, VV Reverdatto, and VG Sverdlova. “Numerical modeling of mantle diapirism as a cause of intracontinental rifting”. In: Izvestiya, Physics of the Solid Earth 50.6 (2014), pp. 839–852. doi: 10.1134/S1069351314060056.

[2316]

OP Polyansky, VV Reverdatto, AV Babichev, and VG Sverdlova. “The mechanism of magma ascent through the solid lithosphere and relation between mantle and crustal diapirism: numerical modeling and natural examples”. In: Russian Geology and Geophysics 57.6 (2016), pp. 843–857. doi: 10.1016/j.rgg.2016.05.002.

[2317]

Kristóf Porkoláb, Thibault Duretz, Philippe Yamato, Antoine Auzemery, and Ernst Willingshofer. “Extrusion of subducted crust explains the emplacement of far-travelled ophiolites”. In: Nature Communications 12 (2021), p. 1499. doi: 10.1038/s41467-021- 21866-1.

[2318]

Casper Pranger, Patrick Sanan, Dave A May, Laetitia Le Pourhiet, and Alice-Agnes Gabriel. “Rate and state friction as a spatially regularized transient viscous flow law”. In: J. Geophys. Res.: Solid Earth 127.6 (2022), e2021JB023511. doi: 10.1029/2021JB023511.

[2319]

Jacques Précigout and Frédéric Gueydan. “Mantle weakening and strain localization: Implications for the long-term strength of the continental lithosphere”. In: Geology 37.2 (2009), pp. 147–150. doi: 10.1130/G25239A.1.

[2320]

Jacques Précigout, Frédéric Gueydan, Denis Gapais, CJ Garrido, and Abderrahim Essaifi. “Strain localisation in the subcontinental mantle—a ductile alternative to the brittle mantle”. In: Tectonophysics 445.3-4 (2007), pp. 318–336. doi: 10.1016/j.tecto.2007.09.002.

[2321]

Matthew Price. “Investigating the initial condition of mantle models using data assimilation”. PhD thesis. Cardiff University, 2016.

[2322]

Matthew G Price, JH Davies, and James Panton. “Controls on the Deep-Water Cycle Within Three-Dimensional Mantle Convection Models”. In: Geochem. Geophys. Geosyst. 20.5 (2019), pp. 2199–2213. doi: 10.1029/2018GC008158.

[2323]

A.E. Pusok, R.F. Katz, D.A. May, and Y. Li. “Chemical heterogeneity, convection and asymmetry beneath mid-ocean ridges”. In: Geophy. J. Int. 231 (2022), pp. 2055–2078. doi: 10.1093/gji/ggac309.

[2324]

A.E. Pusok and B.J.P. Kaus. “Development of topography in 3D continental collision models”. In: Geochem. Geophys. Geosyst. (2015). doi: 10.1002/2015GC005732.

[2325]

Adina E Pusok and Dave R Stegman. “Formation and stability of same-dip double subduction systems”. In: J. Geophys. Res.: Solid Earth 124.7 (2019), pp. 7387–7412. doi: 10.1029/2018JB017027.

[2326]

Adina E Pusok and Dave R Stegman. “The convergence history of India-Eurasia records multiple subduction dynamics processes”. In: Science Advances 6.19 (2020), eaaz8681. doi: 10.1126/sciadv.aaz8681.

[2327]

Adina E Pusok, Dave R Stegman, and Madeleine Kerr. “The effect of low-viscosity sediments on the dynamics and accretionary style of subduction margins”. In: Solid Earth 13 (2022), pp. 1455–1473. doi: 10.5194/se-13-1455-2022.

[2328]

P. Puster, B. H. Hager, and T. H. Jordan. “Mantle convection experiments with evolving plates”. In: Geophys. Res. Lett. 22.16 (1995), pp. 2223–2226. doi: 10.1029/95GL01998.

[2329]

P. Puster, T. H. Jordan, and B. H. Hager. “Characterization of mantle convection experiments using two-point correlation functions”. In: J. Geophys. Res.: Solid Earth 100.B4 (1995), pp. 6351–6365. doi: 10.1029/94JB03268.

[2330]

C. Püthe and T. Gerya. “Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models”. In: Gondwana Research 25 (2014), pp. 270–283. doi: 10.1016/ j.gr.2013.04.005.

[2331]

R.N. Pysklywec and C. Beaumont. “Intraplate tectonics: feedback between radioactive thermal weakening and crustal deformation driven by mantle lithosphere instabilities”. In: Earth Planet. Sci. Lett. 221 (2004), pp. 275–292. doi: 10.1016/S0012-821X(04)00098-6.

[2332]

R.N. Pysklywec, C. Beaumont, and P. Fullsack. “Modeling the behavior of continental mantle lithosphere during plate convergence”. In: Geology 28.7 (2000), pp. 655–658. doi: 10.1130/0091-7613(2000)28<655:MTBOTC>2.0.CO;2.

[2333]

R.N. Pysklywec, O. Gogus, J. Percival, A.R. Cruden, and C. Beaumont. “Insights from geodynamical modeling on possible fates of continental mantle lithosphere: collision, removal, and overturn”. In: Can. J. Earth Sci. 47 (2010), pp. 541–563. doi: 10.1139/E09-043.

[2334]

Russell N Pysklywec. “Evolution of subducting mantle lithosphere at a continental plate boundary”. In: Geophys. Res. Lett. 28.23 (2001), pp. 4399–4402. doi: 10.1029/ 2001GL013567.

[2335]

Russell N Pysklywec and Jerry X Mitrovica. “Mantle avalanches and the dynamic topography of continents”. In: Earth Planet. Sci. Lett. 148.3-4 (1997), pp. 447–455. doi: 10.1016/ S0012-821X(97)00045-9.

[2336]

Russell N Pysklywec and Jerry X Mitrovica. “Mantle flow mechanisms for the large-scale subsidence of continental interiors”. In: Geology 26.8 (1998), pp. 687–690. doi: 10.1130/ 0091-7613(1998)026<0687:MFMFTL>2.3.CO;2.

[2337]

Liang Qi, Nan Zhang, Bei Xu, and Zhiwei Wang. “Geodynamic modeling on the formation mechanism of Linxi Basin: New constraints on the closure time of the Paleo-Asian Ocean”. In: Tectonophysics (2021), p. 228866. doi: 10.1016/j.tecto.2021.228866.

[2338]

Chuan Qin, Shijie Zhong, and Roger Phillips. “Formation of the lunar fossil bulges and its implication for the early Earth and Moon”. In: Geophys. Res. Lett. 45.3 (2018), pp. 1286–1296. doi: 10.1002/2017GL076278.

[2339]

Jiarong Qing, Jie Liao, and Sascha Brune. “Rift propagation interacting with pre-existing microcontinental blocks”. In: J. Geophys. Res.: Solid Earth 129.3 (2024), e2023JB028109. doi: 10.1029/2023JB028109.

[2340]

Jiarong Qing, Jie Liao, Lun Li, and Rui Gao. “Dynamic evolution of induced subduction through the inversion of spreading ridges”. In: J. Geophys. Res.: Solid Earth 126.3 (2021), e2020JB020965. doi: 10.1029/2020JB020965.

[2341]

QiJia QIU et al. “Effects of lithospheric mantle layering on craton stability”. In: Chinese Journal of Geophysics (2024). doi: 10.6038/cjg2024R0789.

[2342]

Francesca Quareni, David A Yuen, and Marc R Saari. “Adiabaticity and viscosity in deep mantle convection”. In: Geophys. Res. Lett. 13.1 (1986), pp. 38–41. doi: 10.1029/ GL013i001p00038.

[2343]

S. Quenette, Y. Xi, J. Mansour, L. Moresi, and D. Abramson. “Underworld-GT Applied to Guangdong, a Tool to Explore the Geothermal Potential of the Crust”. In: Journal of Earth Sciences 26.1 (2015), pp. 78–88. doi: 10.1007/s12583-015-0517-z.

[2344]

Sandrine Quere and Alessandro M Forte. “Influence of past and present-day plate motions on spherical models of mantle convection: implications for mantle plumes and hotspots”. In: Geophy. J. Int. 165.3 (2006), pp. 1041–1057. doi: 10.1111/j.1365-246X.2006.02990.x.

[2345]

S. Quéré, J.P. Lowman, J. Arkani-Hamed, J.H. Roberts, and R. Moucha. “Subcontinental sinking slab remnants in a spherical geometry mantle model”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 1760–1777. doi: 10.1002/jgrb.50102.

[2346]

L Quevedo, B Hansra, G Morra, N Butterworth, and RD Müller. “Oblique mid ocean ridge subduction modelling with the parallel fast multipole boundary element method”. In: Computational Mechanics 51.4 (2013), pp. 455–463. doi: 10.1007/s00466-012-0751-5.

[2347]

L Quevedo, G Morra, and RD Müller. “Global paleo-lithospheric models for geodynamical analysis of plate reconstructions”. In: Phys. Earth. Planet. Inter. 212 (2012), pp. 106–113. doi: 10.1016/j.pepi.2012.09.007.

[2348]

M.E.T. Quinquis and S.J.H. Buiter. “Testing the effects of basic numerical implementations of water migration on models of subduction dynamics”. In: Solid Earth 5 (2014), pp. 537–555. doi: 10.5194/se-5-537-2014.

[2349]

Matthieu E.T. Quinquis, Suzanne J.H. Buiter, and Susan Ellis. “The role of boundary conditions in numerical models of subduction zone dynamics”. In: Tectonophysics 497 (2011), pp. 57–70. doi: 10.1016/j.tecto.2010.11.001.

[2350]

J. Quinteros, V.A. Ramos, and P.M. Jacovkis. “An elasto-visco-plastic model using the finite element method for crustal and lithospheric deformation”. In: Journal of Geodynamics 48 (2009), pp. 83–94. doi: 10.1016/j.jog.2009.06.006.

[2351]

J. Quinteros, S.V. Sobolev, and A.A. Popov. “Viscosity in transition zone and lower mantle: Implications for slab penetration”. In: Geophys. Res. Lett. 37.L09307 (2010). doi: 10. 1029/2010GL043140.

[2352]

M Rabinowicz, J Boulegue, and P Genthon. “Two-and three-dimensional modeling of hydrothermal convection in the sedimented Middle Valley segment, Juan de Fuca Ridge”. In: J. Geophys. Res.: Solid Earth 103.B10 (1998), pp. 24045–24065. doi: 10.1029/98JB01484.

[2353]

M Rabinowicz, S Rouzo, J-C Sempere, and C Rosemberg. “Three-dimensional mantle flow beneath mid-ocean ridges”. In: J. Geophys. Res.: Solid Earth 98.B5 (1993), pp. 7851–7869. doi: 10.1029/92JB02740.

[2354]

Michel Rabinowicz, Jean-Christophe Sempéré, and P Genthon. “Thermal convection in a vertical permeable slot: Implications for hydrothermal circulation along mid-ocean ridges”. In: J. Geophys. Res.: Solid Earth 104.B12 (1999), pp. 29275–29292. doi: 10.1029/ 1999JB900259.

[2355]

G Raghuram, M Pérez-Gussinyé, M Andrés-Mart´i nez, J Garc´i a-Pintado, M Neto Araujo, and JP Morgan. “Asymmetry and evolution of craton-influenced rifted margins”. In: Geology (2023). doi: 10.1130/G51370.1.

[2356]

Bret Rahe, David A Ferrill, and Alan P Morris. “Physical analog modeling of pull-apart basin evolution”. In: Tectonophysics 285.1-2 (1998), pp. 21–40. doi: 10.1016/S0040- 1951(97)00193-5.

[2357]

H Ramberg. “Diapirism and gravity collapse in the Scandinavian Caledonides”. In: Journal of the Geological Society 137.3 (1980), pp. 261–270.

[2358]

Hans Ramberg. “Folding of laterally compressed multilayers in the field of gravity, I”. In: Phys. Earth. Planet. Inter. 2.4 (1970), pp. 203–232. doi: 10.1016/0031-9201(70)90010- 5.

[2359]

Hans Ramberg. “Folding of laterally compressed multilayers in the field of gravity, II Numerical examples”. In: Phys. Earth. Planet. Inter. 4.2 (1971), pp. 83–120. doi: 10. 1016/0031-9201(71)90006-9.

[2360]

Hans Ramberg. “Instability of layered systems in the field of gravity”. In: Phys. Earth. Planet. Inter. 1 (1968), pp. 427–447. doi: 10.1016/0031-9201(68)90014-9.

[2361]

Florence DC Ramirez, Clinton P Conrad, and Kate Selway. “Grain size reduction by plug flow in the wet oceanic upper mantle explains the asthenosphere’s low seismic Q zone”. In: Earth Planet. Sci. Lett. 616 (2023), p. 118232. doi: https://doi.org/10.1016/j.epsl. 2023.118232.

[2362]

T. Ramsay and R. Pysklywec. “Anomalous bathymetry, 3D edge driven convection, and dynamic topography at the western Atlantic passive margin”. In: Journal of Geodynamics 52.1 (2011), pp. 45–56. doi: 10.1016/j.jog.2010.11.008.

[2363]

H. Ran et al. “High-strain deformation of conglomerates: Numerical modelling, strain analysis, and an example from the Wutai Mountains, North China Craton”. In: Journal of Structural Geology 114 (2018), pp. 222–234. doi: 10.1016/j.jsg.2018.06.018.

[2364]

G. Ranalli. “Rheology of the crust and its role in tectonic reactivation”. In: Journal of Geodynamics 30 (2000), pp. 3–15.

[2365]

Giorgio Ranalli. “How soft is the crust?” In: Tectonophysics 3.361 (2003), pp. 319–320.

[2366]

Giorgio Ranalli and B Fischer. “Diffusion creep, dislocation creep, and mantle rheology”. In: Phys. Earth. Planet. Inter. 34.1-2 (1984), pp. 77–84.

[2367]

Giorgio Ranalli and Donald C Murphy. “Rheological stratification of the lithosphere”. In: Tectonophysics 132.4 (1987), pp. 281–295. doi: 10.1016/0040-1951(87)90348-9.

[2368]

Meghana Ranganathan and Brent Minchew. “A modified viscous flow law for natural glacier ice: Scaling from laboratories to ice sheets”. In: Proceedings of the National Academy of Sciences 121.23 (2024), e2309788121. doi: 10.1073/pnas.2309788121.

[2369]

E Rangelova, W van der Wal, A Braun, MG Sideris, and P Wu. “Analysis of Gravity Recovery and Climate Experiment time-variable mass redistribution signals over North America by means of principal component analysis”. In: J. Geophys. Res.: Earth Surface 112.F3 (2007). doi: 10.1029/2006JF000615.

[2370]

D Bhaskara Rao. “Modelling of sedimentary basins from gravity anomalies with variable density contrast”. In: Geophy. J. Int. 84.1 (1986), pp. 207–212. doi: 10.1111/j.1365- 246X.1986.tb04353.x.

[2371]

Sune Olander Rasmussen et al. “A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core”. In: Climate of the Past 9.6 (2013).

[2372]

Markus Rast and Jonas B Ruh. “Numerical shear experiments of quartz-biotite aggregates: Insights on strain weakening and two-phase flow laws”. In: Journal of Structural Geology 149 (2021), p. 104375. doi: 10.1016/j.jsg.2021.104375.

[2373]

J.T. Ratcliff, G. Schubert, and A. Zebib. “Effects of temperature-dependent viscosity on thermal convection in a spherical shell”. In: Physica D 97 (1996), pp. 242–252.

[2374]

J.T. Ratcliff, G. Schubert, and A. Zebib. “Steady tetrahedral and cubic patterns of spherical shell convection with temperature-dependent viscosity”. In: J. Geophys. Res.: Solid Earth 101.B11 (1996), pp. 25, 473–25, 484. doi: 10.1029/96JB02097.

[2375]

J.T. Ratcliff, G. Schubert, and A. Zebib. “Three-dimension variable viscosity convection of an infinite Prandtl number Boussinesq fluid in a spherical shell”. In: Geophys. Res. Lett. 22.16 (1995), pp. 2227–2230.

[2376]

James Todd Ratcliff, Paul J Tackley, Gerald Schubert, and Abdelfattah Zebib. “Transitions in thermal convection with strongly variable viscosity”. In: Phys. Earth. Planet. Inter. 102.3-4 (1997), pp. 201–212.

[2377]

P Ravaut, R Bayer, R Hassani, D Rousset, and A Al Yahya’ey. “Structure and evolution of the northern Oman margin: gravity and seismic constraints over the Zagros-Makran-Oman collision zone”. In: Tectonophysics 279.1-4 (1997), pp. 253–280. doi: 10.1016/S0040- 1951(97)00125-X.

[2378]

R. Reali, J. M. Jackson, J. van Orman, D. J. Bower, P. Carrez, and P. Cordier. “Modeling viscosity of (Mg,Fe)O at lowermost mantle conditions”. In: Phys. Earth. Planet. Inter. 287 (2019), pp. 65–75. doi: 10.1016/j.pepi.2018.12.005.

[2379]

J.E. Reber, M. Dabrowski, and D.W. Schmid. “Sheath fold formation around slip surfaces”. In: Terra Nova (2012). doi: 10.1111/j.1365-3121.2012.01081.x.

[2380]

J.E. Reber, O. Galland, P.R. Cobbold, and C. Le Carlier de Veslud. “Experimental study of sheath fold development around a weak inclusion in a mechanically layered matrix”. In: Tectonophysics 586 (2013), pp. 130–144.

[2381]

JE Reber, Stefan M Schmalholz, and J-P Burg. “Stress orientation and fracturing during three-dimensional buckling: Numerical simulation and application to chocolate-tablet structures in folded turbidites, SW Portugal”. In: Tectonophysics 493.1-2 (2010), pp. 187–195.

[2382]

C.C. Reese and V.S. Solomatov. “Mean field heat transfer scaling for non-Newtonian stagnant lid convection”. In: Journal of Non-Newtonian Fluid Mechanics 107.1-3 (2002), pp. 39–49. doi: 10.1016/S0377-0257(02)00140-4.

[2383]

C.C. Reese, V.S. Solomatov, and J.R. Baumgardner. “Scaling laws for time-dependent stagnant lid convection in a spherical shell”. In: Phys. Earth. Planet. Inter. 149.3-4 (2005), pp. 361–370. doi: 10.1016/j.pepi.2004.11.004.

[2384]

C.C. Reese, V.S. Solomatov, J.R. Baumgardner, and W.-S. Yang. “Stagnant lid convection in a spherical shell”. In: Phys. Earth. Planet. Inter. 116.1-4 (1999), pp. 1–7. doi: 10. 1016/S0031-9201(99)00115-6.

[2385]

CC Reese, VS Solomatov, and L-N Moresi. “Heat transport efficiency for stagnant lid convection with dislocation viscosity: Application to Mars and Venus”. In: J. Geophys. Res.: Planets 103.E6 (1998), pp. 13643–13657.

[2386]

CC Reese, VS Solomatov, and L-N Moresi. “Non-newtonian stagnant lid convection and magmatic resur facing on venus”. In: Icarus 139.1 (1999), pp. 67–80.

[2387]

V. Regard, C. Faccenna, J. Martinod, O. Bellier, and J.-C. Thomas. “From subduction to collision: Control of deep processes on the evolution of convergent plate boundary”. In: J. Geophys. Res.: Solid Earth 108.B4 (2003). doi: 10.1029/2002JB001943.

[2388]

K. Regenauer-Lieb and D.A. Yuen. “Modeling shear zones in geological and planetary sciences: solid-and fluid-thermal-mechanical approaches”. In: Earth-Science Reviews 63 (2003), pp. 295–349. doi: 10.1016/S0012-8252(03)00038-2.

[2389]

K. Regenauer-Lieb and D.A. Yuen. “Rapid conversion of elastic energy into plastic shear heating during incipient necking of the lithosphere”. In: Geophys. Res. Lett. 25.14 (1998), pp. 2737–2740. doi: 10.1029/98GL02056.

[2390]

K. Regenauer-Lieb, D.A. Yuen, and J. Branlund. “The initiation of subduction: Criticality by addition of water ?” In: Science 294 (2001), pp. 578–580.

[2391]

Klaus Regenauer-Lieb, Gideon Rosenbaum, and Roberto F Weinberg. “Strain localisation and weakening of the lithosphere during extension”. In: Tectonophysics 458.1-4 (2008), pp. 96–104. doi: 10.1016/j.tecto.2008.02.014.

[2392]

Klaus Regenauer-Lieb et al. “Melt instabilities in an intraplate lithosphere and implications for volcanism in the Harrat Ash-Shaam volcanic field (NW Arabia)”. In: J. Geophys. Res.: Solid Earth 120.3 (2015), pp. 1543–1558. doi: 10.1002/2014JB011403.

[2393]

A Regorda, AM Marotta, and MI Spalla. “Numerical model of an ocean/continent subduction and comparison with Variscan orogeny natural data”. In: Rend. Online Soc. Geol. It. 29 (2013), pp. 142–145.

[2394]

Alessandro Regorda, Jean-Marc Lardeaux, Manuel Roda, Anna Maria Marotta, and Maria Iole Spalla. “How many subductions in the Variscan orogeny? Insights from numerical models”. In: Geoscience Frontiers 11 (2020), pp. 1025–1052.

[2395]

Alessandro Regorda, Manuel Roda, Anna Maria Marotta, and Maria Iole Spalla. “2-D numerical study of hydrated wedge dynamics from subduction to post-collisional phases”. In: Geophy. J. Int. 211.2 (2017), pp. 952–978.

[2396]

Alessandro Regorda, Maria Iole Spalla, Manuel Roda, Jean-Marc Lardeaux, and Anna Maria Marotta. “Metamorphic facies and deformation fabrics diagnostic of subduction: insights from 2D numerical models”. In: Geochem. Geophys. Geosyst. 22 (2021), e2021GC009899. doi: 10.1029/2021GC009899.

[2397]

Mirko Reguzzoni and Daniele Sampietro. “GEMMA: An Earth crustal model based on GOCE satellite data”. In: International Journal of Applied Earth Observation and Geoinformation 35 (2015), pp. 31–43. doi: 10.1016/j.jag.2014.04.002.

[2398]

Mirko Reguzzoni and Daniele Sampietro. “Moho estimation using GOCE data: a numerical simulation”. In: Geodesy for Planet Earth. Springer, 2012, pp. 205–214.

[2399]

Mirko Reguzzoni, Daniele Sampietro, and Fernando Sansò. “Global Moho from the combination of the CRUST2. 0 model and GOCE data”. In: Geophy. J. Int. 195.1 (2013), pp. 222–237.

[2400]

Zhengyong Ren et al. “Gravity gradient tensor of arbitrary 3D polyhedral bodies with up to third-order polynomial horizontal and vertical mass contrasts”. In: Surveys in Geophysics 39 (2018), pp. 901–935. doi: 10.1007/s10712-018-9467-1.

[2401]

Theo Renaud, Patrick Verdin, and Gioia Falcone. “Numerical simulation of a Deep Borehole Heat Exchanger in the Krafla geothermal system”. In: International Journal of Heat and Mass Transfer 143 (2019), p. 118496.

[2402]

Anne Replumaz and P Tapponnier. “Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks”. In: J. Geophys. Res.: Solid Earth 108.B6 (2003).

[2403]

TJ Reston and César R Ranero. “The 3-D geometry of detachment faulting at mid-ocean ridges”. In: Geochem. Geophys. Geosyst. 12.7 (2011).

[2404]

J. Revenaugh and B. Parsons. “Dynamic topography and gravity anomalies for fluid layers whose viscosity varies exponentially with depth”. In: Geophysical Journal of the Royal Astronomical Society 90.2 (1987), pp. 349–368. doi: 10.1111/j.1365-246X.1987. tb00731.x.

[2405]

VV Reverdatto, OP Polyansky, AN Semenov, and AV Babichev. “Mathematical Modeling of the Mechanism of Continental Subduction”. In: Doklady Earth Sciences. Vol. 503. 2. 2022, pp. 179–184. doi: 10.1134/S1028334X22040158.

[2406]

Patrice F Rey. “RESEARCH FOCUS: The geodynamics of mantle melting”. In: Geology 43.4 (2015), pp. 367–368. doi: 10.1130/focus042015.1.

[2407]

Patrice F Rey, Nicolas Coltice, and Nicolas Flament. “Archean geodynamics underneath weak, flat, and flooded continents”. In: Elements 20.3 (2024), pp. 180–186. doi: 10.2138/ gselements.20.3.180.

[2408]

Patrice F Rey, Nicolas Coltice, and Nicolas Flament. “Spreading continents kick-started plate tectonics”. In: Nature 513.7518 (2014), p. 405.

[2409]

Patrice F Rey and Gregory Houseman. “Lithospheric scale gravitational flow: the impact of body forces on orogenic processes from Archaean to Phanerozoic”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 153–167.

[2410]

Patrice F Rey, Christian Teyssier, Seth C Kruckenberg, and Donna L Whitney. “Viscous collision in channel explains double domes in metamorphic core complexes”. In: Geology 39.4 (2011), pp. 387–390. doi: 10.1130/G31587.1.

[2411]

PF Rey, Christian Teyssier, and Donna L Whitney. “The role of partial melting and extensional strain rates in the development of metamorphic core complexes”. In: Tectonophysics 477.3-4 (2009), pp. 135–144. doi: 10.1016/j.tecto.2009.03.010.

[2412]

B. Reynard. “Serpentine in active subduction zones ”. In: Lithos 178 (2012), pp. 171–185. doi: 10.1016/j.lithos.2012.10.012.

[2413]

N.M. Ribe, E. Stutzmann, Y. Ren, and R. van der Hilst. “Buckling instabilities of subducted lithosphere beneath the transition zone”. In: Earth Planet. Sci. Lett. 254 (2007), pp. 173–179.

[2414]

Neil M Ribe. “A continuum theory for lattice preferred orientation”. In: Geophy. J. Int. 97.2 (1989), pp. 199–207.

[2415]

Neil M Ribe. “Diapirism in the Earth’s mantle: Experiments on the motion of a hot sphere in a fluid with temperature-dependent viscosity”. In: Journal of Volcanology and Geothermal Research 16.3-4 (1983), pp. 221–245. doi: 10.1016/0377-0273(83)90031-8.

[2416]

Neil M Ribe. “Mantle flow induced by back arc spreading”. In: Geophy. J. Int. 98.1 (1989), pp. 85–91.

[2417]

Neil M Ribe. “Melt segregation driven by dynamic forcing”. In: Geophys. Res. Lett. 13.13 (1986), pp. 1462–1465.

[2418]

Neil M Ribe. “On the dynamics of mid-ocean ridges”. In: J. Geophys. Res.: Solid Earth 93.B1 (1988), pp. 429–436.

[2419]

Neil M Ribe. “On the relation between seismic anisotropy and finite strain”. In: J. Geophys. Res.: Solid Earth 97.B6 (1992), pp. 8737–8747.

[2420]

Neil M Ribe. “Periodic folding of viscous sheets”. In: Physical Review E 68.3 (2003), p. 036305. doi: 10.1103/PhysRevE.68.036305.

[2421]

Neil M Ribe. “Seismic anisotropy and mantle flow”. In: J. Geophys. Res.: Solid Earth 94.B4 (1989), pp. 4213–4223.

[2422]

Neil M Ribe. “The deformation and compaction of partial molten zones”. In: Geophy. J. Int. 83.2 (1985), pp. 487–501.

[2423]

Neil M Ribe. “The dynamics of thin shells with variable viscosity and the origin of toroidal flow in the mantle”. In: Geophy. J. Int. 110.3 (1992), pp. 537–552.

[2424]

Neil M Ribe. “The generation and composition of partial melts in the earth’s mantle”. In: Earth Planet. Sci. Lett. 73.2-4 (1985), pp. 361–376.

[2425]

Neil M Ribe. “Theory of melt segregation - a review”. In: Journal of volcanology and geothermal research 33.4 (1987), pp. 241–253.

[2426]

Neil M Ribe and Michell D Smooke. “A stagnation point flow model for melt extraction from a mantle plume”. In: J. Geophys. Res.: Solid Earth 92.B7 (1987), pp. 6437–6443.

[2427]

Neil M Ribe, Paul J Tackley, and Patrick Sanan. “The strength of the Iceland plume: A geodynamical scaling approach”. In: Earth Planet. Sci. Lett. 551 (2020), p. 116570. doi: 10.1016/j.epsl.2020.116570.

[2428]

Neil M Ribe and Bingrui Xu. “Subduction of non-Newtonian plates: thin-sheet dynamics of slab necking and break-off”. In: Geophy. J. Int. 220.2 (2020), pp. 910–927. doi: 10.1093/ gji/ggz500.

[2429]

Neil M Ribe and Yang Yu. “A theory for plastic deformation and textural evolution of olivine polycrystals”. In: J. Geophys. Res.: Solid Earth 96.B5 (1991), pp. 8325–8335.

[2430]

NM Ribe. “The dynamics of plume-ridge interaction - II. Off-ridge plumes”. In: J. Geophys. Res.: Solid Earth 101.B7 (1996), pp. 16195–16204.

[2431]

NM Ribe and UR Christensen. “Three-dimensional modeling of plume-lithosphere interaction”. In: J. Geophys. Res.: Solid Earth 99.B1 (1994), pp. 669–682.

[2432]

NM Ribe, UR Christensen, and J Theissing. “The dynamics of plume-ridge interaction, 1: Ridge-centered plumes”. In: Earth Planet. Sci. Lett. 134.1-2 (1995), pp. 155–168.

[2433]

NM Ribe and DP De Valpine. “The global hotspot distribution and instability of D””. In: Geophys. Res. Lett. 21.14 (1994), pp. 1507–1510. doi: 10.1029/94GL01168.

[2434]

NM Ribe and WL Delattre. “The dynamics of plume-ridge interaction - III. The effects of ridge migration”. In: Geophy. J. Int. 133.3 (1998), pp. 511–518.

[2435]

Y. Ricard, L. Fleitout, and C. Froidevaux. “Geoid heights and lithospheric stresses for a dynamic Earth”. In: Annales Geophysicae 2.3 (1984), pp. 267–286. doi: xxxx.

[2436]

Y. Ricard, M. richards, C. Lithgow-Bertelloni, and Y. Le Stunff. “a Geodynamic Model of Mantle Density Heterogeneity”. In: J. Geophys. Res.: Solid Earth 98 (1993), pp. 21, 895–21, 909.

[2437]

Yanick Ricard, Frédéric Chambat, and Carolina Lithgow-Bertelloni. “Gravity observations and 3D structure of the Earth”. In: Comptes Rendus Geoscience 338.14-15 (2006), pp. 992–1001. doi: 10.1016/j.crte.2006.05.013.

[2438]

Yanick Ricard and Christophe Vigny. “Mantle dynamics with induced plate tectonics”. In: J. Geophys. Res.: Solid Earth 94.B12 (1989), pp. 17543–17559.

[2439]

Yanick Ricard, Christophe Vigny, and Claude Froidevaux. “Mantle heterogeneities, geoid, and plate motion: A Monte Carlo inversion”. In: J. Geophys. Res.: Solid Earth 94.B10 (1989), pp. 13739–13754.

[2440]

FD Richards, MJ Hoggard, LR Cowton, and NJ White. “Reassessing the thermal structure of oceanic lithosphere with revised global inventories of basement depths and heat flow measurements”. In: J. Geophys. Res.: Solid Earth 123.10 (2018), pp. 9136–9161. doi: 10.1029/2018JB015998.

[2441]

Fred D Richards, Sophie L Coulson, Mark J Hoggard, Jacqueline Austermann, Blake Dyer, and Jerry X Mitrovica. “Geodynamically corrected Pliocene shoreline elevations in Australia consistent with midrange projections of Antarctic ice loss”. In: Science Advances 9.46 (2023), eadg3035. doi: 10.1126/sciadv.adg3035.

[2442]

M.A. Richards, H.-P. Bunge, Y. Ricard, and J.R. Baumgardner. “Polar wandering in mantle convection models”. In: Geophys. Res. Lett. 26.12 (1999), pp. 1777–1780. doi: 10.1029/ 1999GL900331.

[2443]

M.A. Richards, W.-S. Yang, J.R. Baumgardner, and H.-P. Bunge. “Role of a low-viscosity zone in stabilizing plate tectonics: Implications for comparative terrestrial planetology”. In: Geochem. Geophys. Geosyst. 2 (2001). doi: 10.1029/2000GC000115.

[2444]

Mark A Richards and David C Engebretson. “Large-scale mantle convection and the history of subduction”. In: Nature 355.6359 (1992), pp. 437–440. doi: 10.1038/355437a0.

[2445]

Mark A Richards and Bradford H Hager. “Geoid anomalies in a dynamic Earth”. In: J. Geophys. Res.: Solid Earth 89.B7 (1984), pp. 5987–6002.

[2446]

R.M. Richardson. “Ridge Forces, Absolute Plate Motions, and the Intraplate Stress Field”. In: J. Geophys. Res.: Solid Earth 97.B8 (1992), pp. 11, 739–11, 748.

[2447]

R.M. Richardson, C. Solomon, and N.H. Sleep. “Intraplate Stress as an Indicator of Plate Tectonic Driving Forces”. In: J. Geophys. Res.: Solid Earth 81.11 (1976), pp. 1847–1856.

[2448]

R.M. Richardson, S.C. Solomon, and N.H. Sleep. “Tectonic stress in the plates”. In: Reviews of Geophysics and Space Physics 17.5 (1979), p. 981.

[2449]

F. Richter and D. McKenzie. “Simple plate models of mantle convection”. In: J. Geophys. 44 (1978), pp. 441–471. doi: xxxx.

[2450]

Frank M Richter. “Convection and the large-scale circulation of the mantle”. In: J. Geophys. Res.: Solid Earth 78.35 (1973), pp. 8735–8745. doi: 10.1029/JB078i035p08735.

[2451]

Frank M Richter. “Dynamical models for sea floor spreading”. In: Reviews of Geophysics 11.2 (1973), pp. 223–287. doi: 10.1029/RG011i002p00223.

[2452]

Frank M Richter, Stephen F Daly, and Henri-Claude Nataf. “A parameterized model for the evolution of isotopic heterogeneities in a convecting system”. In: Earth Planet. Sci. Lett. 60.2 (1982), pp. 178–194. doi: 10.1016/0012-821X(82)90002-4.

[2453]

Frank M Richter and Dan P McKenzie. “Parameterizations for the horizontally averaged temperature of infinite Prandtl number convection”. In: J. Geophys. Res.: Solid Earth 86.B3 (1981), pp. 1738–1744. doi: 10.1029/JB086iB03p01738.

[2454]

Nicolas Riel, Fabio A Capitanio, and Mirko Velic. “Numerical modeling of stress and topography coupling during subduction: Inferences on global vs. regional observables interpretation”. In: Tectonophysics 746 (2018), pp. 239–250. doi: 10.1016/j.tecto. 2017.07.023.

[2455]

Nicolas Riel, Boris JP Kaus, ECR Green, and Nicolas Berlie. “MAGEMin, an efficient Gibbs energy minimizer: Application to igneous systems”. In: Geochem. Geophys. Geosyst. 23.7 (2022), e2022GC010427. doi: 10.1029/2022GC010427.

[2456]

A Rigo et al. “Insights for the melt migration, the volcanic activity and the ultrafast lithosphere delamination related to the Yellowstone plume (Western USA)”. In: Geophy. J. Int. 203.2 (2015), pp. 1274–1301. doi: 10.1093/gji/ggv360.

[2457]

J. Ritsema, A. Deuss, H.J. van Heijst, and J.H. Woodhouse. “S40rts: a degree-40 shear- velocity model for the mantle from new rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements”. In: Geophy. J. Int. 184 (2011), pp. 1223–1236.

[2458]

J. Ritsema, A.K. McNamara, and A.L. Bull. “Tomographic filtering of geodynamic models: Implications for model interpretation and large-scale mantle structure”. In: J. Geophys. Res.: Solid Earth 112.B01303 (2007).

[2459]

Jeroen Ritsema, Hendrik Jan van Heijst, and John H Woodhouse. “Complex shear wave velocity structure imaged beneath Africa and Iceland”. In: Science 286.5446 (1999), pp. 1925–1928. doi: 10.1126/science.286.5446.1925.

[2460]

Jeroen Ritsema, Hendrik Jan Van Heijst, and John H Woodhouse. “Global transition zone tomography”. In: J. Geophys. Res.: Solid Earth 109.B2 (2004). doi: 10.1029/ 2003JB002610.

[2461]

Riccardo E M Riva and Rob Govers. “Relating viscosities from postseismic relaxation to a realistic viscosity structure for the lithosphere”. In: Geophy. J. Int. 176.2 (2009), pp. 614–624.

[2462]

J. H. Roberts, R. J. Lillis, and M. Manga. “Giant impacts on early Mars and the cessation of the Martian dynamo”. In: J. Geophys. Res.: Solid Earth 114.E4 (2009). doi: 10.1029/ 2008JE003287.

[2463]

M. Roda, A.M. Marotta, and M.I. Spalla. “Numerical simulations of an ocean-continent convergent system: Influence of subduction geometry and mantle wedge hydration on crustal recycling”. In: Geochem. Geophys. Geosyst. 11.5 (2010), 10.1029/2009GC003015.

[2464]

Manuel Roda, Maria Iole Spalla, and Anna Maria Marotta. “Integration of natural data within a numerical model of ablative subduction: a possible interpretation for the Alpine dynamics of the Austroalpine crust”. In: Journal of Metamorphic Geology 30.9 (2012), pp. 973–996.

[2465]

Manuel Roda, Michele Zucali, Alessandro Regorda, and Maria Iole Spalla. “Formation and evolution of a subduction-related mélange: The example of the Rocca Canavese Thrust Sheets (Western Alps)”. In: GSA Bulletin 132.3-4 (2020), pp. 884–896. doi: 10.1130/B35213.1.

[2466]

Mathieu Rodriguez, Maëlis Arnould, Nicolas Coltice, and Mathieu Soret. “Long-term evolution of a plume-induced subduction in the Neotethys realm”. In: Earth Planet. Sci. Lett. 561 (2021), p. 116798. doi: 10.1016/j.epsl.2021.116798.

[2467]

J. Rodriguez-Gonzalez, A.M. Negredo, and E. Carminati. “Slab-mantle flow interaction: influence on subduction dynamics and duration”. In: Terra Nova 26 (2014), pp. 265–272. doi: 10.1111/ter.12095.

[2468]

J. Rodriguez-González, M.I. Billen, and A.M. Negredo. “Non-steady-state subduction and trench-parallel flow induced by overriding plate structure ”. In: Earth Planet. Sci. Lett. 401 (2014), pp. 227–235. doi: 10.1016/j.epsl.2014.06.013.

[2469]

J. Rodriguez-González, A.M. Negredo, and M.I. Billen. “The role of the overriding plate thermal state on slab dip variability and on the occurrence of flat subduction”. In: Geochem. Geophys. Geosyst. 13.1 (2012). doi: 10.1029/2011GC003859.

[2470]

Juan Rodr´i  guez-González, Magali I Billen, Ana M Negredo, and Laurent GJ Montesi. “Along-strike variation in subducting plate velocity induced by along-strike variation in overriding plate structure: Insights from 3D numerical models”. In: Journal of Geodynamics 100 (2016), pp. 175–183.

[2471]

Gerard H Roe and Mark T Brandon. “Critical form and feedbacks in mountain-belt dynamics: Role of rheology as a tectonic governor”. In: J. Geophys. Res.: Solid Earth 116.B2 (2011). doi: 10.1029/2009JB006571.

[2472]

Gerard H Roe, Drew B Stolar, and Sean D Willett. “Response of a steady-state critical wedge orogen to changes in climate and tectonic forcing”. In: SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA 398 (2006), p. 227.

[2473]

Gerard H Roe, Kelin X Whipple, and Jennifer K Fletcher. “Feedbacks among climate, erosion, and tectonics in a critical wedge orogen”. In: American Journal of Science 308.7 (2008), pp. 815–842.

[2474]

Yamirka Rojas-Agramonte et al. “Zircon Dates Long-Lived Plume Dynamics in Oceanic Islands”. In: Geochem. Geophys. Geosyst. 23.11 (2022), e2022GC010485. doi: 10.1029/ 2022GC010485.

[2475]

T Rolf, Nicolas Coltice, and PJ Tackley. “Linking continental drift, plate tectonics and the thermal state of the Earth’s mantle”. In: Earth Planet. Sci. Lett. 351 (2012), pp. 134–146.

[2476]

T. Rolf and P.J. Tackley. “Focussing of stress by continents in 3D spherical mantle convection with self-consistent plate tectonics”. In: Geophys. Res. Lett. 38.L18301 (2011). doi: 10. 1029/2011GL048677.

[2477]

Tobias Rolf, Fabio Antonio Capitanio, and Paul J Tackley. “Constraints on mantle viscosity structure from continental drift histories in spherical mantle convection models”. In: Tectonophysics 746 (2018), pp. 339–351. doi: 10.1016/j.tecto.2017.04.031.

[2478]

Tobias Rolf, Nicolas Coltice, and Paul J Tackley. “Statistical cyclicity of the supercontinent cycle”. In: Geophys. Res. Lett. 41.7 (2014), pp. 2351–2358.

[2479]

Y Rolland et al. “The East Anatolia–Lesser Caucasus ophiolite: An exceptional case of large-scale obduction, synthesis of data and numerical modelling”. In: Geoscience Frontiers 11 (2020), pp. 83–108. doi: 10.1016/j.gsf.2018.12.009.

[2480]

B. Romanowicz. “Can we resolve 3D density heterogeneity in the lower mantle”. In: Geophys. Res. Lett. 28.6 (2001), pp. 1107–1110.

[2481]

Barbara Romanowicz. “3D structure of the Earth’s lower mantle”. In: Comptes Rendus Geoscience 335.1 (2003), pp. 23–35. doi: 10.1016/S1631-0713(03)00012-9.

[2482]

Barbara Romanowicz. “Using seismic waves to image Earth’s internal structure”. In: Nature 451.7176 (2008), p. 266. doi: 10.1038/nature06583.

[2483]

Barbara Romanowicz and Kurt Lambeck. “The mass and moment of inertia of the Earth”. In: Phys. Earth. Planet. Inter. 15.1 (1977), pp. 1–4.

[2484]

Cui Ronghua, Fang Jian, and Wang Yong. “Effect of Mantle Viscosity Structures on Simulations of Geoid Anomalies in the Ross Sea Area”. In: Pure Appl. Geophys. (2022). doi: 10.1007/s00024-022-03081-1.

[2485]

B. C. Root, L. Tarasov, and W. van der Wal. “GRACE gravity observations constrain Weichselian ice thickness in the Barents Sea”. In: Geophys. Res. Lett. 42.9 (2015), pp. 3313–3320. doi: 10.1002/2015GL063769.

[2486]

B.C. Root, J. Ebbing, W. van der Wal, R.W. England, and L.L.A. Vermeersen. “Comparing gravity-based to seismic-derived lithosphere densities: a case study of the British Isles and surrounding areas”. In: Geophy. J. Int. 208 (2017), pp. 1796–1810. doi: 10.1093/gji/ ggw483.

[2487]

B.C. Root, P. Novak, D. Dirkx, M. Kaban, W. van der Wal, and L.L.A. Vermeersen. “On a spectral method for forward gravity field modelling”. In: Journal of Geodynamics 97 (2016), pp. 22–30. doi: 10.1016/j.jog.2016.02.008.

[2488]

BC Root. “Comparing global tomography-derived and gravity-based upper mantle density models”. In: Geophy. J. Int. 221.3 (2020), pp. 1542–1554. doi: 10.1093/gji/ggaa091.

[2489]

Filipe M Rosas, João C Duarte, Wouter Pieter Schellart, Ricardo Tomas, Vili Grigorova, and Pedro Terrinha. “Analogue modelling of different angle thrust-wrench fault interference in a brittle medium”. In: Journal of Structural Geology 74 (2015), pp. 81–104.

[2490]

IR Rose and J Korenaga. “Mantle rheology and the scaling of bending dissipation in plate tectonics”. In: J. Geophys. Res.: Solid Earth 116.B6 (2011). doi: 10.1029/2010JB008004.

[2491]

Marc Rovira-Navarro, Wouter van der Wal, Valentina R Barletta, Bart C Root, and Louise Sandberg Sørensen. “GRACE constraints on Earth rheology of the Barents Sea and Fennoscandia”. In: Solid Earth 11 (2020), pp. 379–395. doi: 10.5194/se-11-379-2020.

[2492]

A. Rowland and J. H. Davies. “Buoyancy rather than rheology controls the thickness of the overriding mechanical lithosphere at subduction zones”. In: Geophys. Res. Lett. 26.19 (1999), pp. 3037–3040. doi: 10.1029/1999GL005347.

[2493]

Mousumi Roy, Stav Gold, Alex Johnson, Rodrigo Osuna Orozco, Benjamin K Holtzman, and James Gaherty. “Macroscopic coupling of deformation and melt migration at continental interiors, with applications to the Colorado Plateau”. In: J. Geophys. Res.: Solid Earth 121.5 (2016), pp. 3762–3781. doi: 10.1002/2015JB012149.

[2494]

L Royden and CE Keen. “Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves”. In: Earth Planet. Sci. Lett. 51.2 (1980), pp. 343–361. doi: 10.1016/0012-821X(80)90216-2.

[2495]

Leigh H Royden and Laurent Husson. “Trench motion, slab geometry and viscous stresses in subduction systems”. In: Geophy. J. Int. 167.2 (2006), pp. 881–905. doi: 10.1111/j. 1365-246X.2006.03079.x.

[2496]

AB Rozel, Gregor J Golabek, C Jain, Paul J Tackley, and Taras Gerya. “Continental crust formation on early Earth controlled by intrusive magmatism”. In: Nature 545.7654 (2017), pp. 332–335. doi: 10.1038/nature22042.

[2497]

Antoine Rozel, Yanick Ricard, and David Bercovici. “A thermodynamically self-consistent damage equation for grain size evolution during dynamic recrystallization”. In: Geophy. J. Int. 184.2 (2011), pp. 719–728.

[2498]

Michael Rubey, Sascha Brune, Christian Heine, D Rhodri Davies, Simon E Williams, and R Dietmar Müller. “Global patterns in Earth’s dynamic topography since the Jurassic: the role of subducted slabs”. In: Solid Earth 8.5 (2017), pp. 899–919. doi: 10.5194/se-8- 899-2017.

[2499]

Maxwell L Rudolph and SJ Zhong. “History and dynamics of net rotation of the mantle and lithosphere”. In: Geochem. Geophys. Geosyst. 15.9 (2014), pp. 3645–3657. doi: 10.1002/ 2014GC005457.

[2500]

ML Rudolph and M Manga. “Effects of anisotropic viscosity and texture development on convection in ice mantles”. In: J. Geophys. Res.: Planets 117.E11 (2012). doi: 10.1029/ 2012JE004166.

[2501]

ML Rudolph, Pritwiraj Moulik, and V Lekić. “Bayesian Inference of Mantle Viscosity From Whole-Mantle Density Models”. In: Geochem. Geophys. Geosyst. 21.11 (2020), e2020GC009335. doi: 10.1029/2020GC009335.

[2502]

J.B. Ruh, T. Gerya, and J.-P. Burg. “High-resolution 3D numerical modeling of thrust wedges: Influence of décollement strength on transfer zones”. In: Geochem. Geophys. Geosyst. 14.4 (2013), pp. 1131–1155. doi: 10.1002/ggge.20085.

[2503]

J.B. Ruh, L. Le Pourhiet, Ph. Agard, E. Burov, and T. Gerya. “Tectonic slicing of subducting oceanic crust along plate interfaces: Numerical modeling”. In: Geochem. Geophys. Geosyst. 16 (2015), 10.1002/2015GC005998.

[2504]

Jonas Ruh, Whitney Behr, and Leif Tokle. “Effect of Grain-Size and Textural Weakening in Polyphase Crustal and Mantle Lithospheric Shear Zones”. In: Tektonika 2.1 (2024), pp. 91–110. doi: 10.55575/tektonika2024.68.1.2.

[2505]

Jonas B Ruh. “Effect of fluid pressure distribution on the structural evolution of accretionary wedges”. In: Terra Nova 29.3 (2017), pp. 202–210. doi: 10.1111/ter.12263.

[2506]

Jonas B Ruh. “Numerical modeling of tectonic underplating in accretionary wedge systems”. In: Geosphere 16.6 (2020), pp. 1385–1407. doi: 10.1130/GES02273.1.

[2507]

Jonas B Ruh, Taras Gerya, and Jean-Pierre Burg. “Toward 4D modeling of orogenic belts: Example from the transpressive Zagros Fold Belt”. In: Tectonophysics 702 (2017), pp. 82–89. doi: 10.1016/j.tecto.2015.09.035.

[2508]

Jonas B Ruh, Boris JP Kaus, and Jean-Pierre Burg. “Numerical investigation of deformation mechanics in fold-and-thrust belts: Influence of rheology of single and multiple décollements”. In: Tectonics 31.3 (2012). doi: 10.1029/2011TC003047.

[2509]

Jonas B Ruh, L. Tokle, and W.M. Behr. “Grain size evolution controls on lithospheric weakening during continental rifting”. In: Nature Geoscience 15 (2022), pp. 585–890. doi: 10.1038/s41561-022-00964-9.

[2510]

Jonas B Ruh, Jaume Vergés, and Jean-Pierre Burg. “Shale-related minibasins atop a massive olistostrome in an active accretionary wedge setting: Two-dimensional numerical modeling applied to the Iranian Makran”. In: Geology 46.9 (2018), pp. 791–794. doi: 10.1130/ G40316.1.

[2511]

Lisa Rummel, Tobias S Baumann, and Boris JP Kaus. “An autonomous petrological database for geodynamic simulations of magmatic systems”. In: Geophy. J. Int. 223.3 (2020), pp. 1820–1836. doi: 10.1093/gji/ggaa413.

[2512]

Lisa Rummel, Boris JP Kaus, Tobias S Baumann, Richard W White, and Nicolas Riel. “Insights into the compositional evolution of crustal magmatic systems from coupled petrological-geodynamical models”. In: Journal of Petrology 61.2 (2020), egaa029. doi: 10.1093/petrology/egaa029.

[2513]

Reiner Rummel, Weiyong Yi, and Claudia Stummer. “GOCE gravitational gradiometry”. In: Journal of Geodesy 85.11 (2011), p. 777.

[2514]

SK Runcorn. “Satellite gravity measurements and a laminar viscous flow model of the earth’s mantle”. In: J. Geophys. Res.: Solid Earth 69.20 (1964), pp. 4389–4394.

[2515]

E Rybacki and G Dresen. “Dislocation and diffusion creep of synthetic anorthite aggregates”. In: J. Geophys. Res.: Solid Earth 105.B11 (2000), pp. 26017–26036.

[2516]

E Rybacki, M Gottschalk, R Wirth, and G Dresen. “Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates”. In: J. Geophys. Res.: Solid Earth 111.B3 (2006). doi: 10.1029/2005JB003663.

[2517]

VV Rykov and VP Trubitsyn. “3-D model of mantle convection incorporating moving continents”. In: Computational Seismology and Geodynamics 3 (1996), pp. 23–32.

[2518]

VV Rykov and VP Trubitsyn. “Numerical technique for calculation of three-dimensional mantle convection and tectonics of continental plates”. In: Computational Seismology and Geodynamics 3 (1996), pp. 17–22.

[2519]

A.H. Saad. “Understanding gravity gradients - a tutorial”. In: The leading edge 25.8 (2006), p. 942. doi: 10.1190/1.2335167.

[2520]

R. Sabadini, D.A. Yuen, and M. Portney. “The effects of upper-mantle lateral heterogeneities on postglacial rebound”. In: Geophys. Res. Lett. 13.4 (1986), pp. 337–340. doi: 10.1029/ GL013i004p00337.

[2521]

Victor Sacek. “Post-rift influence of small-scale convection on the landscape evolution at divergent continental margins”. In: Earth Planet. Sci. Lett. 459 (2017), pp. 48–57. doi: 10.1016/j.epsl.2016.11.026.

[2522]

Clément de Sagazan and Jean-Arthur Olive. “Assessing the impact of sedimentation on fault spacing at the Andaman Sea spreading center”. In: Geology 49.4 (2021), pp. 447–451. doi: 10.1130/G48263.1.

[2523]

C.A. Salazar-Mora, R. Huismans, H. Fossen, and M. Egydio-Silva. “The Wilson Cycle and Effects of Tectonic Structural Inheritance on Rifted Passive Margin Formation”. In: Tectonics 37 (2018). doi: 10.1029/2018TC004962.

[2524]

Claudio Alejandro Salazar-Mora and Victor Sacek. “Lateral flow of thick continental lithospheric mantle during tectonic quiescence”. In: Journal of Geodynamics 145 (2021), p. 101830. doi: 10.1016/j.jog.2021.101830.

[2525]

V Morena Salerno, Fabio A Capitanio, Rebecca J Farrington, and Nicolas Riel. “The role of long-term rifting history on modes of continental lithosphere extension”. In: J. Geophys. Res.: Solid Earth 121.12 (2016), pp. 8917–8940. doi: 10.1002/2016JB013005.

[2526]

T. Salles. “eSCAPE: Regional to Global Scale Landscape Evolution Model v2.0”. In: Geosci. Model. Dev. 12.9 (2019), pp. 4165–4184. doi: 10.5194/gmd-12-4165-2019.

[2527]

Tristan Salles, Claire Mallard, and Sabin Zahirovic. “gospl: Global Scalable Paleo Landscape Evolution”. In: Journal of Open Source Software 5.56 (2020), p. 2804. doi: 10.21105/ joss.02804.

[2528]

Tristan Salles et al. “Hundred million years of landscape dynamics from catchment to global scale”. In: Science 379.6635 (2023), pp. 918–923. doi: 10.1126/science.add2541.

[2529]

Arnaud Salvador and Henri Samuel. “Convective outgassing efficiency in planetary magma oceans: insights from computational fluid dynamics”. In: Icarus 390 (2023), p. 115265. doi: 10.1016/j.icarus.2022.115265.

[2530]

Malcolm Sambridge and Ólafur Gudmundsson. “Tomographic systems of equations with irregular cells”. In: J. Geophys. Res.: Solid Earth 103.B1 (1998), pp. 773–781. doi: 10. 1029/97JB02602.

[2531]

H Samuel, V Aleksandrov, and B Deo. “The effect of continents on mantle convective stirring”. In: Geophys. Res. Lett. 38.4 (2011), p. L04307. doi: 10.1029/2010GL046056.

[2532]

H Samuel and PJ Tackley. “Dynamics of core formation and equilibration by negative diapirism”. In: Geochem. Geophys. Geosyst. 9.6 (2008).

[2533]

H Samuel, PJ Tackley, and M Evonuk. “Heat partitioning in terrestrial planets during core formation by negative diapirism”. In: Earth Planet. Sci. Lett. 290.1-2 (2010), pp. 13–19.

[2534]

H. Samuel and C. G. Farnetani. “Thermochemical convection and helium concentrations in mantle plumes”. In: Earth Planet. Sci. Lett. 207.1-4 (2003), pp. 39–56. doi: 10.1016/ S0012-821X(02)01125-1.

[2535]

Henri Samuel. “A re-evaluation of metal diapir breakup and equilibration in terrestrial magma oceans”. In: Earth Planet. Sci. Lett. 313 (2012), pp. 105–114. doi: 10.1016/j. epsl.2011.11.001.

[2536]

Henri Samuel and Nicola Tosi. “The influence of post-perovskite strength on the Earth’s mantle thermal and chemical evolution”. In: Earth Planet. Sci. Lett. 323 (2012), pp. 50–59.

[2537]

D. Sandiford and L. Moresi. “Improving subduction interface implementation in dynamic numerical models”. In: Solid Earth 10 (2019), pp. 969–985. doi: 10.5194/se-10-969- 2019.

[2538]

Dan Sandiford, Sascha Brune, Anne Glerum, John Naliboff, and Joanne M Whittaker. “Kinematics of footwall exhumation at oceanic detachment faults: solid-block rotation and apparent unbending”. In: Geochem. Geophys. Geosyst. 22.4 (2021), e2021GC009681. doi: 10.1029/2021GC009681.

[2539]

Dan Sandiford and Timothy J Craig. “Plate bending earthquakes and the strength distribution of the lithosphere”. In: Geophy. J. Int. 235.1 (2023), pp. 488–508. doi: 10. 1093/gji/ggad230.

[2540]

Dan Sandiford, Louis Moresi, Mike Sandiford, Rebecca Farrington, and Ting Yang. “The fingerprints of flexure in slab seismicity”. In: Tectonics 39 (2020), e2019TC005894. doi: 10.1029/2019TC005894.

[2541]

Dan Sandiford, Louis Moresi, Mike Sandiford, and Ting Yang. “Geometric controls on flat slab seismicity”. In: Earth Planet. Sci. Lett. 527 (2019), p. 115787.

[2542]

Mike Sandiford, David L Hansen, and Sandra N McLaren. “Lower crustal rheological expression in inverted basins”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 271–283.

[2543]

Pierre Saramito. “A new brittle-elastoviscoplastic fluid based on the Drucker–Prager plasticity”. In: Journal of Non-Newtonian Fluid Mechanics 294 (2021), p. 104584. doi: 10.1016/j.jnnfm.2021.104584.

[2544]

Pierre Saramito. “A new elastoviscoplastic model based on the Herschel–Bulkley viscoplastic model”. In: Journal of Non-Newtonian Fluid Mechanics 158.1-3 (2009), pp. 154–161. doi: 10.1016/j.jnnfm.2008.12.001.

[2545]

Anita Thea Saraswati, Rodolphe Cattin, Stéphane Mazzotti, and Cécilia Cadio. “New analytical solution and associated software for computing full-tensor gravitational field due to irregularly shaped bodies”. In: Journal of Geodesy 93.12 (2019), pp. 2481–2497. doi: 10.1007/s00190-019-01309-y.

[2546]

Ingo Sasgen, Volker Klemann, and Zdeněk Martinec. “Towards the inversion of GRACE gravity fields for present-day ice-mass changes and glacial-isostatic adjustment in North America and Greenland”. In: Journal of Geodynamics 59 (2012), pp. 49–63. doi: 10. 1016/j.jog.2012.03.004.

[2547]

Atuo Sato and Erik G Thompson. “Finite element models for creeping convection”. In: J. Comp. Phys. 22.2 (1976), pp. 229–244. doi: 10.1016/0021-9991(76)90077-2.

[2548]

AD Saunders, M Storey, RW Kent, and MJ Norry. “Consequences of plume-lithosphere interactions”. In: Geological Society, London, Special Publications 68.1 (1992), pp. 41–60. doi: 10.1144/GSL.SP.1992.068.01.04.

[2549]

Himanshu Save, Srinivas Bettadpur, and Byron D Tapley. “Reducing errors in the GRACE gravity solutions using regularization”. In: Journal of Geodesy 86.9 (2012), pp. 695–711. doi: 10.1007/s00190-012-0548-5.

[2550]

EW Sawyer. “Melt segregation in the continental crust”. In: Geology 22.11 (1994), pp. 1019–1022.

[2551]

Arushi Saxena, Juliane Dannberg, Rene Gassmöller, Menno Fraters, Timo Heister, and Richard Styron. “High-Resolution Mantle Flow Models Reveal Importance of Plate Boundary Geometry and Slab Pull Forces on Generating Tectonic Plate Motions”. In: J. Geophys. Res.: Solid Earth 128.8 (2023), e2022JB025877. doi: 10.1029/2022JB025877.

[2552]

K. Schaber, H.-P. Bunge, B.S.A. Schuberth, R. Malservisi, and A. Horbach. “Stability of the rotation axis in high-resolution mantle circulation models: Weak polar wander despite strong core heating”. In: Geochem. Geophys. Geosyst. 10.11 (2009). doi: 10.1029/2009GC002541.

[2553]

J. F. Schaefer, L. Boschi, T. W. Becker, and E. Kissling. “Radial anisotropy in the European mantle: Tomographic studies explored in terms of mantle flow”. In: Geophys. Res. Lett. 38.23 (2011). doi: 10.1029/2011GL049687.

[2554]

AJ Schaeffer and S Lebedev. “Global shear speed structure of the upper mantle and transition zone”. In: Geophy. J. Int. 194.1 (2013), pp. 417–449. doi: 10.1093/gji/ggt095.

[2555]

W. P. Schellart. “Andean mountain building and magmatic arc migration driven by subduction-induced whole mantle flow”. In: Nature Communications 8 (2010).

[2556]

W.P. Schellart. “Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge”. In: Earth Planet. Sci. Lett. 231 (2005), pp. 197–219. doi: 10.1016/j.epsl.2004.12.019.

[2557]

W.P. Schellart, Z. Chen, V. Strak, J.C. Duarte, and F.M. Rosas. “Pacific subduction control on Asian continental deformation including Tibetan extension and eastward extrusion tectonics”. In: Nature Communications 10 (2019). doi: 10.1038/s41467-019-12337-9.

[2558]

W.P. Schellart and L. Moresi. “A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow: Results from dynamic subduction models with an overriding plate”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 1–28. doi: 10.1002/jgrb.50173.

[2559]

Wouter Pieter Schellart. “Control of Subduction Zone Age and Size on Flat Slab Subduction”. In: Frontiers in Earth Science 8 (2020), p. 26. doi: 10.3389/feart.2020. 00026.

[2560]

Wouter Pieter Schellart, Justin Freeman, David Robert Stegman, L Moresi, and David May. “Evolution and diversity of subduction zones controlled by slab width”. In: Nature 446.7133 (2007), pp. 308–311. doi: 10.1038/nature05615.

[2561]

Wouter Pieter Schellart and Nick Rawlinson. “Global correlations between maximum magnitudes of subduction zone interface thrust earthquakes and physical parameters of subduction zones”. In: Phys. Earth. Planet. Inter. 225 (2013), pp. 41–67.

[2562]

WP Schellart. “Kinematics of subduction and subduction-induced flow in the upper mantle”. In: J. Geophys. Res.: Solid Earth 109.B7 (2004). doi: 10.1029/2004JB002970.

[2563]

WP Schellart. “Quantifying the net slab pull force as a driving mechanism for plate tectonics”. In: Geophys. Res. Lett. 31.7 (2004).

[2564]

WP Schellart, DR Stegman, RJ Farrington, and L Moresi. “Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning”. In: J. Geophys. Res.: Solid Earth 116.B10 (2011).

[2565]

WP Schellart and V Strak. “Geodynamic models of short-lived, long-lived and periodic flat slab subduction”. In: Geophy. J. Int. 226.3 (2021), pp. 1517–1541. doi: 10.1093/gji/ ggab126.

[2566]

Filippo L Schenker, Taras Gerya, and J-P Burg. “Bimodal behavior of extended continental lithosphere: Modeling insight and application to thermal history of migmatitic core complexes”. In: Tectonophysics 579 (2012), pp. 88–103.

[2567]

Jana Schierjott, Antoine Rozel, and Paul Tackley. “On the self-regulating effect of grain size evolution in mantle convection models: application to thermochemical piles”. In: Solid Earth 11.3 (2020), pp. 959–982. doi: 10.5194/se-11-959-2020.

[2568]

Jana C Schierjott, Marcel Thielmann, Antoine B Rozel, Gregor J Golabek, and Taras V Gerya. “Can grain size reduction initiate transform faults?-Insights from a 3D numerical study”. In: Tectonics 39 (2020), e2019TC005793. doi: 10.1029/2019TC005793.

[2569]

Nicholas Schliffke, Jeroen van Hunen, Mark B Allen, Valentina Magni, and Frédéric Gueydan. “Episodic back-arc spreading centre jumps controlled by transform fault to overriding plate strength ratio”. In: Nature Communications 13.1 (2022), pp. 1–7. doi: 10.1038/s41467-022-28228-5.

[2570]

Nicholas Schliffke, Jeroen van Hunen, Frédéric Gueydan, Valentina Magni, and Mark B Allen. “Curved orogenic belts, back-arc basins, and obduction as consequences of collision at irregular continental margins”. In: Geology 49 (2021). doi: 10.1130/G48919.1.

[2571]

Nicholas Schliffke, Jeroen van Hunen, Valentina Magni, and Mark B. Allen. “The Role of Crustal Buoyancy in the Generation and Emplacement of Magmatism During Continental Collision”. In: Geochem. Geophys. Geosyst. (2019). doi: 10.1029/2019GC008590.

[2572]

S.M. Schmalholz. “A simple analytical solution for slab detachment”. In: Earth Planet. Sci. Lett. 304 (2011), pp. 45–54. doi: 10.1016/j.epsl.2011.01.011.

[2573]

S.M. Schmalholz, S. Medvedev, S.M. Lechmann, and Y. Podladchikov1. “Relationship between tectonic overpressure, deviatoric stress, driving force, isostasy and gravitational potential energy”. In: Geophy. J. Int. 197 (2014), pp. 680–696. doi: 10.1093/gji/ggu040.

[2574]

S.M. Schmalholz and Y.Y. Podlachikov. “Tectonic overpressure in weak crustal-scale shear zones and implications for the exhumation of high-pressure rocks”. In: Geophys. Res. Lett. 40.1-5 (2013). doi: 10.1002/grl.50417.

[2575]

S.M. Schmalholz and D.W. Schmid. “Folding in power-law viscous multi-layers”. In: Phil. Trans. R. Soc. A 370 (2012), pp. 1798–1826. doi: 10.1098/rsta.2011.0421.

[2576]

S.M. Schmalholz, D.W. Schmid, and R.C. Fletcher. “Evolution of pinch-and-swell structures in a power-law layer”. In: Journal of Structural Geology 30.30 (2008), pp. 649–663. doi: 10.1016/j.jsg.2008.01.002.

[2577]

SM Schmalholz and Yu Podladchikov. “Buckling versus folding: importance of viscoelasticity”. In: Geophys. Res. Lett. 26.17 (1999), pp. 2641–2644. doi: 10.1029/ 1999GL900412.

[2578]

SM Schmalholz and YY Podladchikov. “Viscoelastic folding: Maxwell versus Kelvin rheology”. In: Geophys. Res. Lett. 28.9 (2001), pp. 1835–1838.

[2579]

Stefan M Schmalholz. “3D numerical modeling of forward folding and reverse unfolding of a viscous single-layer: Implications for the formation of folds and fold patterns”. In: Tectonophysics 446.1-4 (2008), pp. 31–41.

[2580]

Stefan M Schmalholz and Thibault Duretz. “Impact of grain size evolution on necking in calcite layers deforming by combined diffusion and dislocation creep”. In: Journal of Structural Geology 103 (2017), pp. 37–56. doi: 10.1016/j.jsg.2017.08.007.

[2581]

Stefan M Schmalholz, Boris JP Kaus, and Jean-Pierre Burg. “Stress-strength relationship in the lithosphere during continental collision”. In: Geology 37.9 (2009), pp. 775–778. doi: 10.1130/G25678A.1.

[2582]

Stefan M Schmalholz, Lyudmila Khakimova, Yury Podladchikov, Erwan Bras, Philippe Yamato, and Timm John. “(De) hydration Front Propagation Into Zero-Permeability Rock”. In: Geochem. Geophys. Geosyst. 25.9 (2024), e2023GC011422. doi: 10.1029/ 2023GC011422.

[2583]

Stefan M Schmalholz and Yuri Yu Podladchikov. “Strain and competence contrast estimation from fold shape”. In: Tectonophysics 340.3-4 (2001), pp. 195–213.

[2584]

J. Schmalzl, M. Breuer, and U. Hansen. “On the validity of two-dimensional numerical approaches to time-dependent thermal convection”. In: Europhysics Letters 67.3 (2004), pp. 390–396. doi: 10.1209/epl/i2003-10298-4.

[2585]

J. Schmalzl, M. Breuer, and U. Hansen. “The influence of the Prandtl number on the style of vigorous thermal convection”. In: Geophysical & Astrophysical Fluid Dynamics 96.5 (2002), pp. 381–403. doi: 10.1080/0309192021000049929.

[2586]

J. Schmalzl and U. Hansen. “Mixing the Earth’s mantle by thermal convection: A scale dependent phenomenon”. In: Geophys. Res. Lett. 21.11 (1994), pp. 987–990. doi: 10. 1029/94GL00049.

[2587]

J. Schmalzl, G.A. Houseman, and U. Hansen. “Mixing in vigorous, time-dependent three-dimensional convection and application to Earth’s mantle”. In: J. Geophys. Res.: Solid Earth 101.B10 (1996), pp. 21847–21858.

[2588]

Harro Schmeling. “Compressible convection with constant and variable viscosity: The effect on slab formation, geoid, and topography”. In: J. Geophys. Res.: Solid Earth 94.B9 (1989), pp. 12463–12481.

[2589]

Harro Schmeling. “On the relation between initial conditions and late stages of Rayleigh-Taylor instabilities”. In: Tectonophysics 133.1-2 (1987), pp. 65–80. doi: 10. 1016/0040-1951(87)90281-2.

[2590]

Harro Schmeling, Alexander R Cruden, and Gabriele Marquart. “Finite deformation in and around a fluid sphere moving through a viscous medium: implications for diapiric ascent”. In: Tectonophysics 149.1-2 (1988), pp. 17–34. doi: 10.1016/0040-1951(88)90116-3.

[2591]

Harro Schmeling, Gabriele Marquart, Roberto Weinberg, and Pirunthavan Kumaravel. “Dynamic Two-Phase Flow Modeling of Melt Segregation in Continental Crust: Batholith Emplacement Versus Crustal Convection, With Implications for Magmatism in Thickened Plateaus”. In: Geochem. Geophys. Geosyst. 24.5 (2023), e2023GC010860. doi: 10.1029/ 2023GC010860.

[2592]

Harro Schmeling, Gabriele Marquart, Roberto Weinberg, and Herbert Wallner. “Modelling melting and melt segregation by two-phase flow: new insights into the dynamics of magmatic systems in the continental crust”. In: Geophy. J. Int. 217.1 (2019), pp. 422–450.

[2593]

Harro Schmeling, Ralf Monz, and David C Rubie. “The influence of olivine metastability on the dynamics of subduction”. In: Earth Planet. Sci. Lett. 165.1 (1999), pp. 55–66. doi: 10.1016/S0012-821X(98)00249-0.

[2594]

D.W. Schmid, M. Dabrowski, and M. Krotkiewski. “Evolution of large amplitude 3D fold patterns: A FEM study”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 400–408. doi: 10.1016/j.pepi.2008.08.007.

[2595]

Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs. “Tectonic interactions during rift linkage: Insights from analog and numerical experiments”. In: Solid Earth 14 (2023), pp. 389–407. doi: 10.5194/se-14-389-2023.

[2596]

Max W Schmidt and Stefano Poli. “Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation”. In: Earth Planet. Sci. Lett. 163.1-4 (1998), pp. 361–379. doi: 10.1016/S0012-821X(98)00142-3.

[2597]

Stan Schoofs, Ron A Trompert, and Ulrich Hansen. “The formation and evolution of layered structures in porous media: effects of porosity and mechanical dispersion”. In: Phys. Earth. Planet. Inter. 118.3-4 (2000), pp. 205–225. doi: 10.1016/S0031-9201(99)00148-X.

[2598]

Stan Schoofs, Ron A Trompert, and Ulrich Hansen. “Thermochemical convection in and beneath intracratonic basins: Onset and effects”. In: J. Geophys. Res.: Solid Earth 105.B11 (2000), pp. 25567–25585.

[2599]

Joe W Schools and Laurent GJ Montési. “The generation of barriers to melt ascent in the Martian lithosphere”. In: J. Geophys. Res.: Planets 123.1 (2018), pp. 47–66. doi: 10.1002/2017JE005396.

[2600]

B Schott and H Schmeling. “Delamination and detachment of a lithospheric root”. In: Tectonophysics 296.3-4 (1998), pp. 225–247. doi: 10.1016/S0040-1951(98)00154-1.

[2601]

B. Schott, D.A. Yuen, and H. Schmeling. “The significance of shear heating in continental delamination”. In: Phys. Earth. Planet. Inter. 118 (2000), pp. 273–290. doi: 10.1016/ S0031-9201(99)00159-4.

[2602]

Bertram Schott, David A Yuen, and Harro Schmeling. “The diversity of tectonics from fluid-dynamical modeling of the lithosphere–mantle system”. In: Tectonophysics 322.1-2 (2000), pp. 35–51. doi: 10.1016/S0040-1951(00)00056-1.

[2603]

Bertram Schott, David A Yuen, and Harro Schmeling. “Viscous heating in heterogeneous media as applied to the thermal interaction between the crust and mantle”. In: Geophys. Res. Lett. 26.4 (1999), pp. 513–516.

[2604]

Ernst JO Schrama, Bert Wouters, and Roelof Rietbroek. “A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data”. In: J. Geophys. Res.: Solid Earth 119.7 (2014), pp. 6048–6066. doi: 10.1002/2013JB010923.

[2605]

Sarah Schröder. “Modelling Surface Evolution Coupled with Tectonics: A Case Study for the Pamir”. PhD thesis. Universität Potsdam, 2016.

[2606]

G Schubert, P Olson, C Anderson, and P Goldman. “Solitary waves in mantle plumes”. In: J. Geophys. Res.: Solid Earth 94.B7 (1989), pp. 9523–9532. doi: 10.1029/JB094iB07p09523.

[2607]

G Schubert and PJ Tackley. “Mantle dynamics: The strong control of the spinel-perovskite transition at a depth of 660 km”. In: Journal of Geodynamics 20.4 (1995), pp. 417–428.

[2608]

G Schubert and DL Turcotte. “One-dimensional model of shallow-mantle convection”. In: J. Geophys. Res.: Solid Earth 77.5 (1972), pp. 945–951. doi: 10.1029/JB077i005p00945.

[2609]

G Schubert, DL Turcotte, and ER Oxburgh. “Stability of planetary interiors”. In: Geophy. J. Int. 18.5 (1969), pp. 441–460. doi: 10.1111/j.1365-246X.1969.tb03370.x.

[2610]

G. Schubert, C. Froidevaux, and D.A. Yuen. “Oceanic lithosphere and asthenosphere: Thermal and mechanical structure”. In: J. Geophys. Res.: Solid Earth 81.20 (1976), pp. 3525–3540. doi: 10.1029/JB081i020p03525.

[2611]

Gerald Schubert, Charles Anderson, and Peggy Goldman. “Mantle plume interaction with an endothermic phase change”. In: J. Geophys. Res.: Solid Earth 100.B5 (1995), pp. 8245–8256. doi: 10.1029/95JB00032.

[2612]

Gerald Schubert and Charles A Anderson. “Finite element calculations of very high Rayleigh number thermal convection”. In: Geophy. J. Int. 80.3 (1985), pp. 575–601. doi: 10.1111/ j.1365-246X.1985.tb05112.x.

[2613]

Gerald Schubert, G Masters, P Olson, and P Tackley. “Superplumes or plume clusters?” In: Phys. Earth. Planet. Inter. 146.1-2 (2004), pp. 147–162.

[2614]

Gerald Schubert, David Stevenson, and Patrick Cassen. “Whole planet cooling and the radiogenic heat source contents of the Earth and Moon”. In: J. Geophys. Res.: Solid Earth 85.B5 (1980), pp. 2531–2538.

[2615]

Gerald Schubert and DL Turcotte. “Phase changes and mantle convection”. In: J. Geophys. Res.: Solid Earth 76.5 (1971), pp. 1424–1432. doi: 10.1029/JB076i005p01424.

[2616]

M Schubert, T Driesner, TV Gerya, and P Ulmer. “Mafic injection as a trigger for felsic magmatism: A numerical study”. In: Geochem. Geophys. Geosyst. 14.6 (2013), pp. 1910–1928.

[2617]

B.S.A. Schuberth, H.-P. Bunge, and J. Ritsema. “Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone?” In: Geochem. Geophys. Geosyst. 10.5 (2009). doi: 10.1029/2009GC002401.

[2618]

B.S.A. Schuberth, H.-P. Bunge, G. Steinle-Neumann, C. Moder, and J. Oeser. “Thermal versus elastic heterogeneity in high-resolution mantle circulation models with pyrolite composition: High plume excess temperatures in the lowermost mantle”. In: Geochem. Geophys. Geosyst. 10.1 (2009). doi: 10.1029/2008GC002235.

[2619]

M. Schuh-Senlis, G. Caumon, and P. Cupillard. “What does it take to restore geological models with “natural” boundary conditions?” In: Solid Earth 15.8 (2024), pp. 945–964. doi: 10.5194/se-15-945-2024.

[2620]

Melchior Schuh-Senlis, Cedric Thieulot, Paul Cupillard, and Guillaume Caumon. “Towards the application of Stokes flow equations to structural restoration simulations”. In: Solid Earth 11 (2020), pp. 1909–1930. doi: 10.5194/se-11-1909-2020.

[2621]

Falko Schulz, Nicola Tosi, Ana-Catalina Plesa, and Doris Breuer. “Stagnant-lid convection with diffusion and dislocation creep rheology: Influence of a non-evolving grain size”. In: Geophy. J. Int. 220.1 (2020), pp. 18–36. doi: 10.1093/gji/ggz417.

[2622]

Jorina M Schütt and David Michael Whipp. “Controls on continental strain partitioning above an oblique subduction zone, Northern Andes”. In: Tectonics 39.4 (2020), e2019TC005886. doi: 10.1029/2019TC005886.

[2623]

David R Scott. “The competition between percolation and circulation in a deformable porous medium”. In: J. Geophys. Res.: Solid Earth 93.B6 (1988), pp. 6451–6462.

[2624]

David R Scott and David J Stevenson. “Magma ascent by porous flow”. In: J. Geophys. Res.: Solid Earth 91.B9 (1986), pp. 9283–9296.

[2625]

David R Scott and David J Stevenson. “Magma solitons”. In: Geophys. Res. Lett. 11.11 (1984), pp. 1161–1164.

[2626]

Michael P Searle, JR Elliott, RJ Phillips, and S-L Chung. “Crustal–lithospheric structure and continental extrusion of Tibet”. In: Journal of the Geological Society 168.3 (2011), pp. 633–672. doi: 10.1144/0016-76492010-139.

[2627]

R.C. Searle and J. Escartin. “The rheology and morphology of Oceanic Lithosphere and Mid-Ocean Ridges”. In: Mid-Ocean Ridges: Hydrothermal interactions between the lithosphere and oceans: AGU Monograph 148, edited by C. German, J. Lin, and L.M. Parson (2004), pp. 63–94.

[2628]

C. Selzer, S.J.H. Buiter, and O.A. Pfiffner. “Numerical modeling of frontal and basal accretion at collisional margins”. In: Tectonics 27.TC3001 (2008). doi: 10.1029/2007TC002169.

[2629]

Cornelia Selzer, Susanne JH Buiter, and O Adrian Pfiffner. “Sensitivity of shear zones in orogenic wedges to surface processes and strain softening”. In: Tectonophysics 437.1-4 (2007), pp. 51–70.

[2630]

Andrea Sembroni et al. “Impact of the lithosphere on dynamic topography: Insights from analogue modeling”. In: Geophys. Res. Lett. 44.6 (2017), pp. 2693–2702. doi: 10.1002/ 2017GL072668.

[2631]

Alana Semple and Adrian Lenardic. “The Robustness of Pressure-Driven Asthenospheric Flow in Mantle Convection Models With Plate-Like Behavior”. In: Geophys. Res. Lett. (2020), e2020GL089556. doi: 10.1029/2020GL089556.

[2632]

M. Hosein Shahnas, J.P. Lowman, G.T. Jarvis, and H.-P. Bunge. “Convection in a spherical shell heated by an isothermal core and internal sources: Implications for the thermal state of planetary mantles”. In: Phys. Earth. Planet. Inter. 168.1-2 (2008), pp. 6–15. doi: 10. 1016/j.pepi.2008.04.007.

[2633]

MH Shahnas, RN Pysklywec, JF Justo, and DA Yuen. “Spin transition-induced anomalies in the lower mantle: implications for mid-mantle partial layering”. In: Geophy. J. Int. 210.2 (2017), pp. 765–773. doi: 10.1093/gji/ggx198.

[2634]

MH Shahnas, RN Pysklywec, and David A Yuen. “Spawning superplumes from the midmantle: The impact of spin transitions in the mantle”. In: Geochem. Geophys. Geosyst. 17.10 (2016), pp. 4051–4063. doi: 10.1002/2016GC006509.

[2635]

MH Shahnas, DA Yuen, and RN Pysklywec. “Mid-mantle heterogeneities and iron spin transition in the lower mantle: Implications for mid-mantle slab stagnation”. In: Earth Planet. Sci. Lett. 458 (2017), pp. 293–304. doi: 10.1016/j.epsl.2016.10.052.

[2636]

M. Shahraki and H. Schmeling. “Geoid and topography of Earth-like planets: A comparison between compressible and incompressible models for different rheologies”. In: Phys. Earth. Planet. Inter. 216 (2013), pp. 74–90. doi: 10.1016/j.pepi.2012.12.004.

[2637]

Howard N Sharpe and WR Peltier. “A thermal history model for the Earth with parameterized convection”. In: Geophy. J. Int. 59.1 (1979), pp. 171–203. doi: 10.1111/ j.1365-246X.1979.tb02560.x.

[2638]

W. Sharples, M.A. Jadamec, L.N. Moresi, and F.A. Capitanio. “Overriding plate controls on subduction evolution”. In: J. Geophys. Res.: Solid Earth 119 (2014), pp. 6684–6704. doi: 10.1002/2014JB011163.

[2639]

W. Sharples, L.-N. Moresi, and M. A. Jadamec andJ. Revote. “Styles of rifting and fault spacing in numerical models of crustal extension”. In: J. Geophys. Res.: Solid Earth 120 (2015), pp. 4379–4404. doi: 10.1002/2014JB011813.

[2640]

Alexander I Shemenda. “Subduction of the lithosphere and back arc dynamics: Insights from physical modeling”. In: J. Geophys. Res.: Solid Earth 98.B9 (1993), pp. 16167–16185. doi: 10.1029/93JB01094.

[2641]

Yongqiang Shen, Jie Liao, and Kuidi Zhang. “Dynamic Evolution of Back-arc Basins Affected by Double Subduction”. In: J. Geophys. Res.: Solid Earth 127 (2022), e2022JB024294. doi: 10.1029/2022JB024294.

[2642]

G. E. Shephard, L. Liu, R. D. Müller, and M. Gurnis. “Dynamic topography and anomalously negative residual depth of the Argentine Basin”. In: Gondwana Research 22.2 (2012), pp. 658–663. doi: 10.1016/j.gr.2011.12.005.

[2643]

G. E. Shephard, R. D. Müller, L. Liu, and M. Gurnis. “Miocene drainage reversal of the Amazon River driven by plate-mantle interaction”. In: Nature Geoscience 3.12 (2010), pp. 870–875. doi: 10.1038/ngeo1017.

[2644]

Grace E Shephard et al. “Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure”. In: Earth Planet. Sci. Lett. 317 (2012), pp. 204–217.

[2645]

John W Shervais and Sung Hi Choi. “Subduction initiation along transform faults: The proto-Franciscan subduction zone”. In: Lithosphere 4.6 (2012), pp. 484–496.

[2646]

HC Sheth. “Flood basalts and large igneous provinces from deep mantle plumes: fact, fiction, and fallacy”. In: Tectonophysics 311.1-4 (1999), pp. 1–29. doi: 10.1016/S0040- 1951(99)00150-X.

[2647]

Ya-Nan Shi and Jason P Morgan. “Constraints on the fate of delaminated lithosphere in the upper and mid-mantle”. In: Geophys. Res. Lett. 51.16 (2024), e2024GL109552. doi: 10.1029/2024GL109552.

[2648]

Yanan Shi, Dongping Wei, Zhong-Hai Li, Ming-Qi Liu, and Mengxue Liu. “Subduction mode selection during slab and mantle transition zone interaction: Numerical modeling”. In: Pure Appl. Geophys. (2017), pp. 5–24. doi: 10.1007/s00024-017-1762-0.

[2649]

Brandon Shuck et al. “Stress transition from horizontal to vertical forces during subduction initiation”. In: Nature Geoscience 15.2 (2022), pp. 149–155. doi: 10.1038/s41561-021- 00880-4.

[2650]

Alexey Shulgin and Irina Artemieva. “Thermo-chemical heterogeneity and density of continental and oceanic upper mantle in the European-North Atlantic region”. In: J. Geophys. Res.: Solid Earth 124 (2019), pp. 9280–9312. doi: 10.1029/2018JB017025.

[2651]

I. Sidorin, M. Gurnis, and D. V. Helmberger. “Dynamics of a phase change at the base of the mantle consistent with seismological observations”. In: J. Geophys. Res.: Solid Earth 104.B7 (1999), pp. 15005–15023. doi: 10.1029/1999JB900065.

[2652]

Karin Sigloch and Mitchell G Mihalynuk. “Intra-oceanic subduction shaped the assembly of Cordilleran North America”. In: Nature 496.7443 (2013), p. 50.

[2653]

Javier Signorelli, Riad Hassani, Andréa Tommasi, and Lucan Mameri. “An effective parameterization of texture-induced viscous anisotropy in orthotropic materials with application for modeling geodynamical flows”. In: Journal of Theoretical, Computational and Applied Mechanics (2021). doi: 10.46298/jtcam.6737.

[2654]

João Pedro Macedo Silva, Victor Sacek, and Rafael Monteiro da Silva. “The influence of lithospheric rheology and surface processes on the preservation of escarpments at rifted margins”. In: Tectonophysics 851 (2023), p. 229769. doi: 10.1016/j.tecto.2023.229769.

[2655]

RM da Silva and V Sacek. “Influence of Surface Processes on Postrift Faulting During Divergent Margins Evolution”. In: Tectonics 41.2 (2022), e2021TC006808. doi: 10.1029/ 2021TC006808.

[2656]

Shi sim. “The depth of mid-ocean ridges through Earth’s evolution and a two-phase study of melt focusing at mid-ocean ridges”. PhD thesis. University of California, 2018.

[2657]

Shi J Sim, Marc Spiegelman, Dave R Stegman, and Cian Wilson. “The influence of spreading rate and permeability on melt focusing beneath mid-ocean ridges”. In: Phys. Earth. Planet. Inter. 304 (2020), p. 106486. doi: 10.1016/j.pepi.2020.106486.

[2658]

Shi J Sim, Dave R Stegman, and Nicolas Coltice. “Influence of continental growth on mid-ocean ridge depth”. In: Geochem. Geophys. Geosyst. 17.11 (2016), pp. 4425–4437. doi: 10.1002/2016GC006629.

[2659]

R Simitev and FH Busse. “Patterns of convection in rotating spherical shells”. In: New Journal of Physics 5.1 (2003), p. 97.

[2660]

N.A. Simmons, A.M. Forte, L. Boschi, and S.P. Grand. “GyPSuM: A joint tomographic model of mantle density and seismic wave speeds”. In: J. Geophys. Res.: Solid Earth 115.B12310 (2010). doi: 10.1029/2010JB007631.

[2661]

N.A. Simmons, S.C. Myers, G. Johannesson, and E. Matzel. “LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction”. In: J. Geophys. Res.: Solid Earth 117.B10302 (2012). doi: 10.1029/2012JB009525.

[2662]

Nathan A Simmons, Bernhard SA Schuberth, Steve C Myers, and Doug R Knapp. “Resolution and covariance of the LLNL-G3D-JPS global seismic tomography model: applications to travel time uncertainty and tomographic filtering of geodynamic models”. In: Geophy. J. Int. 217.3 (2019), pp. 1543–1557. doi: 10.1093/gji/ggz102.

[2663]

K. Simon, R.S. Huismans, and C. Beaumont. “Dynamical modelling of lithospheric extension and small-scale convection: implications for magmatism during the formation of volcanic rifted margins”. In: Geophy. J. Int. 176 (2009), pp. 327–350. doi: 10.1111/j.1365- 246X.2008.03891.x.

[2664]

Guy Simpson. “A dynamic model to investigate coupling between erosion, deposition, and three-dimensional (thin-plate) deformation”. In: J. Geophys. Res.: Earth Surface 109.F2 (2004). doi: 10.1029/2003JF000078.

[2665]

Guy Simpson. “Dynamic interactions between erosion, deposition, and three-dimensional deformation in compressional fold belt settings”. In: J. Geophys. Res.: Earth Surface 109.F3 (2004). doi: 10.1029/2003JF000111.

[2666]

Guy Simpson. “Mechanics of non-critical fold–thrust belts based on finite element models”. In: Tectonophysics 499.1-4 (2011), pp. 142–155. doi: 10.1016/j.tecto.2011.01.004.

[2667]

Guy Simpson and Fritz Schlunegger. “Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport”. In: J. Geophys. Res.: Solid Earth 108.B6 (2003). doi: 10.1029/2002JB002162.

[2668]

Guy DH Simpson. “Formation of accretionary prisms influenced by sediment subduction and supplied by sediments from adjacent continents”. In: Geology 38.2 (2010), pp. 131–134. doi: 10.1130/G30461.1.

[2669]

Guy DH Simpson. “Influence of the mechanical behaviour of brittle–ductile fold–thrust belts on the development of foreland basins”. In: Basin Research 22.2 (2010), pp. 139–156. doi: 10.1111/j.1365-2117.2009.00406.x.

[2670]

Guy DH Simpson. “Mechanical modelling of folding versus faulting in brittle–ductile wedges”. In: Journal of Structural Geology 31.4 (2009), pp. 369–381. doi: 10.1016/j. jsg.2009.01.011.

[2671]

Guy DH Simpson. “Modelling interactions between fold-thrust belt deformation, foreland flexure and surface mass transport”. In: Basin Research 18.2 (2006), pp. 125–143. doi: 10.1111/j.1365-2117.2006.00287.x.

[2672]

Srishti Singh, Shubham Agrawal, and Attreyee Ghosh. “Understanding deep earth dynamics: a numerical modelling approach”. In: Current Science (2017), pp. 1463–1473. doi: xxxx.

[2673]

Gaia Siravo et al. “Slab flattening and the rise of the Eastern Cordillera, Colombia”. In: Earth Planet. Sci. Lett. 512 (2019), pp. 100–110. doi: 10.1016/j.epsl.2019.02.002.

[2674]

E Sizova, T Gerya, and M Brown. “Exhumation mechanisms of melt-bearing ultrahigh pressure crustal rocks during collision of spontaneously moving plates”. In: Journal of Metamorphic Geology 30.9 (2012), pp. 927–955.

[2675]

E Sizova, T Gerya, M Brown, and LL Perchuk. “Subduction styles in the Precambrian: Insight from numerical experiments”. In: Lithos 116.3-4 (2010), pp. 209–229.

[2676]

E Sizova, Taras Gerya, and M Brown. “Contrasting styles of Phanerozoic and Precambrian continental collision”. In: Gondwana Research 25.2 (2014), pp. 522–545.

[2677]

Elena Sizova, Christoph Hauzenberger, Harald Fritz, Shah Wali Faryad, and Taras Gerya. “Late Orogenic Heating of (Ultra) High Pressure Rocks: Slab Rollback vs. Slab Breakoff”. In: Geosciences 9.12 (2019), p. 499. doi: 10.3390/geosciences9120499.

[2678]

Elena Sizova, Christoph A Hauzenberger, Harald Fritz, and Taras Gerya. “PTt evolution of mantle and associated crustal rocks in collisional orogens: Insight from numerical experiments”. In: Earth-Science Reviews 250 (2024), p. 104707. doi: 10.1016/j. earscirev.2024.104707.

[2679]

L.S. Sklar and W.E. Dietrich. “A mechanistic model for river incision into bedrock by saltating bed load”. In: Water Resources Research 40.6 (2004), W06301. issn: 0043-1397. doi: 10.1029/2003WR002496.

[2680]

N. H. Sleep. “Channeling at the base of the lithosphere during the lateral flow of plume material beneath flow line hot spots: Channeling during lateral flow of plume material”. In: Geochem. Geophys. Geosyst. 9.8 (2008). doi: 10.1029/2008GC002090.

[2681]

J.H. de Smet, A.P. van den Berg, and N.J. Vlaar. “The evolution of continental roots in numerical thermo-chemical mantle convection models including differentiation by partial melting”. In: Lithos 24 (1999), pp. 153–170.

[2682]

JHW Smit, JP Brun, and D Sokoutis. “Deformation of brittle-ductile thrust wedges in experiments and nature”. In: J. Geophys. Res.: Solid Earth 108.B10 (2003). doi: 10. 1029/2002JB002190.

[2683]

David E Smith, William L Sjogren, G Leonard Tyler, Georges Balmino, Frank G Lemoine, and Alex S Konopliv. “The gravity field of Mars: results from Mars Global Surveyor”. In: Science 286.5437 (1999), pp. 94–97. doi: 10.1126/science.286.5437.94.

[2684]

Byung-Dal So and Fabio A Capitanio. “Self-consistent stick-slip recurrent behaviour of elastoplastic faults in intraplate environment: a Lagrangian solid mechanics approach”. In: Geophy. J. Int. 221.1 (2020), pp. 151–162. doi: 10.1093/gji/ggz581.

[2685]

Alexander V Sobolev. “Hunting for Earth’s primary melts”. In: Humboldt Kosmos 79 (2002), pp. 19–20.

[2686]

S.V. Sobolev et al. “Linking mantle plumes, large igneous provinces and environmental catastrophes”. In: Nature 477 (2011), p. 312. doi: 10.1038/nature10385.

[2687]

Stephan V Sobolev, Andrey Y Babeyko, Ivan Koulakov, and Onno Oncken. “Mechanism of the Andean orogeny: insight from numerical modeling”. In: The Andes. 2006, pp. 513–535.

[2688]

Stephan V Sobolev and Michael Brown. “Surface erosion events controlled the evolution of plate tectonics on Earth”. In: Nature 570.7759 (2019), pp. 52–57.

[2689]

F. Soboutia, A. Ghodsb, and J. Arkani-Hamed. “On the advection of sharp material interfaces in geodynamic problems: entrainment of the D” layer”. In: Journal of Geodynamics 31 (2001), pp. 459–479.

[2690]

Dimitrios Sokoutis, Marco Bonini, Sergei Medvedev, Mario Boccaletti, Christopher J Talbot, and Hemin Koyi. “Indentation of a continent with a built-in thickness change: experiment and nature”. In: Tectonophysics 320.3-4 (2000), pp. 243–270. doi: 10.1016/S0040- 1951(00)00043-3.

[2691]

Dimitrios Sokoutis, Jean-Pierre Burg, Marco Bonini, Giacomo Corti, and Sierd Cloetingh. “Lithospheric-scale structures from the perspective of analogue continental collision”. In: Tectonophysics 406.1-2 (2005), pp. 1–15. doi: 10.1016/j.tecto.2005.05.025.

[2692]

Dimitrios Sokoutis et al. “Modelling the extension of heterogeneous hot lithosphere”. In: Tectonophysics 444.1-4 (2007), pp. 63–79.

[2693]

Gaia Soldati, Lapo Boschi, Steve Della Mora, and Alessandro M Forte. “Tomography of core-mantle boundary and lowermost mantle coupled by geodynamics: joint models of shear and compressional velocity”. In: Annals of Geophysics 57.6 (2015). doi: 10.4401/ag-6603.

[2694]

Santiago R Soler, Agustina Pesce, Mario E Gimenez, and Leonardo Uieda. “Gravitational field calculation in spherical coordinates using variable densities in depth”. In: Geophy. J. Int. 218.3 (2019), pp. 2150–2164.

[2695]

Larry P Solheim and WR Peltier. “Avalanche effects in phase transition modulated thermal convection: A model of Earth’s mantle”. In: J. Geophys. Res.: Solid Earth 99.B4 (1994), pp. 6997–7018. doi: 10.1029/93JB02168.

[2696]

Larry P Solheim and WR Peltier. “Phase boundary deflections at 660-km depth and episodically layered isochemical convection in the mantle”. In: J. Geophys. Res.: Solid Earth 99.B8 (1994), pp. 15861–15875. doi: 10.1029/94JB00730.

[2697]

LP Solheim and WR Peltier. “Heat transfer and the onset of chaos in a spherical, axisymmetric, anelastic model of whole mantle convection”. In: Geophysical & Astrophysical Fluid Dynamics 53.4 (1990), pp. 205–255.

[2698]

LP Solheim and WR Peltier. “Mantle phase transitions and layered convection”. In: Canadian Journal of Earth Sciences 30.5 (1993), pp. 881–892. doi: 10.1139/e93-073.

[2699]

V. Solomatov. “Magma Oceans and Primordial Mantle Differentiation”. In: Treatise on Geophysics 9 (2007), pp. 91–119. doi: 10.1016/B978-044452748-6.00141-3.

[2700]

V.S. Solomatov. “Can hotter mantle have a larger viscosity?” In: Geophys. Res. Lett. 23.9 (1996), pp. 937–940. doi: 10.1029/96GL00724.

[2701]

V.S. Solomatov. “Grain size-dependent viscosity convection and the thermal evolution of the Earth”. In: Earth Planet. Sci. Lett. 191.3-4 (2001), pp. 203–212. doi: 10.1016/S0012- 821X(01)00426-5.

[2702]

V.S. Solomatov. “Initiation of subduction by small-scale convection”. In: J. Geophys. Res.: Solid Earth 109.B01412 (2004).

[2703]

V.S. Solomatov. “Localized subcritical convective cells in temperature-dependent viscosity fluids”. In: Phys. Earth. Planet. Inter. 200-201 (2012), pp. 63–71. doi: 10.1016/j.pepi. 2012.04.005.

[2704]

V.S. Solomatov and A.C. Barr. “Onset of convection in fluids with strongly temperature-dependent, power-law viscosity”. In: Phys. Earth. Planet. Inter. 155.1-2 (2006), pp. 140–145. doi: 10.1016/j.pepi.2005.11.001.

[2705]

V.S. Solomatov and A.C. Barr. “Onset of convection in fluids with strongly temperature-dependent, power-law viscosity. 2. Dependence on the initial perturbation”. In: Phys. Earth. Planet. Inter. 165.1-2 (2007), pp. 1–13. doi: 10.1016/j.pepi.2007.06.007.

[2706]

V.S. Solomatov and L.-N. Moresi. “Stagnant lid convection on Venus”. In: J. Geophys. Res.: Solid Earth 101.E2 (1996), pp. 4737–4753. doi: 10.1029/95JE03361.

[2707]

V.S. Solomatov and D.J. Stevenson. “Nonfractional crystallization of a terrestrial magma ocean”. In: 1993 98.E3 (1993), pp. 5391–5406. doi: 10.1029/92JE02579.

[2708]

V.S. Solomatov and D.J. Stevenson. “Suspension in convective layers and style of differentiation of a terrestrial magma ocean”. In: J. Geophys. Res.: Solid Earth 98.E3 (1993), pp. 5375–5390. doi: 10.1029/92JE02948.

[2709]

Viatcheslav S Solomatov and L-N Moresi. “Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets”. In: J. Geophys. Res.: Solid Earth 105.B9 (2000), pp. 21795–21817.

[2710]

VS Solomatov. “Scaling of temperature-and stress-dependent viscosity convection”. In: Physics of Fluids 7.2 (1995), pp. 266–274.

[2711]

VS Solomatov, R El-Khozondar, and V Tikare. “Grain size in the lower mantle: constraints from numerical modeling of grain growth in two-phase systems”. In: Phys. Earth. Planet. Inter. 129.3-4 (2002), pp. 265–282.

[2712]

VS Solomatov and L-N Moresi. “Small-scale convection in the D” layer”. In: J. Geophys. Res.: Solid Earth 107.B1 (2002). doi: 10.1029/2000JB000063.

[2713]

VS Solomatov and L-N Moresi. “Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets”. In: Geophys. Res. Lett. 24.15 (1997), pp. 1907–1910.

[2714]

VS Solomatov and CC Reese. “Grain size variations in the Earth’s mantle and the evolution of primordial chemical heterogeneities”. In: J. Geophys. Res.: Solid Earth 113.B7 (2008).

[2715]

Sean C Solomon and Norman H Sleep. “Some simple physical models for absolute plate motions”. In: J. Geophys. Res.: Solid Earth 79.17 (1974), pp. 2557–2567. doi: 10.1029/ JB079i017p02557.

[2716]

Sean C Solomon, Norman H Sleep, and Randall M Richardson. “On the forces driving plate tectonics: Inferences from absolute plate velocities and intraplate stress”. In: Geophy. J. Int. 42.2 (1975), pp. 769–801.

[2717]

L.J. Sonder and Ph.C. england. “Effects of a temperature-dependent rheology on large-scale continental extension”. In: J. Geophys. Res.: Solid Earth 94.B6 (1989).

[2718]

Teh-Ru Alex Song and Mark Simons. “Large trench-parallel gravity variations predict seismogenic behavior in subduction zones”. In: Science 301.5633 (2003), pp. 630–633.

[2719]

C Sotin and S Labrosse. “Three-dimensional thermal convection in an iso-viscous, infinite Prandtl number fluid heated from within and from below: applications to the transfer of heat through planetary mantles”. In: Phys. Earth. Planet. Inter. 112.3-4 (1999), pp. 171–190. doi: 10.1016/S0031-9201(99)00004-7.

[2720]

A Souche, M Dabrowski, and TB Andersen. “Modeling thermal convection in supradetachment basins: example from western Norway”. In: Geofluids 14.1 (2014), pp. 58–74. doi: 10.1111/gfl.12042.

[2721]

A. Souche, O. Galland, O. Haug, and M. Dabrowski. “Impact of host rock heterogeneity on failure around pressurized conduits: Implications for finger-shaped magmatic intrusions”. In: Tectonophysics 765 (2019), pp. 52–63. doi: 10.1016/j.tecto.2019.05.016.

[2722]

A. Souche, S. Medvedev, T.B. Andersen, and M. Dabrowski. “Shear heating in extensional detachments: implications for the thermal history of the Devonian basins of W Norway”. In: Tectonophysics 608 (2013), pp. 1073–1085. doi: 10.1016/j.tecto.2013.07.005.

[2723]

Giorgio Spada et al. “A benchmark study for glacial isostatic adjustment codes”. In: Geophy. J. Int. 185.1 (2011), pp. 106–132. doi: 10.1111/j.1365-246X.2011.04952.x.

[2724]

W. Spakman, M.V. Chertova, A. van den Berg, and D.J.J. van Hinsbergen. “Puzzling features of western Mediterranean tectonics explained by slab dragging”. In: Nature Geoscience 11 (2018), pp. 211–216. doi: 10.1038/s41561-018-0066-z.

[2725]

Wim Spakman. “Delay-time tomography of the upper mantle below Europe, the Mediterranean, and Asia Minor”. In: Geophy. J. Int. 107.2 (1991), pp. 309–332.

[2726]

Wim Spakman and Robert Hall. “Surface deformation and slab–mantle interaction during Banda arc subduction rollback”. In: Nature Geoscience 3.8 (2010), p. 562. doi: 10.1038/ NGEO917.

[2727]

Arne Spang, TS Baumann, and Boris JP Kaus. “Geodynamic modeling with uncertain initial geometries”. In: Geochem. Geophys. Geosyst. 23.6 (2022), e2021GC010265. doi: 10.1029/2021GC010265.

[2728]

S. Spasojevic, M. Gurnis, and R. Sutherland. “Inferring mantle properties with an evolving dynamic model of the Antarctica-New Zealand region from the Late Cretaceous”. In: J. Geophys. Res.: Solid Earth 115.B5 (2010). doi: 10.1029/2009JB006612.

[2729]

S. Spasojevic, M. Gurnis, and R. Sutherland. “Mantle upwellings above slab graveyards linked to the global geoid lows”. In: Nature Geoscience 3.6 (2010), pp. 435–438. doi: 10.1038/ngeo855.

[2730]

Dan C Spencer, Richard F Katz, Ian J Hewitt, David A May, and Laszlo P Keszthelyi. “Compositional layering in Io driven by magmatic segregation and volcanism”. In: J. Geophys. Res.: Planets 125.9 (2020), e2020JE006604. doi: 10.1029/2020JE006604.

[2731]

Dan C Spencer, Richard F Katz, and IJ Hewitt. “Magmatic intrusions control Io’s crustal thickness”. In: J. Geophys. Res.: Planets 125.6 (2020), e2020JE006443. doi: 10.1029/ 2020JE006443.

[2732]

Frank J Spera, David A Yuen, and Stephen J Kirschvink. “Thermal boundary layer convection in silicic magma chambers: Effects of temperature-dependent rheology and implications for thermogravitational chemical fractionation”. In: J. Geophys. Res.: Solid Earth 87.B10 (1982), pp. 8755–8767. doi: 10.1029/JB087iB10p08755.

[2733]

Edward A Spiegel and G Veronis. “On the Boussinesq approximation for a compressible fluid.” In: The Astrophysical Journal 131 (1960), p. 442.

[2734]

Marc Spiegelman. “Flow in deformable porous media. Part 2 numerical analysis–the relationship between shock waves and solitary waves”. In: Journal of Fluid Mechanics 247 (1993), pp. 39–63.

[2735]

Marc Spiegelman, Owen Evans, Mark Ghiorso, Lucy Tweed, and Cian Wilson. “ThermoCodegen: a python/C++ package for the generation of custom thermodynamic models”. In: Journal of Open Source Software 8.86 (2023), p. 4874. doi: 10.21105/joss. 04874.

[2736]

Marc Spiegelman and Dan McKenzie. “Simple 2-D models for melt extraction at mid-ocean ridges and island arcs”. In: Earth Planet. Sci. Lett. 83.1-4 (1987), pp. 137–152.

[2737]

Richard Spitz, Arthur Bauville, Jean-Luc Epard, Boris JP Kaus, Anton A Popov, and Stefan M Schmalholz. “Control of 3-D tectonic inheritance on fold-and-thrust belts: insights from 3-D numerical models and application to the Helvetic nappe system”. In: Solid Earth 11.3 (2020), pp. 999–1026. doi: 10.5194/se-11-999-2020.

[2738]

Richard Spitz, Stefan M Schmalholz, Boris JP Kaus, and Anton A Popov. “Quantification and visualization of finite strain in 3D viscous numerical models of folding and overthrusting”. In: Journal of Structural Geology 131 (2020), p. 103945. doi: 10.1016/j.jsg.2019. 103945.

[2739]

O. Srámek and S. Zhong. “Long-wavelength stagnant lid convection with hemispheric variation in lithospheric thickness: Link between Martian crustal dichotomy and Tharsis?” In: J. Geophys. Res.: Solid Earth 115.E9 (2010). doi: 10.1029/2010JE003597.

[2740]

Ondřej Šrámek, Yanick Ricard, and David Bercovici. “Simultaneous melting and compaction in deformable two-phase media”. In: Geophy. J. Int. 168.3 (2007), pp. 964–982.

[2741]

Frank D Stacey. “A thermal model of the Earth”. In: Phys. Earth. Planet. Inter. 15.4 (1977), pp. 341–348.

[2742]

G. Stadler, M. Gurnis, C. Burstedde, L.C. Wilcox, L. Alisic, and O. Ghattas. “The dynamics of plate tectonics and mantle flow: from local to global scales”. In: Science 329 (2010), pp. 1033–1038. doi: 10.1126/science.1191223.

[2743]

Nikola Stanković, Taras Gerya, Vesna Cvetkov, and Vladica Cvetković. “Did the Western and the Eastern Vardar ophiolites originate through a single intra-oceanic subduction? Insight from numerical modelling”. In: Gondwana Research 124 (2023), pp. 124–140. doi: 10.1016/j.gr.2023.07.005.

[2744]

Ph. Steer, M. Simoes, R. Cattin3, and J.B.H. Shyu. “Erosion influences the seismicity of active thrust faults”. In: Nature Communications 5 (2014), p. 5564.

[2745]

Holger Steffen, Heiner Denker, and Jürgen Müller. “Glacial isostatic adjustment in Fennoscandia from GRACE data and comparison with geodynamical models”. In: Journal of Geodynamics 46.3-5 (2008), pp. 155–164. doi: 10.1016/j.jog.2008.03.002.

[2746]

D.R. Stegman, R. Farrington, F.A. Capitanio, and W.P. Schellart. “A regime diagram for subduction styles from 3-D numerical models of free subduction”. In: Tectonophysics 483 (2010), pp. 29–45. doi: 10.1016/j.tecto.2009.08.041.

[2747]

D.R. Stegman, J. Freeman, W.P. Schellart, L. Moresi, and D. May. “Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback”. In: Geochem. Geophys. Geosyst. 7.3 (2006). doi: 10.1029/2005GC001056.

[2748]

D.R. Stegman, W.P. Schellart, and J. Freeman. “Competing influences of plate width and far-field boundary conditions on trench migration and morphology of subducted slabs in the upper mantle”. In: Tectonophysics 483 (2010), pp. 46–57. doi: 10.1016/j.tecto.2009. 08.026.

[2749]

Dave R Stegman, Mark A Richards, and John R Baumgardner. “Effects of depth-dependent viscosity and plate motions on maintaining a relatively uniform mid-ocean ridge basalt reservoir in whole mantle flow”. In: J. Geophys. Res.: Solid Earth 107.B6 (2002), ETG–5.

[2750]

C Stein and U Hansen. “Arrhenius rheology versus Frank-Kamenetskii rheology - Implications for mantle dynamics”. In: Geochem. Geophys. Geosyst. 14.8 (2013), pp. 2757–2770. doi: 10.1002/ggge.20158.

[2751]

C. Stein, A. Fahl, and U. Hansen. “Resurfacing events on Venus: Implications on plume dynamics and surface topography”. In: Geophys. Res. Lett. 37.1 (2010). doi: 10.1029/ 2009GL041073.

[2752]

C. Stein and U. Hansen. “Plate motions and the viscosity structure of the mantle - Insights from numerical modelling”. In: Earth Planet. Sci. Lett. 272.1-2 (2008), pp. 29–40. doi: 10.1016/j.epsl.2008.03.050.

[2753]

C. Stein, J. Lowman, and U. Hansen. “A comparison of mantle convection models featuring plates”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 2689–2698. doi: 10.1002/ 2013GC005211.

[2754]

C. Stein, J. Schmalzl, and U. Hansen. “The effect of rheological parameters on plate behaviourin a self-consistent model of mantle convection”. In: Phys. Earth. Planet. Inter. 142.3-4 (2004), pp. 225–255. doi: 10.1016/j.pepi.2004.01.006.

[2755]

Claudia Stein, Matthew J Comeau, Michael Becken, and Ulrich Hansen. “Numerical study on the style of delamination”. In: Tectonophysics 827 (2022), p. 229276. doi: 10.1016/ j.tecto.2022.229276.

[2756]

Claudia Stein and Ulrich Hansen. “Formation of thermochemical heterogeneities by core-mantle interaction”. In: J. Geophys. Res.: Solid Earth 128.2 (2023), e2022JB025689. doi: 10.1029/2022JB025689.

[2757]

Claudia Stein and Ulrich Hansen. “Numerical investigation of a layered temperature-dependent viscosity convection in comparison to convection with a full temperature dependence”. In: Phys. Earth. Planet. Inter. 226 (2014), pp. 1–13. doi: 10.1016/j.pepi.2013.11.004.

[2758]

Claudia Stein and Ulrich Hansen. “Onset of plate motion in the presence of chemical heterogeneities in the mantle and the effect of mantle temperature”. In: J. Geophys. Res.: Solid Earth 129.5 (2024), e2023JB026864. doi: 10.1029/2023JB026864.

[2759]

S. Stein. “A model for the relation between spreading rate and oblique spreading”. In: Earth Planet. Sci. Lett. 39 (1978), pp. 313–318.

[2760]

Volker Steinbach, Ulrich Hansen, and Adolf Ebel. “Compressible convection in the earth’s mantle: a comparison of different approaches”. In: Geophys. Res. Lett. 16.7 (1989), pp. 633–636. doi: 10.1029/GL016i007p00633.

[2761]

Volker Steinbach and David A Yuen. “Effects of depth-dependent properties on the thermal anomalies produced in flush instabilities from phase transitions”. In: Phys. Earth. Planet. Inter. 86.1-3 (1994), pp. 165–183.

[2762]

Volker Steinbach and David A Yuen. “The non-adiabatic nature of mantle convection as revealed by passive tracers”. In: Earth Planet. Sci. Lett. 136.3-4 (1995), pp. 241–250. doi: 10.1016/0012-821X(95)00166-A.

[2763]

Volker Steinbach, David A Yuen, and Wuling Zhao. “Instabilities from phase transitions and the timescales of mantle thermal evolution”. In: Geophys. Res. Lett. 20.12 (1993), pp. 1119–1122. doi: 10.1029/93GL01243.

[2764]

B Steinberger and R Holme. “Mantle flow models with core-mantle boundary constraints and chemical heterogeneities in the lowermost mantle”. In: J. Geophys. Res.: Solid Earth 113.B5 (2008).

[2765]

B. Steinberger, E. Bredow, S. Lebedev, A. Schaeffer, and T. H. Torsvik. “Widespread volcanism in the Greenland-North Atlantic region explained by the Iceland plume”. In: Nature Geoscience 12.1 (2019), p. 61. doi: 10.1038/s41561-018-0251-0.

[2766]

B. Steinberger and A.R. Calderwood. “Models of large-scale viscous flow in the Earth’s mantle with constraints from mineral physics and surface observations”. In: Geophy. J. Int. 167 (2006), pp. 1461–1481. doi: 10.1111/j.1365-246X.2006.03131.x.

[2767]

B. Steinberger, M.-L. Grasnick, and R. Ludwig. “Exploring the Origin of Geoid Low and Topography High in West Antarctica: Insights from Density Anomalies and Mantle Convection Models”. In: Tektonika 1.2 (2023). doi: 10.55575/tektonika2023.1.2.35.

[2768]

B. Steinberger, H. Schmeling, and G. Marquart. “Large-scale lithospheric stress field and topography induced by global mantle circulation”. In: Earth Planet. Sci. Lett. 186 (2001), pp. 75–91.

[2769]

Bernard Steinberger and Trond H Torsvik. “Toward an explanation for the present and past locations of the poles”. In: Geochem. Geophys. Geosyst. 11.6 (2010). doi: 10.1029/ 2009GC002889.

[2770]

Bernhard Steinberger. “Effects of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and dynamic topography at the Earth’s surface”. In: Phys. Earth. Planet. Inter. 164.1-2 (2007), pp. 2–20. doi: 10.1016/j.pepi.2007. 04.021.

[2771]

Bernhard Steinberger. “Topography caused by mantle density variations: observation-based estimates and models derived from tomography and lithosphere thickness”. In: Geophy. J. Int. 205.1 (2016), pp. 604–621. doi: 10.1093/gji/ggw040.

[2772]

Bernhard Steinberger and Thorsten W Becker. “A comparison of lithospheric thickness models”. In: Tectonophysics 746 (2018), pp. 325–338. doi: 10.1016/j.tecto.2016.08. 001.

[2773]

Bernhard Steinberger, Clinton P Conrad, Anthony Osei Tutu, and Mark J Hoggard. “On the amplitude of dynamic topography at spherical harmonic degree two”. In: Tectonophysics 760 (2019), pp. 221–228. doi: 10.1016/j.tecto.2017.11.032.

[2774]

Bernhard Steinberger and Richard J O’Connell. “Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity and plume distribution”. In: Geophy. J. Int. 132.2 (1998), pp. 412–434. doi: 10.1046/j.1365-246x.1998.00447.x.

[2775]

Bernhard Steinberger and Richard J O’Connell. “The convective mantle flow signal in rates of true polar wander”. In: Ice Sheets, Sea Level and the Dynamic Earth, Geodyn. Ser 29 (2002), pp. 233–256. doi: 10.1002/9781118670101.ch15.

[2776]

Bernhard Steinberger and Trond H Torsvik. “A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces”. In: Geochem. Geophys. Geosyst. 13.1 (2012). doi: 10.1029/2011GC003808.

[2777]

Bernhard Steinberger, Trond H Torsvik, and Thorsten W Becker. “Subduction to the lower mantle–a comparison between geodynamic and tomographic models”. In: Solid Earth 3.2 (2012), pp. 415–432. doi: 10.5194/se-3-415-2012.

[2778]

Stephen A Steiner and Clinton P Conrad. “Does active mantle upwelling help drive plate motions?” In: Phys. Earth. Planet. Inter. 161.1-2 (2007), pp. 103–114. doi: 10.1016/j. pepi.2007.01.005.

[2779]

K. Stemmer, H. Harder, and U. Hansen. “A new method to simulate convection with strongly temperature- and pressure-dependent viscosity in a spherical shell: Applications to the Earth’s mantle”. In: Phys. Earth. Planet. Inter. 157 (2006), pp. 223–249. doi: 10.1016/j.pepi.2006.04.007.

[2780]

Ove Stephansson and Harald Berner. “The finite element method in tectonic processes”. In: Phys. Earth. Planet. Inter. 4.4 (1971), pp. 301–321.

[2781]

R.J. Stern. “Subduction initiation: spontaneous and induced”. In: Earth Planet. Sci. Lett. 226 (2004), pp. 275–292.

[2782]

R.J. Stern. “Subduction zones”. In: Reviews of Geophysics 40.4 (2002). doi: 10.1029/ 2001RG000108.

[2783]

Robert J Stern and Sherman H Bloomer. “Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs”. In: Geological Society of America Bulletin 104.12 (1992), pp. 1621–1636. doi: 10.1130/0016-7606(1992)104<1621: SZIEFT>2.3.CO;2.

[2784]

Robert J Stern and Taras Gerya. “Subduction initiation in nature and models: A review”. In: Tectonophysics 746 (2018), pp. 173–198. doi: 10.1016/j.tecto.2017.10.014.

[2785]

Robert J Stern and Taras V Gerya. “Co-Evolution of Life and Plate Tectonics: The Biogeodynamic Perspective on the Mesoproterozoic-Neoproterozoic Transitions”. In: Dynamics of Plate Tectonics and Mantle Convection. 2023, pp. 295–319. doi: 10.1016/ B978-0-323-85733-8.00013-5.

[2786]

Robert J Stern, M Reagan, O Ishizuka, Y Ohara, and S Whattam. “To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites”. In: Lithosphere 4.6 (2012), pp. 469–483. doi: 10.1130/L183.1.

[2787]

Tim Stern, Gregory Houseman, Michelle Salmon, and Lynn Evans. “Instability of a lithospheric step beneath western North Island, New Zealand”. In: Geology 41.4 (2013), pp. 423–426. doi: 10.1130/G34028.1.

[2788]

P. Sternai, L. Jolivet, A. Menant, and T. Gerya. “Driving the upper plate surface deformation by slab rollback and mantle flow”. In: Earth Planet. Sci. Lett. 405 (2014), pp. 110–118. doi: 10.1016/j.epsl.2014.08.023.

[2789]

Pietro Sternai. “Surface processes forcing on extensional rock melting”. In: Scientific Reports 10.1 (2020), pp. 1–13. doi: 10.1038/s41598-020-63920-w.

[2790]

Pietro Sternai et al. “Effects of asthenospheric flow and orographic precipitation on continental rifting”. In: Tectonophysics (2021), p. 229120. doi: 10.1016/j.tecto.2021. 229120.

[2791]

D. Sterpi. “An analysis of geotechnical problems involving strain softening effects”. In: International Journal fro Numerical and Analytical Methods in Geomechanics 23 (1999), pp. 1427–1454. doi: 10.1002/(SICI)1096-9853(199911)23:13<1427::AID-NAG6>3.0. CO;2-B.

[2792]

Lars Stixrude and Carolina Lithgow-Bertelloni. “Geophysics of chemical heterogeneity in the mantle”. In: Annual Review of Earth and Planetary Sciences 40 (2012), pp. 569–595. doi: 10.1146/annurev.earth.36.031207.124244.

[2793]

Lars Stixrude and Carolina Lithgow-Bertelloni. “Influence of phase transformations on lateral heterogeneity and dynamics in Earth’s mantle”. In: Earth Planet. Sci. Lett. 263.1-2 (2007), pp. 45–55. doi: 10.1016/j.epsl.2007.08.027.

[2794]

Lars Stixrude and Carolina Lithgow-Bertelloni. “Mineralogy and elasticity of the oceanic upper mantle: Origin of the low-velocity zone”. In: J. Geophys. Res.: Solid Earth 110.B3 (2005).

[2795]

Lars Stixrude and Carolina Lithgow-Bertelloni. “Thermal expansivity, heat capacity and bulk modulus of the mantle”. In: Geophy. J. Int. 228.2 (2022), pp. 1119–1149. doi: 10. 1093/gji/ggab394.

[2796]

Lars Stixrude and Carolina Lithgow-Bertelloni. “Thermodynamics of mantle minerals – I. Physical properties”. In: Geophy. J. Int. 162.2 (2005), pp. 610–632. doi: 10.1111/j.1365- 246X.2005.02642.x.

[2797]

Lars Stixrude and Carolina Lithgow-Bertelloni. “Thermodynamics of mantle minerals-II. Phase equilibria”. In: Geophy. J. Int. 184.3 (2011), pp. 1180–1213. doi: 10.1111/j.1365- 246X.2010.04890.x.

[2798]

Bernhard Stöckhert and Taras V Gerya. “Pre-collisional high pressure metamorphism and nappe tectonics at active continental margins: A numerical simulation”. In: Terra Nova 17.2 (2005), pp. 102–110.

[2799]

Glen S Stockmal. “Modeling of large-scale accretionary wedge deformation”. In: J. Geophys. Res.: Solid Earth 88.B10 (1983), pp. 8271–8287.

[2800]

Glen S Stockmal, Christopher Beaumont, and Ross Boutilier. “Geodynamic models of convergent margin tectonics: transition from rifted margin to overthrust belt and consequences for foreland-basin development”. In: AAPG Bulletin 70.2 (1986), pp. 181–190. doi: 10.1306/94885656-1704-11D7-8645000102C1865D.

[2801]

Drew Stolar, Gerard Roe, and Sean Willett. “Controls on the patterns of topography and erosion rate in a critical orogen”. In: J. Geophys. Res.: Earth Surface 112.F4 (2007). doi: 10.1029/2006JF000713.

[2802]

Drew B Stolar, Sean D Willett, and Gerard H Roe. “Climatic and tectonic forcing of a critical orogen”. In: Special papers - Geological Society of America 398 (2006), pp. 241–250. doi: 10.1130/2006.2398(14).

[2803]

Ingo Leonardo Stotz, Giampiero Iaffaldano, and DR Davies. “Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics”. In: Geophys. Res. Lett. 44.14 (2017), pp. 7177–7186. doi: 10.1002/2017GL073920.

[2804]

Eivind O Straume, Bernhard Steinberger, Thorsten W Becker, and Claudio Faccenna. “Impact of mantle convection and dynamic topography on the Cenozoic paleogeography of Central Eurasia and the West Siberian Seaway”. In: Earth Planet. Sci. Lett. 630 (2024), p. 118615. doi: 10.1016/j.epsl.2024.118615.

[2805]

William Sturgeon, Ana MG Ferreira, Manuele Faccenda, Sung-Joon Chang, and Lewis Schardong. “On the origin of radial anisotropy near subducted slabs in the midmantle”. In: Geochem. Geophys. Geosyst. 20.11 (2019), pp. 5105–5125. doi: 10.1029/2019GC008462.

[2806]

Jinbao Su, Wenbin Zhu, and Guangwei Li. “Driven magmatism and crustal thinning of coastal southern China in response to subduction”. In: Solid Earth 15.9 (2024), pp. 1133–1141. doi: 10.5194/se-15-1133-2024.

[2807]

Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies. “Effects of basal drag on subduction dynamics from 2D numerical models”. In: Solid Earth 12 (2021), pp. 79–93. doi: 10.5194/se-12-79-2021.

[2808]

Deborah Sulsky, Howard Schreyer, Kara Peterson, Ron Kwok, and Max Coon. “Using the material-point method to model sea ice dynamics”. In: J. Geophys. Res.: Oceans 112.C2 (2007).

[2809]

J. van Summeren, C. P. Conrad, and E. Gaidos. “Mantle Convection, Plate Tectonics, And Volcanism On Hot Exo-Earths”. In: The Astrophysical Journal 736.1 (2011), p. L15. doi: 10.1088/2041-8205/736/1/L15.

[2810]

J. van Summeren, C.P. Conrad, and C. Lithgow-Bertelloni. “The importance of slab pull and a global asthenosphere to plate motions”. In: Geochem. Geophys. Geosyst. 13.1 (2012). doi: 10.1029/2011GC003873.

[2811]

J. van Summeren, E. Gaidos, and C. P. Conrad. “Magnetodynamo lifetimes for rocky, Earth-mass exoplanets with contrasting mantle convection regimes”. In: J. Geophys. Res.: Solid Earth 118.5 (2013), pp. 938–951. doi: 10.1002/jgre.20077.

[2812]

J.R.G. van Summeren, A.P. van den Berg, and R.D. van der Hilst. “Upwellings from a deep mantle reservoir filtered at the 660 km phase transition in thermo-chemical convection models and implications for intra-plate volcanism”. In: Phys. Earth. Planet. Inter. 172 (2009), pp. 210–224. doi: 10.1016/j.pepi.2008.09.011.

[2813]

Baolu Sun et al. “Subduction Polarity Reversal Triggered by Oceanic Plateau Accretion: Implications for Induced Subduction Initiation”. In: Geophys. Res. Lett. 48.24 (2021), e2021GL095299. doi: 10.1029/2021GL095299.

[2814]

Sean Swenson and John Wahr. “Post-processing removal of correlated errors in GRACE data”. In: Geophys. Res. Lett. 33.8 (2006). doi: 10.1029/2005GL025285.

[2815]

E.M. Syracuse and G.A. Abers. “Global compilation of variations in slab depth beneath arc volcanoes and implications”. In: Geochem. Geophys. Geosyst. 7.5 (2006). doi: 10.1029/ 2005GC001045.

[2816]

E.M. Syracuse, P.E. van Keken, and G.A. Abers. “The global range of subduction zone thermal models”. In: Phys. Earth. Planet. Inter. 183 (2010), pp. 73–90.

[2817]

Wolfgang Szwillus, Juan Carlos Afonso, Jörg Ebbing, and Walter D Mooney. “Global crustal thickness and velocity structure from geostatistical analysis of seismic data”. In: J. Geophys. Res.: Solid Earth 124.2 (2019), pp. 1626–1652. doi: 10.1029/2018JB016593.

[2818]

Wolfgang Szwillus, Jörg Ebbing, and Bernhard Steinberger. “Increased density of large low-velocity provinces recovered by seismologically constrained gravity inversion”. In: Solid Earth 11.4 (2020), pp. 1551–1569. doi: 10.5194/se-11-1551-2020.

[2819]

Masahisa Tabata and Atsushi Suzuki. “Mathematical Modeling and Numerical Simulation of Earth’s Mantle Convection”. In: Mathematical Modeling and Numerical Simulation in Continuum Mechanics. Ed. by Ivo Babuška, Philippe G. Ciarlet, and Tetsuhiko Miyoshi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 219–231. doi: 10.1007/978- 3-642-56288-4_16.

[2820]

P.J. Tackley. “Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects”. In: Earth-Science Reviews 110 (2012), pp. 1–25. doi: 10. 1016/j.earscirev.2011.10.001.

[2821]

P.J. Tackley. “Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles”. In: J. Geophys. Res.: Solid Earth 101.B2 (1996), pp. 3311–3332.

[2822]

P.J. Tackley. “Layer cake or plum pudding?” In: Nature Geoscience 1 (2008), pp. 157–158.

[2823]

P.J. Tackley. “Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 7–18.

[2824]

P.J. Tackley. “Self-consistent generation of tectonic plates in three-dimensional mantle convection”. In: Earth Planet. Sci. Lett. 157 (1998), pp. 9–22.

[2825]

P.J. Tackley. “Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 1. Pseudoplastic yielding”. In: Geochem. Geophys. Geosyst. 1.1 (2000). doi: 10.1029/2000GC000036.

[2826]

Paul J Tackley. “Convection in Io’s asthenosphere: Redistribution of nonuniform tidal heating by mean flows”. In: J. Geophys. Res.: Planets 106.E12 (2001), pp. 32971–32981.

[2827]

Paul J Tackley. “Effects of strongly temperature-dependent viscosity on time-dependent, three-dimensional models of mantle convection”. In: Geophys. Res. Lett. 20.20 (1993), pp. 2187–2190.

[2828]

Paul J Tackley. “Mantle convection and plate tectonics: Toward an integrated physical and chemical theory”. In: Science 288.5473 (2000), pp. 2002–2007.

[2829]

Paul J Tackley. “On the ability of phase transitions and viscosity layering to induce long wavelength heterogeneity in the mantle”. In: Geophys. Res. Lett. 23.15 (1996), pp. 1985–1988.

[2830]

Paul J Tackley. “On the penetration of an endothermic phase transition by upwellings and downwellings”. In: J. Geophys. Res.: Solid Earth 100.B8 (1995), pp. 15477–15488.

[2831]

Paul J Tackley. “Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere”. In: Geochem. Geophys. Geosyst. 1.8 (2000).

[2832]

Paul J Tackley. “Strong heterogeneity caused by deep mantle layering”. In: Geochem. Geophys. Geosyst. 3.4 (2002), pp. 1–22.

[2833]

Paul J Tackley. “The quest for self-consistent generation of plate tectonics in mantle convection models”. In: Geophysical Monograph-American Geophysical Union 121 (2000), pp. 47–72.

[2834]

Paul J Tackley et al. “Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer: D””. In: The Core-Mantle Boundary Region, Geodyn. Ser 28 (1998), pp. 231–253.

[2835]

Paul J Tackley, Michael Ammann, John P Brodholt, David P Dobson, and Diana Valencia. “Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity”. In: Icarus 225.1 (2013), pp. 50–61.

[2836]

Paul J Tackley, John R Baumgardner, Gary A Glatzmaier, Peter Olson, and Tom Clune. “Three-dimensional spherical simulations of convection in Earth’s mantle and core using massively-parallel computers”. In: Proc. High. Performance Computing Symposium-HPC’99. 1999, pp. 95–100.

[2837]

Paul J Tackley, Takashi Nakagawa, and John W Hernlund. “Influence of the post-perovskite transition on thermal and thermo-chemical mantle convection”. In: GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION 174 (2007), p. 229.

[2838]

Paul J Tackley, David J Stevenson, Gary A Glatzmaier, and Gerald Schubert. “Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle”. In: Nature 361.6414 (1993), p. 699.

[2839]

Paul J Tackley, David J Stevenson, Gary A Glatzmaier, and Gerald Schubert. “Effects of multiple phase transitions in a three-dimensional spherical model of convection in Earth’s mantle”. In: J. Geophys. Res.: Solid Earth 99.B8 (1994), pp. 15877–15901.

[2840]

Paul J Tackley and Shunxing Xie. “The thermochemical structure and evolution of Earth’s mantle: constraints and numerical models”. In: Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 360.1800 (2002), pp. 2593–2609. doi: 10.1098/rsta.2002.1082.

[2841]

Paul J Tackley, Shunxing Xie, Takashi Nakagawa, and John W Hernlund. “Numerical and laboratory studies of mantle convection: Philosophy, accomplishments, and thermochemical structure and evolution”. In: GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION 160 (2005), p. 83.

[2842]

PJ Tackley and DJ Stevenson. “A mechanism for spontaneous self-perpetuating volcanism on the terrestrial planets”. In: Flow and Creep in the Solar System: Observations, Modeling and Theory. Springer, 1993, pp. 307–321.

[2843]

Michio Tagawa, Tomoeki Nakakuki, Masanori Kameyama, and Fumiko Tajima. “The role of history-dependent rheology in plate boundary lubrication for generating one-sided subduction”. In: Pure Appl. Geophys. 164.5 (2007), pp. 879–907.

[2844]

A Taiwo, HP Bunge, BSA Schuberth, L Colli, and B Vilacis. “Robust global mantle flow trajectories and their validation via dynamic topography histories”. In: Geophy. J. Int. 234.3 (2023), pp. 2160–2179. doi: 10.1093/gji/ggad188.

[2845]

Masao Takaku and Yoshio Fukao. “Fluid mechanical representation of plate boundaries in mantle convection modeling”. In: Phys. Earth. Planet. Inter. 166.1-2 (2008), pp. 44–56. doi: 10.1016/j.pepi.2007.10.003.

[2846]

Christopher J Talbot, Peter Rönnlund, H Schmeling, Hemin Koyi, and MPA Jackson. “Diapiric spoke patterns”. In: Tectonophysics 188.1-2 (1991), pp. 187–201. doi: 10.1016/ 0040-1951(91)90322-J.

[2847]

E. Taliadorou, G.C. Georgiou, and I. Moulitsas. “Weakly compressible Poiseuille flows of a Herschel-Bulkley fluid”. In: Journal of Non-Newtonian Fluid Mechanics 158 (2009), pp. 162–169. doi: 10.1016/j.jnnfm.2008.11.010.

[2848]

M.E. Tamisiea, J.X. Mitrovica, and J.L. Davis. “GRACE gravity data constrain ancient ice geometries and continental dynamics over Laurentia”. In: Science 316.5826 (2007), pp. 881–883.

[2849]

E. Tan and M. Gurnis. “Compressible thermochemical convection and application to lower mantle structures”. In: J. Geophys. Res.: Solid Earth 112.B06304 (2007).

[2850]

E. Tan, M. Gurnis, and L. Han. “Slabs in the lower mantle and their modulation of plume formation”. In: Geochem. Geophys. Geosyst. 3.11 (2002).

[2851]

E. Tan and Michael Gurnis. “Metastable superplumes and mantle compressibility”. In: Geophys. Res. Lett. 32.20 (2005). doi: 10.1029/2005GL024190.

[2852]

Eh Tan, Luc Lavier, Harm van Avendonk, and Arnauld Heuret. “The role of frictional strength on plate coupling at the subduction interface”. In: 10.13 (2012), Q10006. doi: 10.1029/2012GC004214.

[2853]

Eh Tan, Wei Leng, Shijie Zhong, and Michael Gurnis. “On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle”. In: Geochem. Geophys. Geosyst. 12.7 (2011).

[2854]

CA Tang, AAG Webb, WB Moore, YY Wang, TH Ma, and TT Chen. “Breaking Earth’s shell into a global plate network”. In: Nature Communications 11.1 (2020), pp. 1–6.

[2855]

Jiaxuan Tang, Lin Chen, Qingren Meng, and Guoli Wu. “The effects of the thermal state of overriding continental plate on subduction dynamics: Two-dimensional thermal-mechanical modeling”. In: Science China Earth Sciences 63 (2020), pp. 1519–1539. doi: 10.1007/ s11430-019-9624-1.

[2856]

Jianli Tao et al. “Accretion of oceanic plateaus at continental margins: Numerical modeling”. In: Gondwana Research 81 (2020), pp. 390–402. doi: 10.1016/j.gr.2019.11.015.

[2857]

Winston C Tao and Richard J O’connell. “Ablative subduction: A two-sided alternative to the conventional subduction model”. In: J. Geophys. Res.: Solid Earth 97.B6 (1992), pp. 8877–8904.

[2858]

Byron D Tapley, Srinivas Bettadpur, John C Ries, Paul F Thompson, and Michael M Watkins. “GRACE measurements of mass variability in the Earth system”. In: Science 305.5683 (2004), pp. 503–505. doi: 10.1126/science.1099192.

[2859]

C. A. Taposeea, J. J. Armitage, and J. S. Collier. “Asthenosphere and lithosphere structure controls on early onset oceanic crust production in the southern South Atlantic”. In: Tectonophysics (2017). doi: 10.1016/j.tecto.2016.06.026.

[2860]

P. Tapponnier, G. Peltzer, A.Y. Le Dain, R. Armijo, and P. Cobbold. “Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine”. In: Geology 10 (1982), pp. 611–616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2.

[2861]

J.M. Taramon, J. Rodriguez-Gonzalez, A.M. Negredo, and M.I. Billen. “Influence of cratonic lithosphere on the formation and evolution of flat slabs: Insights from 3-D time-dependent modeling”. In: Geochem. Geophys. Geosyst. 16 (2015). doi: 10.1002/2015GC005940.

[2862]

Alizia Tarayoun, Stephane Mazzotti, and Frédéric Gueydan. “Quantitative impact of structural inheritance on present-day deformation and seismicity concentration in intraplate deformation zones”. In: Earth Planet. Sci. Lett. 518 (2019), pp. 160–171. doi: 10.1016/ j.epsl.2019.04.043.

[2863]

J. Tarduno, H.P. Bunge, N. Sleep, and U. Hansen. “The bent hawaiian-emperor hotspot track: inheriting the mantle wind”. In: Science 324.5923 (2009), pp. 50–53. doi: 10. 1126/science.1161256.

[2864]

Gábor Tari, Didier Arbouille, Zsolt Schléder, and Tamás Tóth. “Inversion tectonics: a brief petroleum industry perspective”. In: Solid Earth 11.5 (2020), pp. 1865–1889.

[2865]

Arkady Ten, David A Yuen, Tine B Larsen, and Andrei V Malevsky. “The evolution of material surfaces in convection with variable viscosity as monitored by a characteristics-based method”. In: Geophys. Res. Lett. 23.16 (1996), pp. 2001–2004. doi: 10.1029/96GL02182.

[2866]

Arkady Ten, David A Yuen, Yu Yu Podladchikov, Tine B Larsen, Elizaveta Pachepsky, and Andrei V Malevsky. “Fractal features in mixing of non-Newtonian and Newtonian mantle convection”. In: Earth Planet. Sci. Lett. 146.3-4 (1997), pp. 401–414. doi: 10.1016/ S0012-821X(96)00244-0.

[2867]

Arkady A Ten, Yuri Yu Podladchikov, David A Yuen, Tine B Larsen, and Andrei V Malevsky. “Comparison of mixing properties in convection with the Particle-Line Method”. In: Geophys. Res. Lett. 25.16 (1998), pp. 3205–3208. doi: https://doi.org/10.1029/98GL51991.

[2868]

M. Tesauro, M.K. Kaban, and S.A.P.L. Cloetingh. “EuCRUST-07: A new reference model for the European crust”. In: Geophys. Res. Lett. 35.L05313 (2008).

[2869]

Michael G Tetley, Simon E Williams, Michael Gurnis, Nicolas Flament, and R Dietmar Müller. “Constraining absolute plate motions since the Triassic”. In: J. Geophys. Res.: Solid Earth (2019).

[2870]

J.L. Tetreault and S.J.H. Buiter. “Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones”. In: J. Geophys. Res.: Solid Earth 117 (2012), B08403. doi: 10.1029/2012JB009316.

[2871]

J.L. Tetreault and S.J.H. Buiter. “The influence of extension rate and crustal rheology on the evolution of passive margins from rifting to break-up”. In: Tectonophysics 746 (2018), pp. 155–172. doi: 10.1016/j.tecto.2017.08.029.

[2872]

JL Tetreault and SJH Buiter. “Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments”. In: Solid Earth 5.2 (2014), pp. 1243–1275. doi: 10.5194/se-5-1243-2014.

[2873]

M Tetzlaff and H Schmeling. “The influence of olivine metastability on deep subduction of oceanic lithosphere”. In: Phys. Earth. Planet. Inter. 120.1-2 (2000), pp. 29–38.

[2874]

Thomas M Tharp. “Numerical models of subduction and forearc deformation”. In: Geophy. J. Int. 80.2 (1985), pp. 419–437. doi: 10.1111/j.1365-246X.1985.tb05102.x.

[2875]

Wayne Thatcher and Fred F Pollitz. “Temporal evolution of continental lithospheric strength in actively deforming regions”. In: GSA TODAY 18.4/5 (2008), p. 4.

[2876]

Thomas Theunissen and Ritske S Huismans. “Long-term coupling and feedback between tectonics and surface processes during non-volcanic rifted margin formation”. In: J. Geophys. Res.: Solid Earth 124 (2019). doi: 10.1029/2018JB017235.

[2877]

Thomas Theunissen and Ritske S Huismans. “Mantle exhumation at magma-poor rifted margins controlled by frictional shear zones”. In: Nature Communications 13.1 (2022), pp. 1–12. doi: 10.1038/s41467-022-29058-1.

[2878]

Thomas Theunissen, Ritske S Huismans, Gang Lu, and Nicolas Riel. “Relative continent/mid-ocean ridge elevation: A reference case for isostasy in geodynamics”. In: Earth-Science Reviews 233 (2022), p. 104153. doi: 10.1016/j.earscirev.2022.104153.

[2879]

M. Thielmann and B.J.P. Kaus. “Shear heating induced lithospheric-scale localization: Does it result in subduction? ” In: Earth Planet. Sci. Lett. 359-360 (2012), pp. 1–13.

[2880]

M. Thielmann, B.J.P. Kaus, and A.A. Popov. “Lithospheric stresses in Rayleigh-Benard convection: effects of a free surface and a viscoelastic Maxwell rheology”. In: Geophy. J. Int. 203 (2015), pp. 2200–2219. doi: 10.1093/gji/ggv436.

[2881]

M. Thielmann, A. Rozel, B.J.P. Kaus, and Y. Ricard. “Intermediate-depth earthquake generation and shear zone formation caused by grain size reduction and shear heating”. In: Geology 43.9 (2015), pp. 791–794. doi: 10.1130/G36864.1.

[2882]

Marcel Thielmann and Stefan M. Schmalholz. “Contributions of Grain Damage, Thermal Weakening, and Necking to Slab Detachment”. In: Frontiers in Earth Science 8 (2020), p. 254. doi: 10.3389/feart.2020.00254.

[2883]

P van Thienen, AP van den Berg, and NJ Vlaar. “Production and recycling of oceanic crust in the early Earth”. In: Tectonophysics 386.1-2 (2004), pp. 41–65. doi: 10.1016/j. tecto.2004.04.027.

[2884]

P. van Thienen, A.P. van den Berg, and N.J. Vlaar. “On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth”. In: Tectonophysics 394.1-2 (2004), pp. 111–124. doi: 10.1016/j.tecto.2004.07.058.

[2885]

P. van Thienen, J. van Summeren, R.D. van der Hilst, A.P. van den Berg, and N.J. Vlaar. “Numerical study of the origin and stability of chemically distinct reservoirs deep in earth’s mantle”. In: Geophysical Monograph Series 160 (2005), pp. 117–136. doi: 10.1029/ 160GM09.

[2886]

B Thomas, H Samuel, CG Farnetani, J Aubert, and C Chauvel. “Mixing time of heterogeneities in a buoyancy-dominated magma ocean”. In: Geophy. J. Int. 236.2 (2024), pp. 764–777. doi: 10.1093/gji/ggad452.

[2887]

Christine Thomas, J-Michael Kendall, and Julian Lowman. “Lower-mantle seismic discontinuities and the thermal morphology of subducted slabs”. In: Earth Planet. Sci. Lett. 225.1-2 (2004), pp. 105–113.

[2888]

Alan Bruce Thompson, Karel Schulmann, and Josef Jezek. “Thermal evolution and exhumation in obliquely convergent (transpressive) orogens”. In: Tectonophysics 280.1-2 (1997), pp. 171–184. doi: 10.1016/S0040-1951(97)00144-3.

[2889]

Paul F Thompson and Paul J Tackley. “Generation of mega-plumes from the core-mantle boundary in a compressible mantle with temperature-dependent viscosity”. In: Geophys. Res. Lett. 25.11 (1998), pp. 1999–2002.

[2890]

Catherine Thoraval, Philippe Machetel, and Anny Cazenave. “Locally layered convection inferred from dynamic models of the Earth’s mantle”. In: Nature 375.6534 (1995), pp. 777–780.

[2891]

Catherine Thoraval and Mark A Richards. “The geoid constraint in global geodynamics: viscosity structure, mantle heterogeneity models and boundary conditions”. In: Geophy. J. Int. 131.1 (1997), pp. 1–8. doi: 10.1111/j.1365-246X.1997.tb00591.x.

[2892]

Catherine Thoraval, Andréa Tommasi, and Marie-Pierre Doin. “Plume-lithosphere interaction beneath a fast moving plate”. In: Geophys. Res. Lett. 33.1 (2006).

[2893]

Xiaochuan Tian, Mark D Behn, Garrett Ito, Jana C Schierjott, Boris JP Kaus, and Anton A Popov. “Magmatism controls global oceanic transform fault topography”. In: Nature Communications 15.1 (2024), p. 1914. doi: 10.1038/s41467-024-46197-9.

[2894]

B. Tikoff and C. Teyssier. “Strain modeling of displacement-field partitioning in transpressional orogens”. In: Journal of Structural Geology 16.11 (1994), pp. 1575–1588.

[2895]

M. Tingay, B. Mueller, and J. Reinecker. “Understanding tectonic stress in the oil patch: The World Stress Map Project”. In: The leading edge (2005), p. 1276.

[2896]

C Tirel, J-P Brun, and D Sokoutis. “Extension of thickened and hot lithospheres: Inferences from laboratory modeling”. In: Tectonics 25.1 (2006).

[2897]

C. Tirel, J.-P. Brun, and E. Burov. “Dynamics and structural development of metamorphic core complexes”. In: J. Geophys. Res.: Solid Earth 113.B04403 (2008).

[2898]

C. Tirel, J.-P. Brun, and E. Burov. “Thermomechanical modeling of extensional gneiss domes”. In: Geological Society of America Special Papers 380 (2004), pp. 67–78.

[2899]

C. Tirel, J.-P. Brun, E. Burov, M.J.R. Wortel, and S. Lebedev. “A plate tectonics oddity: Caterpillar-walk exhumation of subducted continental crust”. In: Geology 41.5 (2013), pp. 555–558.

[2900]

Céline Tirel, Pierre Gautier, DJJ van Hinsbergen, and MJR Wortel. “Sequential development of interfering metamorphic core complexes: numerical experiments and comparison with the Cyclades, Greece”. In: Geological Society, London, Special Publications 311.1 (2009), pp. 257–292.

[2901]

Max Tirone. “On the thermal gradient in the Earth’s deep interior”. In: Solid Earth 7.1 (2016), p. 229. doi: 10.5194/se-7-229-2016.

[2902]

Giovanni Toffol, Jianfeng Yang, Giorgio Pennacchioni, Manuele Faccenda, and Marco Scambelluri. “How to quake a subducting dry slab at intermediate depths: Inferences from numerical modelling”. In: Earth Planet. Sci. Lett. 578 (2022), p. 117289. doi: 10.1016/ j.epsl.2021.117289.

[2903]

M Nafi Toksöz and Peter Bird. “Modelling of temperatures in continental convergence zones”. In: Tectonophysics 41.1-3 (1977), pp. 181–193. doi: 10.1016/0040-1951(77)90189-5.

[2904]

M Nafi Toksöz, John W Minear, and Bruce R Julian. “Temperature field and geophysical effects of a downgoing slab”. In: J. Geophys. Res.: Solid Earth 76.5 (1971), pp. 1113–1138. doi: 10.1029/JB076i005p01113.

[2905]

M Nafi Toksöz, Norman H Sleep, and Albert T Smith. “Evolution of the downgoing lithosphere and the mechanisms of deep focus earthquakes”. In: Geophy. J. Int. 35.1-3 (1973), pp. 285–310. doi: 10.1111/j.1365-246X.1973.tb02429.x.

[2906]

Jonathan H Tomkin. “Coupling glacial erosion and tectonics at active orogens: A numerical modeling study”. In: J. Geophys. Res.: Earth Surface 112.F2 (2007).

[2907]

Jonathan H Tomkin and Jean Braun. “Simple models of drainage reorganisation on a tectonically active ridge system”. In: New Zealand Journal of Geology and Geophysics 42.1 (1999), pp. 1–10.

[2908]

Andréa Tommasi, Mickael Knoll, Alain Vauchez, Javier W Signorelli, Catherine Thoraval, and Roland Logé. “Structural reactivation in plate tectonics controlled by olivine crystal anisotropy”. In: Nature Geoscience 2.6 (2009), pp. 423–427. doi: 10.1038/ngeo528.

[2909]

KE Torrance and DL Turcotte. “Structure of convection cells in the mantle”. In: J. Geophys. Res.: Solid Earth 76.5 (1971), pp. 1154–1161. doi: 10.1029/JB076i005p01154.

[2910]

KE Torrance and DL Turcotte. “Thermal convection with large viscosity variations”. In: Journal of Fluid Mechanics 47.1 (1971), pp. 113–125. doi: 10.1017/S002211207100096X.

[2911]

Trond H Torsvik, Bernhard Steinberger, Lewis D Ashwal, Pavel V Doubrovine, and Reidar G Trønnes. “Earth evolution and dynamics - a tribute to Kevin Burke”. In: Canadian Journal of Earth Sciences 53.11 (2016), pp. 1073–1087.

[2912]

Trond H Torsvik et al. “Deep mantle structure as a reference frame for movements in and on the Earth”. In: Proceedings of the National Academy of Sciences 111.24 (2014), pp. 8735–8740.

[2913]

N. Tosi, P. Maierová, and D.A. Yuen. “Influence of Variable Thermal Expansivity and Conductivity on Deep Subduction”. In: Subduction Dynamics: From Mantle Flow to Mega Disasters, Geophysical Monograph 211. 2016, pp. 115–133.

[2914]

Nicola Tosi, Ondřej Čadek, and Zdeněk Martinec. “Subducted slabs and lateral viscosity variations: effects on the long-wavelength geoid”. In: Geophy. J. Int. 179.2 (2009), pp. 813–826.

[2915]

Nicola Tosi and David A Yuen. “Bent-shaped plumes and horizontal channel flow beneath the 660 km discontinuity”. In: Earth Planet. Sci. Lett. 312.3-4 (2011), pp. 348–359.

[2916]

Nicola Tosi, David A Yuen, and Ondřej Čadek. “Dynamical consequences in the lower mantle with the post-perovskite phase change and strongly depth-dependent thermodynamic and transport properties”. In: Earth Planet. Sci. Lett. 298.1-2 (2010), pp. 229–243.

[2917]

Nicola Tosi, David A Yuen, Nico de Koker, and Renata M Wentzcovitch. “Mantle dynamics with pressure-and temperature-dependent thermal expansivity and conductivity”. In: Phys. Earth. Planet. Inter. 217 (2013), pp. 48–58. doi: 10.1016/j.pepi.2013.02.004.

[2918]

J. Toth and M. Gurnis. “Dynamics of subduction initiation at preexisting fault zones”. In: J. Geophys. Res.: Solid Earth 103.B8 (1998), pp. 18, 053–18, 067.

[2919]

G. Toussaint, E. Burov, and J.-P. Avouac. “Tectonic evolution of a continental collision zone: A thermomechanical numerical model”. In: Tectonics 23.TC6003 (2004). doi: 10.1029/ 2003TC001604.

[2920]

G. Toussaint, E. Burov, and L. Jolivet. “Continental plate collision: unstable vs. stable slab dynamics”. In: Geology 32 (2004), pp. 33–36. doi: 10.1130/G19883.1.

[2921]

Aaron Tovish, Gerald Schubert, and Bruce P Luyendyk. “Mantle flow pressure and the angle of subduction: Non-Newtonian corner flows”. In: J. Geophys. Res.: Solid Earth 83.B12 (1978), pp. 5892–5898.

[2922]

D.C. Tozer. “Thermal Plumes in the Earth’s Nantie”. In: Nature 244 (Aug. 1973).

[2923]

Jeannot Trampert and Robert D van der Hilst. “Towards a quantitative interpretation of global seismic tomography”. In: Geophysical Monograph Series 160 (2005), pp. 47–62.

[2924]

B.J. Travis et al. “A benchmark comparison of numerical methods for infinite Prandtl number thermal convection in two-dimensional Cartesian geometry”. In: Geophysical & Astrophysical Fluid Dynamics 55.3-4 (1990), pp. 137–160.

[2925]

Bryan Travis and Peter Olson. “Convection with internal heat sources and thermal turbulence in the Earth’s mantle”. In: Geophy. J. Int. 118.1 (1994), pp. 1–19. doi: 10.1111/j.1365- 246X.1994.tb04671.x.

[2926]

S.H. Treagus and L. Lan. “Pure shear deformation of square objects, and applications to geological strain analysis”. In: Journal of Structural Geology 22 (2000), pp. 105–122. doi: 10.1016/S0191-8141(99)00143-1.

[2927]

Sean J Trim and Julian P Lowman. “Interaction between the supercontinent cycle and the evolution of intrinsically dense provinces in the deep mantle”. In: J. Geophys. Res.: Solid Earth 121.12 (2016), pp. 8941–8969. doi: 10.1002/2016JB013285.

[2928]

R.A. Trompert and U. Hansen. “Mantle convection simulations with rheologies that generate plate-like behaviour ”. In: Nature 395 (1998), pp. 686–689. doi: 10.1038/27185.

[2929]

R.A. Trompert and U. Hansen. “On the Rayleigh number dependence of convection with a strongly temperature-dependent viscosity”. In: Physics of Fluids 10.2 (1998), pp. 351–360.

[2930]

R.A. Trompert and U. Hansen. “The application of a finite volume multigrid method to three-dimensional flow problems in a highly viscous fluid with a variable viscosity”. In: Geophysical & Astrophysical Fluid Dynamics 83.3-4 (1996), pp. 261–291. doi: 10.1080/ 03091929608208968.

[2931]

Virginie Tron and Jean-Pierre Brun. “Experiments on oblique rifting in brittle-ductile systems”. In: Tectonophysics 188.1-2 (1991), pp. 71–84.

[2932]

V. P. Trubitsyn. “Rheology of the mantle and tectonics of the oceanic lithospheric plates”. In: Izvestiya, Physics of the Solid Earth 48.6 (2012), pp. 467–485. doi: 10.1134/ S1069351312060079.

[2933]

V. P. Trubitsyn, A. N. Evseev, M. N. Evseev, and E. V. Kharybin. “Mantle plumes in the models of quasi-turbulent thermal convection”. In: Izvestiya, Physics of the Solid Earth 47.12 (2011), pp. 1027–1033. doi: 10.1134/S106935131112010X.

[2934]

V. P. Trubitsyn and M. N. Evseev. “Plume Mode of Thermal Convection in the Earth’s Mantle”. In: Izvestiya, Physics of the Solid Earth 54.6 (2018), pp. 838–848. doi: 10. 1134/S1069351318060125.

[2935]

Valeriy Trubitsyn, Mikhail K Kaban, and Marcus Rothacher. “Mechanical and thermal effects of floating continents on the global mantle convection”. In: Phys. Earth. Planet. Inter. 171.1-4 (2008), pp. 313–322. doi: 10.1016/j.pepi.2008.03.011.

[2936]

VP Trubitsyn. “Equations of thermal convection for a viscous compressible mantle of the earth including phase transitions”. In: Izvestiya, Physics of the Solid Earth 44.12 (2008), pp. 1018–1026. doi: 10.1134/S1069351308120045.

[2937]

VP Trubitsyn and AM Bobrov. “Thermal and mechanical interaction of continents with the mantle”. In: Computational Seismology and Geodynamics 3 (1996), pp. 33–41.

[2938]

VP Trubitsyn and MN Evseev. “Pulsation of mantle plumes”. In: Russian Journal of Earth Sciences 16.3 (2016), ES3005. doi: 10.2205/2016ES000569.

[2939]

VP Trubitsyn and VV Rykov. “A 3-D numerical model of the Wilson cycle”. In: Journal of Geodynamics 20.1 (1995), pp. 63–75.

[2940]

VP Trubitsyn, VV Rykov, and WR Jacoby. “A self-consistent 2-D model for the dip angle ofmantle downflow beneath an overriding continent”. In: Journal of Geodynamics 28.2-3 (1999), pp. 215–224.

[2941]

B. Trudgill and J. Cartwright. “Relay-ramp forms and normal-fault linkages, Canyonlands National Park, Utah”. In: Geological Society of America Bulletin 106.9 (1994), pp. 1143–1157.

[2942]

T Trümper, M Breuer, and U Hansen. “Numerical study on double-diffusive convection in the Earth’s core”. In: Phys. Earth. Planet. Inter. 194 (2012), pp. 55–63.

[2943]

Mana Tsuchida and Masanori Kameyama. “2-D Numerical Simulations on Formation and Descent of Stagnant Slabs: Important Roles of Trench Migration and Its Temporal Change”. In: Frontiers in Earth Science 8 (2020), p. 117. doi: 10.3389/feart.2020.00117.

[2944]

G.E. Tucker and G.R. Hancock. “Modelling landscape evolution”. In: Earth Surface Processes and Landforms 35 (2010), pp. 28–50.

[2945]

G.E. Tucker and K.X. Whipple. “Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison”. In: J. Geophys. Res.: Solid Earth 107.B9 (2002).

[2946]

GE Tucker and P van Der Beek. “A model for post-orogenic development of a mountain range and its foreland”. In: Basin Research 25.3 (2013), pp. 241–259.

[2947]

Gregory E Tucker, Stephen T Lancaster, Nicole M Gasparini, Rafael L Bras, and Scott M Rybarczyk. “An object-oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks”. In: Computers & Geosciences 27.8 (2001), pp. 959–973.

[2948]

D.L. Turcotte and D.A. Spence. “An Analysis of Strain Accumulation a Strike Slip Fault”. In: J. Geophys. Res.: Solid Earth 79.29 (1974), pp. 4407–4412. doi: 10 . 1029 / JB079i029p04407.

[2949]

DL Turcotte. “Membrane tectonics”. In: Geophy. J. Int. 36.1 (1974), pp. 33–42. doi: 10.1111/j.1365-246X.1974.tb03624.x.

[2950]

DL Turcotte, AT Hsui, KE Torrance, and G Schubert. “Influence of viscous dissipation on Bénard convection”. In: Journal of Fluid Mechanics 64.2 (1974), pp. 369–374. doi: 10.1017/S0022112074002448.

[2951]

DL Turcotte and ER Oxburgh. “Convection in a mantle with variable physical properties”. In: J. Geophys. Res.: Solid Earth 74.6 (1969), pp. 1458–1474. doi: 10 . 1029 / JB074i006p01458.

[2952]

DL Turcotte and ER Oxburgh. “Finite amplitude convective cells and continental drift”. In: Journal of Fluid Mechanics 28.1 (1967), pp. 29–42. doi: 10.1017/S0022112067001880.

[2953]

DL Turcotte and G Schubert. “Structure of the olivine-spinel phase boundary in the descending lithosphere”. In: J. Geophys. Res.: Solid Earth 76.32 (1971), pp. 7980–7987. doi: 10.1029/JB076i032p07980.

[2954]

DL Turcotte and Gerald Schubert. “Frictional heating of the descending lithosphere”. In: J. Geophys. Res.: Solid Earth 78.26 (1973), pp. 5876–5886. doi: 10.1029/JB078i026p05876.

[2955]

Donald L Turcotte. “The driving mechanism of plate tectonics”. In: Reviews of Geophysics 13.3 (1975), pp. 333–334. doi: 10.1029/RG013i003p00333.

[2956]

Valeria Turino, Valentina Magni, Hans Jørgen Kjøll, and Johannes Jakob. “The effect of magma poor and magma rich rifted margins on continental collision dynamics”. In: J. Geophys. Res.: Solid Earth 128.12 (2023), e2023JB027173. doi: 10.1029/2023JB027173.

[2957]

Andrew J Turner, Richard F Katz, and Mark D Behn. “Grain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction”. In: Geochem. Geophys. Geosyst. 16.3 (2015), pp. 925–946.

[2958]

A. Osei Tutu, S.V. Sobolev, B. Steinberger, A.A. Popov, and I. Rogozhina. “Evaluating the Influence of Plate Boundary Friction and Mantle Viscosity on Plate Velocities”. In: Geochem. Geophys. Geosyst. 19 (2018), pp. 642–666. doi: 10.1002/2017GC007112.

[2959]

A. Osei Tutu, B. Steinberger, S.V. Sobolev, I. Rogozhina, and A.A. Popov. “Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography”. In: Solid Earth 9 (2018), pp. 649–668. doi: 10.5194/se-9-649-2018.

[2960]

K Ueda, Taras V Gerya, and J-P Burg. “Delamination in collisional orogens: Thermomechanical modeling”. In: J. Geophys. Res.: Solid Earth 117.B8 (2012). doi: 10. 1029/2012JB009144.

[2961]

K. Ueda, T. Gerya, and S.V. Sobolev. “Subduction initiation by thermal-chemical plumes: Numerical studies”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 296–312. doi: 10. 1016/j.pepi.2008.06.032.

[2962]

K. Ueda, S.D. Willett, T. Gerya, and J. Ruh. “Geomorphological-thermo-mechanical modeling: Application to orogenic wedge dynamics”. In: Tectonophysics 659 (2015), pp. 12–30. doi: 10.1016/j.tecto.2015.08.001.

[2963]

Martina M Ulvrova, Nicolas Coltice, Simon Williams, and Paul J Tackley. “Where does subduction initiate and cease? A global scale perspective”. In: Earth Planet. Sci. Lett. 528 (2019), p. 115836. doi: 10.1016/j.epsl.2019.115836.

[2964]

Martina Ulvrová, Stéphane Labrosse, Nicolas Coltice, P Råback, and PJ Tackley. “Numerical modelling of convection interacting with a melting and solidification front: Application to the thermal evolution of the basal magma ocean”. In: Phys. Earth. Planet. Inter. 206 (2012), pp. 51–66. doi: 10.1016/j.pepi.2012.06.008.

[2965]

Phædra Upton, Peter O Koons, and Donna Eberhart-Phillips. “Extension and partitioning in an oblique subduction zone, New Zealand: Constraints from three-dimensional numerical modeling”. In: Tectonics 22.6 (2003). doi: 10.1029/2002TC001431.

[2966]

Metehan Uz, Orhan Akyilmaz, CK Shum, Kazim Gökhan Atman, Sevda Olgun, and Özge Güneş. “High-resolution temporal gravity field data products: Monthly mass grids and spherical harmonics from 1994 to 2021”. In: Scientific Data 11.1 (2024), p. 71. doi: 10. 1038/s41597-023-02887-5.

[2967]

JL Valera, Ana M Negredo, and Ivone Jiménez-Munt. “Deep and near-surface consequences of root removal by asymmetric continental delamination”. In: Tectonophysics 502.1-2 (2011), pp. 257–265. doi: 10.1016/j.tecto.2010.04.002.

[2968]

Juan-Luis Valera, Ana-Mar´i a Negredo, and Antonio Villaseñor. “Asymmetric delamination and convective removal numerical modeling: comparison with evolutionary models for the Alboran Sea region”. In: Pure Appl. Geophys. 165 (2008), pp. 1683–1706. doi: 10.1007/ s00024-008-0395-8.

[2969]

Luuk Van Agtmaal, Ylona Van Dinther, Ernst Willingshofer, and Liviu Matenco. “Quantifying continental collision dynamics for Alpine-style orogens”. In: Frontiers in Earth Science (2022), p. 1449. doi: 10.3389/feart.2022.916189.

[2970]

A.P. Van Den Berg and D.A. Yuen. “The role of shear heating in lubricating mantle flow”. In: Earth Planet. Sci. Lett. 151.1-2 (1997), pp. 33–42. doi: 10.1016/S0012-821X(97)00110- 6.

[2971]

A.P. Van den Berg and D.A. Yuen. “Delayed cooling of the Earth’s mantle due to variable thermal conductivity and the formation of a low conductivity zone”. In: Earth Planet. Sci. Lett. 199.3-4 (2002), pp. 403–413. doi: 10.1016/S0012-821X(02)00531-9.

[2972]

A.P. van den Berg and D.A. Yuen. “Modelling planetary dynamics by using the temperature at the core-mantle boundary as a control variable: effects of rheological layering on mantle heat transport”. In: Phys. Earth. Planet. Inter. 108.3 (1998), pp. 219–234. doi: 10.1016/ S0031-9201(98)00101-0.

[2973]

A.P. Van den Berg, D.A. Yuen, and J.R. Allwardt. “Non-linear effects from variable thermal conductivity and mantle internal heating: Implications for massive melting and secular cooling of the mantle”. In: Phys. Earth. Planet. Inter. 129.3-4 (2002), pp. 359–375. doi: 10.1016/S0031-9201(01)00304-1.

[2974]

A.P. van den Berg, D.A. Yuen, G.L. Beebe, and M.D. Christiansen. “The dynamical impact of electronic thermal conductivity on deep mantle convection of exosolar planets”. In: Phys. Earth. Planet. Inter. 178.3-4 (2010), pp. 136–154. doi: 10.1016/j.pepi.2009.11.001.

[2975]

A.P. van den Berg, D.A. Yuen, and E.S.G. Rainey. “The influence of variable viscosity on delayed cooling due to variable thermal conductivity”. In: Phys. Earth. Planet. Inter. 142.3-4 (2004), pp. 283–295. doi: 10.1016/j.pepi.2004.01.007.

[2976]

A.P. Van Den Berg, D.A. Yuen, and V. Steinbach. “The effects of variable thermal conductivity on mantle heat-transfer”. In: Geophys. Res. Lett. 28.5 (2001), pp. 875–878. doi: 10.1029/2000GL011903.

[2977]

JM van den Broek, V Magni, C Gaina, and SJH Buiter. “The formation of continental fragments in subduction settings: the importance of structural inheritance and subduction system dynamics”. In: J. Geophys. Res.: Solid Earth 125.1 (2020), e2019JB018370. doi: 10.1029/2019JB018370.

[2978]

M Van der Meijde, J Julià, and M Assumpção. “Gravity derived Moho for South America”. In: Tectonophysics 609 (2013), pp. 456–467. doi: 10.1016/j.tecto.2013.03.023.

[2979]

Cornelis J Van Der Veen and IM Whillans. “Flow laws for glacier ice: comparison of numerical predictions and field measurements”. In: Journal of Glaciology 36.124 (1990), pp. 324–339.

[2980]

E. van der Wiel, D.J.J. van Hinsbergen, C. Thieulot, and W. Spakman. “Linking rates of slab sinking to long-term lower mantle flow and mixing”. In: Earth Planet. Sci. Lett. 625 (2024), p. 118471. doi: 10.1016/j.epsl.2023.118471.

[2981]

Ylona Van Dinther, Hans R Künsch, and Andreas Fichtner. “Ensemble data assimilation for earthquake sequences: probabilistic estimation and forecasting of fault stresses”. In: Geophy. J. Int. 217.3 (2019), pp. 1453–1478. doi: 10.1093/gji/ggz063.

[2982]

H.J. van Heck, J.H. Davies, T. Elliott, and D. Porcelli. “Global-scale modelling of melting and isotopic evolution of Earth’s mantle: melting modules for TERRA”. In: Geosci. Model. Dev. 9 (2016), pp. 1399–1411. doi: 10.5194/gmd-9-1399-2016.

[2983]

HJ Van Heck and PJ Tackley. “Planforms of self-consistently generated plates in 3D spherical geometry”. In: Geophys. Res. Lett. 35.19 (2008). doi: 10.1029/2008GL035190.

[2984]

D.J.J. Van Hinsbergen, R.L.M. Vissers, and W. Spakman. “Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation”. In: Tectonics 33.4 (2014), pp. 393–419. doi: 10.1002/2013TC003349.

[2985]

J. van Hunen and M.B. Allen. “Continental collision and slab break-off: A comparison of 3-D numerical models with observations”. In: Earth Planet. Sci. Lett. 302 (2011), pp. 27–37. doi: 10.1016/j.epsl.2010.11.035.

[2986]

J. Van Hunen, A.P. Van Den Berg, and N.J. Vlaar. “A thermo-mechanical model of horizontal subduction below an overriding plate”. In: Earth Planet. Sci. Lett. 182.2 (2000), pp. 157–169. doi: 10.1016/S0012-821X(00)00240-5.

[2987]

J. Van Hunen, A.P. Van den Berg, and N.J. Vlaar. “Latent heat effects of the major mantle phase transitions on low-angle subduction”. In: Earth Planet. Sci. Lett. 190.3-4 (2001), pp. 125–135. doi: 10.1016/S0012-821X(01)00383-1.

[2988]

J. van Hunen, A.P. van den Berg, and N.J. Vlaar. “Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: A numerical parameter study”. In: Phys. Earth. Planet. Inter. 146.1-2 (2004), pp. 179–194. doi: 10.1016/j. pepi.2003.07.027.

[2989]

P. van Keken and S. Zhong. “Mixing in a 3D spherical model of present-day mantle convection”. In: Earth Planet. Sci. Lett. 171 (1999), pp. 533–547. doi: 10.1016/S0012- 821X(99)00181-8.

[2990]

P.E. van Keken, B.R. Hacker, E.M. Syracuse, and G.A. Abers. “Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide”. In: J. Geophys. Res.: Solid Earth 116.B01401 (2011). doi: 10.1029/2010JB007922.

[2991]

P.E. Van Keken, S. Karato, and D.A. Yuen. “Rheological control of oceanic crust separation in the transition zone”. In: Geophys. Res. Lett. 23.14 (1996), pp. 1821–1824. doi: 10. 1029/96GL01594.

[2992]

P.E. van Keken, C.J. Spiers, A.P. van den Berg, and E.J. Muyzert. “The effective viscosity of rocksalt: implementation of steady-state creep laws in numerical models of salt diapirism”. In: Tectonophysics 225 (1993), pp. 457–476.

[2993]

P.E. van Keken et al. “A community benchmark for subduction zone modelling”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 187–197. doi: 10.1016/j.pepi.2008.04.015.

[2994]

PE Van Keken, S Kita, and J Nakajima. “Thermal structure and intermediate-depth seismicity in the Tohoku-Hokkaido subduction zones”. In: Solid Earth 3.2 (2012), pp. 355–364. doi: 10.5194/se-3-355-2012.

[2995]

Peter E Van Keken and Chris J Ballentine. “Whole-mantle versus layered mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution”. In: Earth Planet. Sci. Lett. 156.1-2 (1998), pp. 19–32. doi: 10.1016/S0012-821X(98)00023-5.

[2996]

Peter E Van Keken, Chris J Ballentine, and Erik H Hauri. “Convective mixing in the Earth’s mantle”. In: Treatise on geochemistry 2 (2003), pp. 1–21. doi: xxxx.

[2997]

Peter E Van Keken, Boris Kiefer, and Simon M Peacock. “High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle”. In: Geochem. Geophys. Geosyst. 3.10 (2002). doi: 10.1029/ 2001GC000256.

[2998]

Peter E Van Keken, David A Yuen, and Linda R Petzold. “DASPK: A new high order and adaptive time-integration technique with applications to mantle convection with strongly temperature-and pressure-dependent rheology”. In: Geophysical & Astrophysical Fluid Dynamics 80.1-2 (1995), pp. 57–74. doi: 10.1080/03091929508229763.

[2999]

P. Van Thienen, A.P. Van Den Berg, J.H. De Smet, J. Van Hunen, and M.R. Drury. “Interaction between small-scale mantle diapirs and a continental root”. In: Geochem. Geophys. Geosyst. 4.2 (2003). doi: 10.1029/2002GC000338.

[3000]

JW Van Wijk and SAPL Cloetingh. “Basin migration caused by slow lithospheric extension”. In: Earth Planet. Sci. Lett. 198.3-4 (2002), pp. 275–288. doi: 10.1016/S0012-821X(02) 00560-5.

[3001]

Yves Vanbrabant, Denis Jongmans, Riad Hassani, and David Bellino. “An application of two-dimensional finite-element modelling for studying the deformation of the Variscan fold-and-thrust belt (Belgium)”. In: Tectonophysics 309.1-4 (1999), pp. 141–159.

[3002]

O. Vanderhaeghe, S. Medvedev, P. Fullsack, C. Beaumont, and R.A. Jamieson. “Evolution of orogenic wedges and continental plateaux: insights from crustal thermal-mechanical overlying subduction mantle lithosphere”. In: Geophy. J. Int. 153 (2003), pp. 27–51. doi: 10.1046/ j.1365-246X.2003.01861.x.

[3003]

Paola Vannucchi, Alexander Clarke, Albert de Montserrat, Audrey Ougier-Simonin, Luca Aldega, and Jason P Morgan. “A strength inversion origin for non-volcanic tremor”. In: Nature Communications 13.1 (2022), p. 2311. doi: 10.1038/s41467-022-29944-8.

[3004]

Oleg V. Vasilyev, Yuri Yu. Podladchikov, and David A. Yuen. “Modelling of viscoelastic plume-lithosphere interaction using the adaptive multilevel wavelet collocation method”. In: Geophy. J. Int. 147 (2001), pp. 579–589.

[3005]

J. Vatteville, P.E. van Keken, A. Limare, and A. Davaille. “Starting laminar plumes: Comparison of laboratory and numerical modeling”. In: Geochem. Geophys. Geosyst. 10.12 (2009). doi: 10.1029/2009GC002739.

[3006]

Bruno C Vendeville and Martin PA Jackson. “The rise of diapirs during thin-skinned extension”. In: Marine and Petroleum Geology 9.4 (1992), pp. 331–354. doi: 10.1016/ 0264-8172(92)90047-I.

[3007]

J Verhoeven and J Schmalzl. “A numerical method for investigating crystal settling in convecting magma chambers”. In: Geochem. Geophys. Geosyst. 10.12 (2009). doi: 10. 1029/2009GC002509.

[3008]

Pieter A Vermeer and R de Borst. “Non-associated plasticity for soils, concrete and rock”. In: HERON 29.3 (1984).

[3009]

LLA Vermeersen. “The potential of GOCE in constraining the structure of the crust and lithosphere from post-glacial rebound”. In: Earth Gravity Field from Space - From Sensors to Earth Sciences. Vol. 108. 2003, pp. 105–113.

[3010]

Philippe Vernant, F Hivert, Jean Chery, Philippe Steer, Rodolphe Cattin, and Alexis Rigo. “Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges”. In: Geology 41.4 (2013), pp. 467–470. doi: 10.1130/G33942.1.

[3011]

AL Vesterholt, KD Petersen, and TJ Nagel. “Mantle overturn and thermochemical evolution of a non-plate tectonic mantle”. In: Earth Planet. Sci. Lett. 569 (2021), p. 117047. doi: 10.1016/j.epsl.2021.117047.

[3012]

Y. Vibe, H.-P. Bunge, and S.R. Clark. “Anomalous subsidence history of the West Siberian Basin as an indicator for episodes of mantle induced dynamic topography”. In: Gondwana Research 53 (2018), pp. 99–109. doi: 10.1016/j.gr.2017.03.011.

[3013]

C Vigny, Y Ricard, and C Froidevaux. “The driving mechanism of plate tectonics”. In: Tectonophysics 187.4 (1991), pp. 345–360. doi: 10.1016/0040-1951(91)90474-7.

[3014]

A.P. Vincent and D.A. Yuen. “Thermal attractor in chaotic convection with high-Prandtl-number fluids”. In: Physical Review A 38.1 (1988), pp. 328–334. doi: 10. 1103/PhysRevA.38.328.

[3015]

A.P. Vincent, D.A. Yuen, D. Munger, and G. Zhu. “On the dynamics of 3-D single thermal plumes at various Prandtl numbers and Rayleigh numbers”. In: Geophysical & Astrophysical Fluid Dynamics 106.2 (2012), pp. 138–156. doi: 10.1080/03091929.2011.563238.

[3016]

N.J. Vlaar, P.E. van Keken, and A.P. van den Berg. “Cooling of the Earth in the Archean: Consequences of pressure-release melting in a hotter mantle”. In: Earth Planet. Sci. Lett. 121 (1994), pp. 1–18. doi: 10.1016/0012-821X(94)90028-0.

[3017]

N.J. Vlaar and A.P. Van Den Berg. Continental evolution and Archaeo-sea-levels. 1990, pp. 637–662.

[3018]

G. Le Voci, D.R. Davies, S. Goes, S.C. Kramer, and C.R. Wilson. “A systematic 2-D investigation into the mantle wedge’s transient flow regime and thermal structure: Complexities arising from a hydrated rheology and thermal buoyancy”. In: Geochem. Geophys. Geosyst. 15.1 (2014). doi: 10.1002/2013GC005022.

[3019]

K. Vogt and T. Gerya. “Deep plate serpentinization triggers skinning of subducting slabs”. In: Geology (2014). doi: 10.1130/G35565.1.

[3020]

Katharina Vogt, Antonio Castro, and Taras Gerya. “Numerical modeling of geochemical variations caused by crustal relamination”. In: Geochem. Geophys. Geosyst. 14.2 (2013), pp. 470–487. doi: 10.1002/ggge.20072.

[3021]

Katharina Vogt and Taras V Gerya. “From oceanic plateaus to allochthonous terranes: numerical modelling”. In: Gondwana Research 25.2 (2014), pp. 494–508. doi: 10.1016/ j.gr.2012.11.002.

[3022]

Katharina Vogt, Taras V Gerya, and Antonio Castro. “Crustal growth at active continental margins: numerical modeling”. In: Phys. Earth. Planet. Inter. 192 (2012), pp. 1–20. doi: 10.1016/j.pepi.2011.12.003.

[3023]

Katharina Vogt, Liviu Matenco, and Sierd Cloetingh. “Crustal mechanics control the geometry of mountain belts. Insights from numerical modelling”. In: Earth Planet. Sci. Lett. 460 (2017), pp. 12–21. doi: 10.1016/j.epsl.2016.11.0160012-821X.

[3024]

Katharina Vogt, Ernst Willingshofer, Liviu Matenco, Dimitrios Sokoutis, Taras Gerya, and Sierd Cloetingh. “The role of lateral strength contrasts in orogenesis: A 2D numerical study”. In: Tectonophysics 746 (2018), pp. 549–561. doi: 10.1016/j.tecto.2017.08.010.

[3025]

F. von Blanckenburg and J.H. Davies. “Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps”. In: Tectonics 14.1 (1995), pp. 120–131. doi: 10.1029/ 94TC02051.

[3026]

M. von Tscharner and S. M. Schmalholz. “A 3-D Lagrangian finite element algorithm with remeshing for simulating large-strain hydrodynamic instabilities in power law viscoelastic fluids”. In: Geochem. Geophys. Geosyst. 16.1 (2015), pp. 215–245. doi: 10.1002/ 2014GC005628.

[3027]

M. von Tscharner, S.M. Schmalholz, and T. Duretz. “Three-dimensional necking during viscous slab detachment”. In: Geophys. Res. Lett. 41.12 (2014), pp. 4194–4200. doi: 10. 1002/2014GL060075.

[3028]

Rob van der Voo, Wim Spakman, and Harmen Bijwaard. “Tethyan subducted slabs under India”. In: Earth Planet. Sci. Lett. 171.1 (1999), pp. 7–20.

[3029]

J. de Vries, A. van den Berg, and W. van Westrenen. “Formation and evolution of a lunar core from ilmenite-rich magma ocean cumulates”. In: Earth Planet. Sci. Lett. 292 (2010), pp. 139–147.

[3030]

Ikuko Wada. “A simple picture of mantle wedge flow patterns and temperature variation”. In: Journal of Geodynamics (2021), p. 101848. doi: 10.1016/j.jog.2021.101848.

[3031]

Ikuko Wada, Jiangheng He, Akira Hasegawa, and Junichi Nakajima. “Mantle wedge flow pattern and thermal structure in Northeast Japan: Effects of oblique subduction and 3-D slab geometry”. In: Earth Planet. Sci. Lett. 426 (2015), pp. 76–88. doi: 10.1016/j. epsl.2015.06.021.

[3032]

Ikuko Wada and Kelin Wang. “Common depth of slab-mantle decoupling: Reconciling diversity and uniformity of subduction zones”. In: Geochem. Geophys. Geosyst. 10.10 (2009). doi: 10.1029/2009GC002570.

[3033]

Ikuko Wada, Kelin Wang, Jiangheng He, and Roy D Hyndman. “Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization”. In: J. Geophys. Res.: Solid Earth 113.B4 (2008). doi: 10.1029/ 2007JB005190.

[3034]

John Wahr, Mery Molenaar, and Frank Bryan. “Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE”. In: J. Geophys. Res.: Solid Earth 103.B12 (1998), pp. 30205–30229. doi: 10.1029/98jb02844.

[3035]

John Wahr, Sean Swenson, Victor Zlotnicki, and Isabella Velicogna. “Time-variable gravity from GRACE: First results”. In: Geophys. Res. Lett. 31.11 (2004). doi: 10.1029/ 2004GL019779.

[3036]

Wouter van der Wal, Patrick Wu, Michael G Sideris, and CK Shum. “Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America”. In: Journal of Geodynamics 46.3-5 (2008), pp. 144–154. doi: 10.1016/j.jog.2008.03. 007.

[3037]

RI Walcott. “Flexural rigidity, thickness, and viscosity of the lithosphere”. In: J. Geophys. Res.: Solid Earth 75.20 (1970), pp. 3941–3954. doi: 10.1029/JB075i020p03941.

[3038]

U Walzer and R Hendel. “Continental crust formation: numerical modelling of chemical evolution and geological implications”. In: Lithos 278 (2017), pp. 215–228. doi: 10.1016/ j.lithos.2016.12.014.

[3039]

Uwe Walzer and Roland Hendel. “A new convection–fractionation model for the evolution of the principal geochemical reservoirs of the Earth’s mantle”. In: Phys. Earth. Planet. Inter. 112.3-4 (1999), pp. 211–256. doi: 10.1016/S0031-9201(99)00035-7.

[3040]

Uwe Walzer and Roland Hendel. “Mantle convection and evolution with growing continents”. In: J. Geophys. Res.: Solid Earth 113 (2008), B09405. doi: 10.1029/2007JB005459.

[3041]

Uwe Walzer and Roland Hendel. “Real episodic growth of continental crust or artifact of preservation? A 3-D geodynamic model”. In: J. Geophys. Res.: Solid Earth 118.5 (2013), pp. 2356–2370. doi: 10.1002/jgrb.50150.

[3042]

Uwe Walzer and Roland Hendel. “Tectonic episodicity and convective feedback mechanisms”. In: Phys. Earth. Planet. Inter. 100.1-4 (1997), pp. 167–188. doi: 10.1016/S0031- 9201(96)03238-4.

[3043]

Uwe Walzer and Roland Hendel. “Time-dependent thermal convection, mantle differentiation and continental-crust growth”. In: Geophy. J. Int. 130.2 (1997), pp. 303–325. doi: 10. 1111/j.1365-246X.1997.tb05649.x.

[3044]

Uwe Walzer, Roland Hendel, and John Baumgardner. “The effects of a variation of the radial viscosity profile on mantle evolution”. In: Tectonophysics 384.1-4 (2004), pp. 55–90. doi: 10.1016/j.tecto.2004.02.012.

[3045]

H. Wang, J. van Hunen, and D.G. Pearson. “The thinning of subcontinental lithosphere: The roles of plume impact and metasomatic weakening”. In: Geochem. Geophys. Geosyst. 16 (2015), pp. 1156–1171. doi: 10.1002/2015GC005784.

[3046]

H. Wang, J. van Hunen, D.G. Pearson, and M.B. Allen. “Craton stability and longevity: The roles of composition-dependent rheology and buoyancy”. In: Earth Planet. Sci. Lett. 391 (2014), pp. 224–233.

[3047]

Hongliang Wang, Jeroen van Hunen, and D Graham Pearson. “Making Archean cratonic roots by lateral compression: a two-stage thickening and stabilization model”. In: Tectonophysics 746 (2018), pp. 562–571. doi: 10.1016/j.tecto.2016.12.001.

[3048]

Kelin Wang, Yan Hu, and Jiangheng He. “Deformation cycles of subduction earthquakes in a viscoelastic Earth”. In: Nature 484.7394 (2012), p. 327. doi: 10.1038/nature11032.

[3049]

Liangliang Wang et al. “Subduction initiation at the Solomon back-arc basin: Contributions from both island arc rheological strength and oceanic plateau collision”. In: Geophys. Res. Lett. 49.3 (2022), e2021GL093369. doi: 10.1029/2021GL097666.

[3050]

W.M. Wang, L.J. Sluys, and R. de Borst. “Interaction between material length scale and imperfection size for localisation phenomena in viscoplastic media”. In: Eur. J. Mech. A/Solids 15.3 (1996), pp. 447–464.

[3051]

Wanying Wang and Thorsten W Becker. “Upper mantle seismic anisotropy as a constraint for mantle flow and continental dynamics of the North American plate”. In: Earth Planet. Sci. Lett. 514 (2019), pp. 143–155. doi: 10.1016/j.epsl.2019.03.019.

[3052]

X. Wang, J. He, L. Ding, and R. Gao. “A possible mechanism for the initiation of the Yinggehai Basin: A visco-elasto-plastic model”. In: Journal of Asian Earth Sciences 74 (2013), pp. 25–36.

[3053]

Xinguo Wang, William E Holt, and Attreyee Ghosh. “Joint modeling of lithosphere and mantle dynamics: Evaluation of constraints from global tomography models”. In: J. Geophys. Res.: Solid Earth 120.12 (2015), pp. 8633–8655. doi: 10.1002/2015JB012188.

[3054]

Xinguo Wang, William E Holt, and Attreyee Ghosh. “Joint modeling of lithosphere and mantle dynamics: Sensitivity to viscosities within the lithosphere, asthenosphere, transition zone, and D” layers”. In: Phys. Earth. Planet. Inter. 293 (2019), p. 106263. doi: 10. 1016/j.pepi.2019.05.006.

[3055]

Xinxin Wang et al. “3D geodynamic models for HP-UHP rock exhumation in opposite-dip double subduction-collision systems”. In: J. Geophys. Res.: Solid Earth 126.8 (2021), e2021JB022326. doi: 10.1029/2021JB022326.

[3056]

Y. Wang, J. Huang, and S. Zhong. “Episodic and multistaged gravitational instability of cratonic lithosphere and its implications for reactivation of the North China Craton”. In: Geochem. Geophys. Geosyst. 16 (2015), pp. 815–833.

[3057]

Y. Wang, J. Huang, S. Zhong, and J. Chen. “Heat flux and topography constraints on thermochemical structure below North China Craton regions and implications for evolution of cratonic lithosphere: Heat flux and topography constraints”. In: J. Geophys. Res.: Solid Earth 121 (2016), pp. 3081–3098. doi: 10.1002/2015JB012540.

[3058]

Yang Wang, Zhong-Hai Li, and Pengpeng Huangfu. “Continental Deep Subduction Versus Subduction Cessation: The Fate of Collisional Orogens”. In: Tectonics 42 (2023), e2022TC007695. doi: 10.1029/2022TC007695.

[3059]

Yaoyi Wang et al. “Secular craton evolution due to cyclic deformation of underlying dense mantle lithosphere”. In: Nature Geoscience (2023), pp. 1–9. doi: 10.1038/s41561-023- 01203-5.

[3060]

Yijun Wang, Ágnes Király, Clinton C Conrad, Lars Hansen, and Menno Fraters. “The importance of anisotropic viscosity in numerical models for olivine textures in shear and subduction deformations”. In: Tektonika 2.1 (2023), pp. 157–173. doi: https://doi. org/10.55575/tektonika2024.2.1.67.

[3061]

Yongming Wang, Jinshui Huang, and Shijie Zhong. “Episodic and multistaged gravitational instability of cratonic lithosphere and its implications for reactivation of the North China Craton”. In: Geochem. Geophys. Geosyst. 16.3 (2015), pp. 815–833. doi: 10.1002/ 2014GC005681.

[3062]

Yongming Wang and Mingming Li. “Constraining mantle viscosity structure from a statistical analysis of slab stagnation events”. In: Geochem. Geophys. Geosyst. 21 (2020), e2020GC009286. doi: 10.1029/2020GC009286.

[3063]

Yongming Wang and Mingming Li. “The interaction between mantle plumes and lithosphere and its surface expressions: 3-D numerical modelling”. In: Geophy. J. Int. 225.2 (2021), pp. 906–925. doi: 10.1093/gji/ggab014.

[3064]

Zhensheng Wang, Fabio A Capitanio, Zaicong Wang, and Timothy M Kusky. “Accretion of the cratonic mantle lithosphere via massive regional relamination”. In: Proceedings of the National Academy of Sciences 119.39 (2022), e2201226119. doi: 10.1073/pnas. 2201226119.

[3065]

Zhensheng Wang, Timothy M Kusky, and Fabio A Capitanio. “On the role of lower crust and midlithosphere discontinuity for cratonic lithosphere delamination and recycling”. In: Geophys. Res. Lett. 45.15 (2018), pp. 7425–7433. doi: 10.1029/2017GL076948.

[3066]

Zhensheng Wang, Timothy M Kusky, and Fabio A Capitanio. “Water transportation ability of flat-lying slabs in the mantle transition zone and implications for craton destruction”. In: Tectonophysics 723 (2018), pp. 95–106. doi: 10.1016/j.tecto.2017.11.041.

[3067]

Zhensheng Wang, Timothy M Kusky, and Lu Wang. “Long-lasting viscous drainage of eclogites from the cratonic lithospheric mantle after Archean subduction stacking”. In: Geology (2022). doi: 10.1130/G49793.1.

[3068]

Zhensheng Wang and Yixian Xu. “The fate of eclogites in the lithosphere”. In: Science China Earth Sciences 67 (2024), pp. 879–884. doi: 10.1007/s11430-023-1261-2.

[3069]

Karin N Warners-Ruckstuhl, Rob Govers, and Rinus Wortel. “Lithosphere–mantle coupling and the dynamics of the Eurasian Plate”. In: Geophy. J. Int. 189.3 (2012), pp. 1253–1276.

[3070]

Karin N Warners-Ruckstuhl, Rob Govers, and Rinus Wortel. “Tethyan collision forces and the stress field of the Eurasian Plate”. In: Geophy. J. Int. 195.1 (2013), pp. 1–15.

[3071]

KN Warners-Ruckstuhl, P Th Meijer, Rob Govers, and MJR Wortel. “A lithosphere-dynamics constraint on mantle flow: Analysis of the Eurasian plate”. In: Geophys. Res. Lett. 37 (2010), p. L18308.

[3072]

C.J. Warren. “Exhumation of (ultra-)high-pressure terranes: concepts and mechanisms”. In: Solid Earth 4 (2013), pp. 75–92. doi: 10.5194/se-4-75-2013.

[3073]

C.J. Warren, C. Beaumont, and R.A. Jamieson. “Formation and exhumation of ultra-high-pressure rocks during continental collision: Role of detachment in the subduction channel”. In: Geochem. Geophys. Geosyst. 9 (2008). doi: 10.1029/2007GC001839.

[3074]

C.J. Warren, C. Beaumont, and R.A. Jamieson. “Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision”. In: Earth Planet. Sci. Lett. 267 (2008), pp. 129–145.

[3075]

Clare J Warren, Christopher Beaumont, and Rebecca A Jamieson. “Deep subduction and rapid exhumation: Role of crustal strength and strain weakening in continental subduction and ultrahigh-pressure rock exhumation”. In: Tectonics 27.6 (2008).

[3076]

Michael Warsitzka, Jonas Kley, and Nina Kukowski. “Salt diapirism driven by differential loading - Some insights from analogue modelling”. In: Tectonophysics 591 (2013), pp. 83–97. doi: 10.1016/j.tecto.2011.11.018.

[3077]

P. Waschbusch, G. Batt, and C. Beaumont. “Subduction zone retreat and recent tectonics of the South Island of New Zealand”. In: Tectonics 17.2 (1998), pp. 267–284. doi: 10. 1029/98TC00058.

[3078]

P. Waschbusch and C. Beaumont. “Effect of a retreating subduction zone on deformation in simple regions of plate convergence”. In: J. Geophys. Res.: Solid Earth 101.12 (1996), pp. 28133–28148.

[3079]

Louise Watremez et al. “Buoyancy and localizing properties of continental mantle lithosphere: Insights from thermomechanical models of the eastern Gulf of Aden”. In: Geochem. Geophys. Geosyst. 14.8 (2013), pp. 2800–2817. doi: 10.1002/ggge.20179.

[3080]

W. A. Watters, M. T. Zuber, and B. H. Hager. “Thermal perturbations caused by large impacts and consequences for mantle convection”. In: J. Geophys. Res.: Solid Earth 114.E2 (2009). doi: 10.1029/2007JE002964.

[3081]

AB Watts and EB Burov. “Lithospheric strength and its relationship to the elastic and seismogenic layer thickness”. In: Earth Planet. Sci. Lett. 213.1-2 (2003), pp. 113–131.

[3082]

AB Watts, SJ Zhong, and J Hunter. “The behavior of the lithosphere on seismic to geologic timescales”. In: Annual Review of Earth and Planetary Sciences 41 (2013), pp. 443–468.

[3083]

Anthony Brian Watts and Neil M Ribe. “On geoid heights and flexure of the lithosphere at seamounts”. In: J. Geophys. Res.: Solid Earth 89.B13 (1984), pp. 11152–11170. doi: 10.1029/JB089iB13p11152.

[3084]

Shimon Wdowinski and Yehuda Bock. “The evolution of deformation and topography of high elevated plateaus: 1. Model, numerical analysis, and general results”. In: J. Geophys. Res.: Solid Earth 99.B4 (1994), pp. 7103–7119.

[3085]

Shimon Wdowinski and Yehuda Bock. “The evolution of deformation and topography of high elevated plateaus: 2. Application to the central Andes”. In: J. Geophys. Res.: Solid Earth 99.B4 (1994), pp. 7121–7130.

[3086]

Sam Webber, Susan Ellis, and Åke Fagereng. ““Virtual shear box” experiments of stress and slip cycling within a subduction interface mélange”. In: Earth Planet. Sci. Lett. 488 (2018), pp. 27–35. doi: 10.1016/j.epsl.2018.01.035.

[3087]

Joshua Weber and Nicolas E Flament. “Factors contributing to deep slab dip angles in reconstructions of past mantle flow”. In: Geochem. Geophys. Geosyst. 25 (2024), e2023GC011313. doi: 10.1029/2023GC011313.

[3088]

D. Weeraratne and M. Manga. “Transitions in the style of mantle convection at high Rayleigh numbers”. In: Earth Planet. Sci. Lett. 160 (1998), pp. 563–568.

[3089]

Maaike FM Weerdesteijn, Clinton P Conrad, and John B Naliboff. “Solid Earth Uplift Due To Contemporary Ice Melt Above Low-Viscosity Regions of the Upper Mantle”. In: Geophys. Res. Lett. 49.17 (2022), e2022GL099731. doi: 10.1029/2022GL099731.

[3090]

Maaike FM Weerdesteijn et al. “Modeling viscoelastic solid Earth deformation due to ice age and contemporary glacial mass changes in ASPECT”. In: Geochem. Geophys. Geosyst. 24.3 (2023), e2022GC010813. doi: 10.1029/2022GC010813.

[3091]

S Shawn Wei, Douglas A Wiens, Peter E van Keken, and Chen Cai. “Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration”. In: Science advances 3.1 (2017), e1601755. doi: 10.1126/sciadv.1601755.

[3092]

R Weijermars, MPA t Jackson, and B Vendeville. “Rheological and tectonic modeling of salt provinces”. In: Tectonophysics 217.1-2 (1993), pp. 143–174.

[3093]

Ruud Weijermars and Harro Schmeling. “Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity)”. In: Phys. Earth. Planet. Inter. 43.4 (1986), pp. 316–330. doi: 10.1016/0031-9201(86)90021-X.

[3094]

R.F. Weinberg. “Diapir-driven crustal convection: decompression melting, renewal of the magma source and the origin of nested plutons”. In: Tectonophysics 271 (1997), pp. 217–229. doi: 10.1016/S0040-1951(96)00269-7.

[3095]

R.F. Weinberg. “Internal circulation in a buoyant two-fluid Newtonian sphere: implications for composed magmatic diapirs”. In: Earth Planet. Sci. Lett. 110 (1992), pp. 77–94. doi: 10.1016/0012-821X(92)90040-3.

[3096]

R.F. Weinberg. “The rise of solid-state diapirs”. In: Journal of Structural Geology 17.8 (1995), pp. 1183–1195. doi: 10.1016/0191-8141(95)00004-W.

[3097]

R.F. Weinberg. “The upward transport of inclusions in Newtonian and power-law salt diapirs”. In: Tectonophysics 228 (1993), pp. 141–150. doi: 10.1016/0040-1951(93) 90337-J.

[3098]

R.F. Weinberg and H. Schmeling. “Polydiapirs: multiwavelength gravity structures”. In: Journal of Structural Geology 14.4 (1992), pp. 425–436. doi: 10.1016/0191-8141(92) 90103-4.

[3099]

Roberto F Weinberg, Louis Moresi, and Peter Van der Borgh. “Timing of deformation in the Norseman-Wiluna belt, Yilgarn craton, Western Australia”. In: Precambrian Research 120.3-4 (2003), pp. 219–239. doi: 10.1016/S0301-9268(02)00142-0.

[3100]

Roberto F Weinberg, Klaus Regenauer-Lieb, and Gideon Rosenbaum. “Mantle detachment faults and the breakup of cold continental lithosphere”. In: Geology 35.11 (2007), pp. 1035–1038. doi: 10.1130/G23918A.1.

[3101]

Roberto Ferrez Weinberg and Yuri Podladchikov. “Diapiric ascent of magmas through power law crust and mantle”. In: J. Geophys. Res.: Solid Earth 99.B5 (1994), pp. 9543–9559. doi: 10.1029/93JB03461.

[3102]

Roberto Ferrez Weinberg, AN Sial, and Gorki Mariano. “Close spatial relationship between plutons and shear zones”. In: Geology 32.5 (2004), pp. 377–380. doi: 10.1130/G20290.1.

[3103]

S.A. Weinstein, P.L. Olson, and D.A. Yuen. “Time-dependent large aspect-ratio thermal convection in the earth’s mantle”. In: Geophysical & Astrophysical Fluid Dynamics 47.1-4 (1989), pp. 157–197. doi: 10.1080/03091928908221820.

[3104]

Jens Weismüller et al. “Fast asthenosphere motion in high-resolution global mantle flow models”. In: Geophys. Res. Lett. 42.18 (2015), pp. 7429–7435. doi: 10 . 1002 / 2015GL063727.

[3105]

J.R. Weiss, G. Ito, B.A. Brooks, J.-A. Olive, G.F. Moore, and J.H. Foster. “Formation of the frontal thrust zone of accretionary wedges”. In: Earth Planet. Sci. Lett. 495 (2018), pp. 87–100. doi: 10.1016/j.epsl.2018.05.010.

[3106]

M. B. Weller and A. Lenardic. “Hysteresis in mantle convection: Plate tectonics systems”. In: Geophys. Res. Lett. 39.10 (2012). doi: 10.1029/2012GL051232.

[3107]

M. B. Weller and A. Lenardic. “The Energetics and Convective Vigor of Mixed-mode Heating: Velocity Scalings and Implications for the Tectonics of Exoplanets: The Energetics of Mixed-mode convection”. In: Geophys. Res. Lett. 43 (2016), pp. 9469–9474. doi: 10. 1002/2016GL069927.

[3108]

M.B. Weller, A. Lenardic, and W.B. Moore. “Scaling relationships and physics for mixed heating convection in planetary interiors: Isoviscous spherical shells”. In: J. Geophys. Res.: Solid Earth 121 (2016), pp. 7598–7617. doi: 10.1002/2016JB013247.

[3109]

Matthew B Weller and Adrian Lenardic. “On the evolution of terrestrial planets: Bi-stability, stochastic effects, and the non-uniqueness of tectonic states”. In: Geoscience Frontiers 9.1 (2018), pp. 91–102. doi: 10.1016/j.gsf.2017.03.001.

[3110]

Lianxing Wen and Don L Anderson. “Layered mantle convection: A model for geoid and topography”. In: Earth Planet. Sci. Lett. 146.3-4 (1997), pp. 367–377. doi: 10.1016/ S0012-821X(96)00238-5.

[3111]

Lianxing Wen and Don L Anderson. “Present-day plate motion constraint on mantle rheology and convection”. In: J. Geophys. Res.: Solid Earth 102.B11 (1997), pp. 24639–24653. doi: 10.1029/97JB02159.

[3112]

S. Wenker and C. Beaumont. “Can metasomatic weakening result in the rifting of cratons?” In: Tectonophysics 746 (2018), pp. 3–21. doi: 10.1016/j.tecto.2017.06.013.

[3113]

S. Wenker and C. Beaumont. “Effects of lateral strength contrasts and inherited heterogeneities on necking and rifting of continents”. In: Tectonophysics 746 (2018), pp. 46–63. doi: 10.1016/j.tecto.2016.10.011.

[3114]

Paul Wessel and Clinton P Conrad. “Assessing Models for Pacific Absolute Plate and Plume Motions”. In: Geochem. Geophys. Geosyst. 20 (2019), pp. 6016–6032. doi: 10.1029/ 2019GC008647.

[3115]

D.M. Whipp, C. Beaumont, and J. Braun. “Feeding the ”aneurysm”: Orogen-parallel mass transport into Nanga Parbat and the western Himalayan syntaxis”. In: J. Geophys. Res.: Solid Earth 119 (2014). doi: 10.1002/2013JB010929.

[3116]

Kelin X Whipple. “The influence of climate on the tectonic evolution of mountain belts”. In: Nature Geoscience 2.2 (2009), p. 97.

[3117]

Kelin X Whipple and Brendan J Meade. “Controls on the strength of coupling among climate, erosion, and deformation in two-sided, frictional orogenic wedges at steady state”. In: J. Geophys. Res.: Earth Surface 109.F1 (2004). doi: 10.1029/2003JF000019.

[3118]

Kelin X Whipple and Brendan J Meade. “Orogen response to changes in climatic and tectonic forcing”. In: Earth Planet. Sci. Lett. 243.1-2 (2006), pp. 218–228. doi: 10.1016/j.epsl. 2005.12.022.

[3119]

Kelin X Whipple and Gregory E Tucker. “Implications of sediment-flux-dependent river incision models for landscape evolution”. In: J. Geophys. Res.: Solid Earth 107.B2 (2002), ETG–3.

[3120]

David B White. “The planforms and onset of convection with a temperature-dependent viscosity”. In: Journal of Fluid Mechanics 191 (1988), pp. 247–286. doi: 10.1017/ S0022112088001582.

[3121]

RS White and D McKenzie. “Mantle plumes and flood basalts”. In: J. Geophys. Res.: Solid Earth 100.B9 (1995), pp. 17543–17585. doi: 10.1029/95JB01585.

[3122]

JA Whitehead, A Cotel, S Hart, C Lithgow-Bertelloni, and W Newsome. “Numerical calculations of two-dimensional large Prandtl number convection in a box”. In: Journal of fluid mechanics 729 (2013), pp. 584–602. doi: 10.1017/jfm.2013.330.

[3123]

John A Whitehead. “Fluid models of geological hotspots”. In: Annual review of fluid mechanics 20.1 (1988), pp. 61–87. doi: 10.1146/annurev.fl.20.010188.000425.

[3124]

A Whittaker, MHP Bott, and GD Waghorn. “Stresses and plate boundary forces associated with subduction plate margins”. In: J. Geophys. Res.: Solid Earth 97.B8 (1992), pp. 11933–11944.

[3125]

Erik van der Wiel, Cedric Thieulot, and Douwe JJ van Hinsbergen. “Quantifying mantle mixing through configurational Entropy”. In: Solid Earth 15 (2024), pp. 861–875. doi: 10.5194/se-15-861-2024.

[3126]

J van Wijk, J van Hunen, and S Goes. “Small-scale convection during continental rifting: Evidence from the Rio Grande rift”. In: Geology 36.7 (2008), pp. 575–578. doi: 10.1130/ G24691A.1.

[3127]

J.W. van Wijk. “Role of weak zone orientation in continental lithosphere extension”. In: Geophys. Res. Lett. 32.L02303 (2005). doi: 10.1029/2004GL022192.

[3128]

J.W. van Wijk and D.K. Blackman. “Development of en echelon magmatic segments along oblique spreading ridges”. In: Geology 35.7 (2007), pp. 599–602.

[3129]

J.W. van Wijk and D.K. Blackman. “Dynamics of continental rift propagation: the end-member modes”. In: Earth Planet. Sci. Lett. 229 (2005), pp. 247–258.

[3130]

J.W. van Wijk et al. “Small-scale convection at the edge of the Colorado Plateau: Implications for topography, magmatism, and evolution of Proterozoic lithosphere”. In: Geology 38 (2010), pp. 611–614. doi: 10.1130/G31031.1.

[3131]

C. Wijns, R. Weinberg, K. Gessner, and L. Moresi. “Mode of crustal extension determined by rheological layering”. In: Earth Planet. Sci. Lett. 236 (2005), pp. 120–134.

[3132]

Chris Wijns, Fabio Boschetti, and Louis Moresi. “Inverse modelling in geology by interactive evolutionary computation”. In: Journal of Structural Geology 25 (2003), pp. 1615–1621. doi: 10.1016/S0191-8141(03)00010-5.

[3133]

William SD Wilcock and JA Whitehead. “The Rayleigh-Taylor instability of an embedded layer of low-viscosity fluid”. In: J. Geophys. Res.: Solid Earth 96.B7 (1991), pp. 12193–12200. doi: 10.1029/91JB00339.

[3134]

K.R. Wilks and N.L. Carter. “Rheology of some continental lower crustal rocks”. In: Tectonophysics 182.1-2 (1990), pp. 57–77. doi: 10.1016/0040-1951(90)90342-6.

[3135]

S. Willett, C. Beaumont, and P. Fullsack. “Mechanical model for the tectonics of doubly vergent compressional orogens”. In: Geology 21 (1993), pp. 371–374.

[3136]

S. D. Willett. “Rheological dependence of extension in wedge models of convergent orogens”. In: Tectonophysics 305 (1999), pp. 419–435.

[3137]

S.D. Willett. “Erosion on a line”. In: Tectonophysics 484.1-4 (2010), pp. 168–180. doi: 10.1016/j.tecto.2009.09.011.

[3138]

S.D. Willett. “Orogeny and orography: The effects of erosion on the structure of mountain belts”. In: J. Geophys. Res.: Solid Earth 104.B12 (1999), p. 28957.

[3139]

S.D. Willett and C. Beaumont. “Subduction of Asian lithosphere mantle beneath Tibet inferred from models of continental collision”. In: Nature 369 (1994), pp. 642–645.

[3140]

Sean D Willett and Mark T Brandon. “On steady states in mountain belts”. In: Geology 30.2 (2002), pp. 175–178.

[3141]

Sean D. Willett and Daniel C. Pope. “Thermo-mechanical models of convergent orogenesis: Thermal and rheologic dependence of crustal deformation”. In: Rheology and deformation of the lithosphere at continental margins. Columbia University Press, 2003, pp. 166–222.

[3142]

Garry Willgoose. “Mathematical Modeling of Whole Landscape Evolution”. In: Annual Review of Earth and Planetary Sciences 33.1 (2005), pp. 443–459. doi: 10.1146/annurev. earth.33.092203.122610.

[3143]

C. D. Williams, M. Li, A. K. McNamara, E. J. Garnero, and M. C. van Soest. “Episodic entrainment of deep primordial mantle material into ocean island basalts”. In: Nature Communications 6 (2015), p. 8937. doi: 10.1038/ncomms9937.

[3144]

JR Williams, RW Lewis, and OC Zienkiewicz. “A finite-element analysis of the role of initial perturbations in the folding of a single viscous layer”. In: Tectonophysics 45.2-3 (1978), pp. 187–200. doi: 10.1016/0040-1951(78)90006-9.

[3145]

Karen Williams, D Sarah Stamps, Jaqueline Austermann, Scott King, and Emmanuel Njinju. “Effects of using the consistent boundary flux method on dynamic topography estimates”. In: Geophy. J. Int. 238 (2024), pp. 1137–1149. doi: 10.1093/gji/ggae203.

[3146]

Erskine D Williamson and Leason H Adams. “Density distribution in the Earth”. In: Journal of the Washington Academy of Sciences 13.19 (1923), pp. 413–428. doi: xxxx.

[3147]

C.R. Wilson, M. Spiegelman, P.E. van Keken, and B.R. Hacker. “Fluid flow in subduction zones: The role of solid rheology and compaction pressure”. In: Earth Planet. Sci. Lett. 401 (2014), pp. 261–274. doi: 10.1016/j.epsl.2014.05.052.

[3148]

CJL Wilson and Yu Zhang. “Comparison between experiment and computer modelling of plane-strain simple-shear ice deformation”. In: Journal of Glaciology 40.134 (1994), pp. 46–55.

[3149]

J Tuzo Wilson. “Did the Atlantic close and then re-open?” In: Nature 211.5050 (1966), pp. 676–681. doi: 10.1038/211676a0.

[3150]

RW Wilson, GA Houseman, SJH Buiter, KJW McCaffrey, and AG Doré. “Fifty years of the Wilson Cycle Concept in Plate Tectonics: An Overview”. In: Geological Society, London, Special Publications 470 (2019), pp. 1–17. doi: 10.1144/SP470-2019-58.

[3151]

Anna Wirbel and Alexander Helmut Jarosch. “Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1. 1)”. In: Geosci. Model. Dev. 13.12 (2020), pp. 6425–6445. doi: 10.5194/gmd-13-6425-2020.

[3152]

Erin A Wirth and Jun Korenaga. “Small-scale convection in the subduction zone mantle wedge”. In: Earth Planet. Sci. Lett. 357 (2012), pp. 111–118. doi: 10.1016/j.epsl. 2012.09.010.

[3153]

SB Wissing, S Ellis, and Othmar-Adrian Pfiffner. “Numerical models of Alpine-type cover nappes”. In: Tectonophysics 367.3-4 (2003), pp. 145–172.

[3154]

Craig Withers. “Modelling slab age and crustal thickness: numerical approaches to drivers of compressive stresses in the overriding plate in Andean style subduction zone systems. (MSc thesis)”. PhD thesis. Durham University, 2020.

[3155]

W-D Woidt and HJ Neugebauer. “Finite element models of density instabilities by means of bicubic spline interpolation”. In: Phys. Earth. Planet. Inter. 21.2-3 (1980), pp. 176–180. doi: 10.1016/0031-9201(80)90068-0.

[3156]

W.-D. Woidt. “Finite element calculations applied to salt dome analysis”. In: Tectonophysics 50 (1978), pp. 369–386. doi: 10.1016/0040-1951(78)90143-9.

[3157]

Lorenz Wolf, Ritske S Huismans, Sebastian G Wolf, Delphine Rouby, and Dave A May. “Evolution of Rift Architecture and Fault Linkage During Continental Rifting: Investigating the Effects of Tectonics and Surface Processes Using Lithosphere-Scale 3D Coupled Numerical Models”. In: J. Geophys. Res.: Solid Earth 127.12 (2022), e2022JB024687.

[3158]

S.G. Wolf, R.S. Huismans, J. Braun, and Yuan X. “Topography of mountain belts controlled by rheology and surface processes”. In: Nature 606 (2022), pp. 516–521. doi: 10.1038/ s41586-022-04700-6.

[3159]

M. Wolstencroft and J.H. Davies. “Influence of the Ringwoodite-Perovskite transition on mantle convection in spherical geometry as a function of Clapeyron slope and Rayleigh number”. In: Solid Earth 2 (2011), pp. 315–326.

[3160]

M. Wolstencroft, J.H. Davies, and D.R. Davies. “Nusselt-Rayleigh number scaling for spherical shell Earth mantle simulation up to a Rayleigh number of 109”. In: Phys. Earth. Planet. Inter. 176 (2009), pp. 132–141. doi: 10.1016/j.pepi.2009.05.002.

[3161]

Martin Wolstencroft and J Huw Davies. “Breaking supercontinents; no need to choose between passive or active”. In: Solid Earth 8.4 (2017), pp. 817–825. doi: 10.5194/se- 8-817-2017.

[3162]

T. Wong and V.S. Solomatov. “Constraints on plate tectonics initiation from scaling laws for single-cell convection”. In: Phys. Earth. Planet. Inter. 257 (2016), pp. 128–136. doi: 10.1016/j.pepi.2016.05.015.

[3163]

T. Wong and V.S. Solomatov. “Towards scaling laws for subduction initiation on terrestrial planets: constraints from two-dimensional steady-state convection simulations”. In: Progress in Earth and Planetary Science 2.1 (2015). doi: 10.1186/s40645-015-0041-x.

[3164]

T. Wong and V.S. Solomatov. “Variations in timing of lithospheric failure on terrestrial planets due to chaotic nature of mantle convection”. In: Geochem. Geophys. Geosyst. 17.5 (2016), pp. 1569–1585. doi: 10.1002/2015GC006158.

[3165]

S.Y.N. Wong-A-Ton and M.J.R. Wortel. “Slab detachment in continental collision zones: An analysis of controlling parameters”. In: Geophys. Res. Lett. 24.16 (1997), pp. 2095–2098. doi: 10.1029/97GL01939.

[3166]

M.J.R. Wortel and W. Spakman. “Subduction and slab detachment in the Mediterranean-Carpathian region”. In: Science 290.5498 (2000), pp. 1910–1917. doi: 10.1126/science.290.5498.1910.

[3167]

MJR Wortel, MJN Remkes, R Govers, SAPL Cloetingh, and P Th Meijer. “Dynamics of the lithosphere and the intraplate stress field”. In: Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences 337.1645 (1991), pp. 111–126.

[3168]

MJR Wortel and W Spakman. “Structure and dynamics of subducted lithosphere in the Mediterranean region”. In: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 95.3 (1992), pp. 325–347.

[3169]

Benjun Wu, Clinton P Conrad, Arnauld Heuret, Carolina Lithgow-Bertelloni, and Serge Lallemand. “Reconciling strong slab pull and weak plate bending: The plate motion constraint on the strength of mantle slabs”. In: Earth Planet. Sci. Lett. 272.1-2 (2008), pp. 412–421. doi: 10.1016/j.epsl.2008.05.009.

[3170]

G. Wu, L.L. Lavier, and E. Choi. “Modes of continental extension in a crustal wedge”. In: Earth Planet. Sci. Lett. 421 (2015), pp. 89–97.

[3171]

Yangming Wu, Jie Liao, Jiarong Qing, and Yongqiang Shen. “Subduction development along extinct mid-ocean ridges versus weakened passive continental margins”. In: Gondwana Research 117 (2023), pp. 243–260. doi: https://doi.org/10.1016/j.gr.2023.02.001.

[3172]

Ursula Wüllner and Geoffrey F Davies. “Numerical evaluation of mantle plume spacing, size, flow rates, and unsteadiness”. In: J. Geophys. Res.: Solid Earth 104.B4 (1999), pp. 7377–7387. doi: 10.1029/1998JB900094.

[3173]

B. Wuming, C. Vigny, Y. ricard, and C. Froidevaux. “On the origin of deviatoric stresses in the lithosphere”. In: J. Geophys. Res.: Solid Earth 97.B8 (1992), pp. 11, 729–11, 737.

[3174]

M.E. Wysession and V.S. Solomatov. “Geophysics: Double-crossed again”. In: Nature 434.7035 (2005), pp. 834–835. doi: 10.1038/434834a.

[3175]

Guanjie Xiang, Zhensheng Wang, and Timothy M Kusky. “Density and viscosity changes between depleted and primordial mantle at  1000 km depth influence plume upwelling behavior”. In: Earth Planet. Sci. Lett. 576 (2021), p. 117213. doi: 10.1016/j.epsl. 2021.117213.

[3176]

Xiao Xiang et al. “Plume-Modified Lithosphere Mantle Controlled the Cenozoic Sediment Thickness in the Tarim Basin”. In: Geophys. Res. Lett. 51.2 (2024), e2023GL106203. doi: 10.1029/2023GL106203.

[3177]

Renxian Xie, Lin Chen, Jason P Morgan, and Yongshun John Chen. “Various lithospheric deformation patterns derived from rheological contrasts between continental terranes: insights from 2-D numerical simulations”. In: Solid Earth 15.7 (2024), pp. 789–806. doi: 10.5194/se-15-789-2024.

[3178]

Renxian Xie, Lin Chen, Xiong Xiong, Kai Wang, and Zhiyong Yan. “The role of Pre-existing crustal weaknesses in the uplift of the eastern Tibetan Plateau: 2D thermo-mechanical modeling”. In: Tectonics 40.4 (2021), e2020TC006444. doi: 10.1029/2020TC006444.

[3179]

Shunxing Xie and Paul J Tackley. “Evolution of helium and argon isotopes in a convecting mantle”. In: Phys. Earth. Planet. Inter. 146.3-4 (2004), pp. 417–439. doi: 10.1016/j. pepi.2004.04.003.

[3180]

Shunxing Xie and Paul J Tackley. “Evolution of U-Pb and Sm-Nd systems in numerical models of mantle convection and plate tectonics”. In: J. Geophys. Res.: Solid Earth 109.B11 (2004). doi: 10.1029/2004JB003176.

[3181]

Liang Xue, James D Muirhead, Robert Moucha, Lachlan JM Wright, and Christopher A Scholz. “The Impact of Climate-Driven Lake Level Changes on Mantle Melting in Continental Rifts”. In: Geophys. Res. Lett. 50.18 (2023), e2023GL103905. doi: 10.1029/2023GL103905.

[3182]

Yasuhiro Yamada, Kei Baba, and Toshifumi Matsuoka. “Analogue and numerical modelling of accretionary prisms with a decollement in sediments”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 169–183. doi: 10.1144/GSL.SP.2006.253.01.09.

[3183]

P. Yamato, P. Agard, E. Burov, L. Le Pourhiet, L. Jolivet, and C. Tiberi. “Burial and exhumation in a subduction wedge: Mutual constraints from thermomechanical modeling and natural P-T-t data (Schistes Lustres, western Alps)”. In: J. Geophys. Res.: Solid Earth 112.B07410 (2007). doi: 10.1029/2006JB004441.

[3184]

P. Yamato and J.P. Brun. “Metamorphic record of catastrophic pressure drops in subduction zones”. In: Nature Geoscience 10.1 (2017), pp. 46–50. doi: 10.1038/ngeo2852.

[3185]

P. Yamato, E. Burov, P. Agard, L. Le Pourhiet, and L. Jolivet. “HP-UHP exhumation during slow continental subduction: Self-consistent thermodynamically and thermomechanically coupled model with application to the Western Alps”. In: Earth Planet. Sci. Lett. 271 (2008), pp. 63–74.

[3186]

P. Yamato, T. Duretz, and S. Angiboust. “Brittle/Ductile Deformation of Eclogites: Insights From Numerical Models”. In: Geochem. Geophys. Geosyst. 20.7 (2019), pp. 3116–3133. doi: 10.1029/2019GC008249.

[3187]

P. Yamato, L. Husson, T.W. Becker, and K. Pedoja. “Passive margins getting squeezed in the mantle convection vice”. In: Tectonics 32 (2013), pp. 1559–1570. doi: 10.1002/ 2013TC003375.

[3188]

P. Yamato, L. Husson, J. Braun, C. Loiselet, and C. Thieulot. “Influence of surrounding plates on 3D subduction dynamics”. In: Geophys. Res. Lett. 36.L07303 (2009). doi: 10. 1029/2008GL036942.

[3189]

P. Yamato, F. Mouthereau, and E. Burov. “Taiwan mountain building: Insights from 2-D thermomechanical modelling of a rheologically stratified lithosphere”. In: Geophy. J. Int. 176.1 (2009), pp. 307–326. doi: 10.1111/j.1365-246X.2008.03977.x.

[3190]

P. Yamato, R. Tartese, T. Duretz, and D.A. May. “Numerical modelling of magma transport in dykes”. In: Tectonophysics 526-529 (2012), pp. 97–109.

[3191]

Philippe Yamato, Thibault Duretz, M Ba¨i   sset, and Cindy Luisier. “Reaction-induced volume change triggers brittle failure at eclogite facies conditions”. In: Earth Planet. Sci. Lett. 584 (2022), p. 117520. doi: 10.1016/j.epsl.2022.117520.

[3192]

Philippe Yamato, Thibault Duretz, David A May, and Romain Tartese. “Quantifying magma segregation in dykes”. In: Tectonophysics 660 (2015), pp. 132–147.

[3193]

Jun Yan, Maxim D. Ballmer, and Paul J. Tackley. “The evolution and distribution of recycled oceanic crust in the Earth’s mantle: Insight from geodynamic models”. In: Earth Planet. Sci. Lett. 537 (2020), p. 116171. doi: 10.1016/j.epsl.2020.116171.

[3194]

Zhiyong Yan, Lin Chen, Xiong Xiong, Bo Wan, and Houze Xu. “Oceanic Plateau and Subduction Zone Jump: Two-Dimensional Thermo-Mechanical Modeling”. In: J. Geophys. Res.: Solid Earth 126.7 (2021), e2021JB021855. doi: 10.1029/2021JB021855.

[3195]

Zhiyong Yan, Lin Chen, Andrew V Zuza, Jiaxuan Tang, Bo Wan, and Qingren Meng. “The fate of oceanic plateaus: subduction versus accretion”. In: Geophy. J. Int. 231 (2022), pp. 1349–1362. doi: 10.1093/gji/ggac266.

[3196]

Zhiyong Yan, Lin Chen, Andrew V Zuza, Xiao Xiang, Renxian Xie, and Sanxi Ai. “Deciphering subduction polarity during ancient arc-continent collisions”. In: Geophys. Res. Lett. 51.15 (2024), e2024GL108761. doi: 10.1029/2024GL108761.

[3197]

Takatoshi Yanagisawa, Yasuko Yamagishi, Yozo Hamano, and Dave R Stegman. “Mechanism for generating stagnant slabs in 3-D spherical mantle convection models at Earth-like conditions”. In: Phys. Earth. Planet. Inter. 183.1-2 (2010), pp. 341–352. doi: 10.1016/ j.pepi.2010.02.005.

[3198]

Gaoxue Yang. “Subduction initiation triggered by collision: A review based on examples and models”. In: Earth-Science Reviews 232 (2022), p. 104129. doi: 10.1016/j.earscirev. 2022.104129.

[3199]

Gaoxue Yang et al. “Natural observations of subduction initiation: Implications for the geodynamic evolution of the Paleo-Asian Ocean”. In: Geosystems and Geoenvironment 1.1 (2022), p. 100009. doi: 10.1016/j.geogeo.2021.10.004.

[3200]

Haibin Yang, Irina M Artemieva, and Hans Thybo. “The Mid-Lithospheric Discontinuity caused by channel flow in proto-cratonic mantle”. In: J. Geophys. Res.: Solid Earth 128 (2023), e2022JB026202. doi: 10.1029/2022JB026202.

[3201]

Haibin Yang, Zurab Chemia, Irina M Artemieva, and Hans Thybo. “Control on off-rift magmatism: A case study of the Baikal Rift Zone”. In: Earth Planet. Sci. Lett. 482 (2018), pp. 501–509. doi: 10.1016/j.epsl.2017.11.040.

[3202]

Haibin Yang, Louis N Moresi, and Mark Quigley. “Fault spacing in continental strike-slip shear zones”. In: Earth Planet. Sci. Lett. 530 (2020), p. 115906. doi: 10.1016/j.epsl. 2019.115906.

[3203]

Jianfeng Yang, Ross N Mitchell, Christopher J Spencer, Baolu Sun, Chang Zhang, and Liang Zhao. “Magmatic ignitor kick-starts subduction initiation”. In: Gondwana Research 122 (2023), pp. 112–124. doi: 10.1016/j.gr.2023.05.023.

[3204]

Jianfeng Yang, Liang Zhao, and Yang Li. “Tectonic deformation at the outer rise of subduction zones”. In: Geophy. J. Int. 232.3 (2023), pp. 1533–1544. doi: 10.1093/gji/ ggac402.

[3205]

Shuting Yang, Zhong-Hai Li, Bo Wan, Ling Chen, and Boris JP Kaus. “Subduction-induced back-arc extension versus far-field stretching: Contrasting modes for continental marginal break-up”. In: Geochem. Geophys. Geosyst. 22.3 (2021), e2020GC009416. doi: 10.1029/ 2020GC009416.

[3206]

Ting Yang and Michael Gurnis. “Dynamic topography, gravity and the role of lateral viscosity variations from inversion of global mantle flow”. In: Geophy. J. Int. 207.2 (2016), pp. 1186–1202. doi: 10.1093/gji/ggw335.

[3207]

Ting Yang, Michael Gurnis, and Sabin Zahirovic. “Slab avalanche-induced tectonics in self-consistent dynamic models”. In: Tectonophysics 746 (2018), pp. 251–265. doi: 10. 1016/j.tecto.2016.12.007.

[3208]

Ting Yang, Louis Moresi, R Dietmar Müller, and Michael Gurnis. “Oceanic residual topography agrees with mantle flow predictions at long wavelengths”. In: Geophys. Res. Lett. 44.21 (2017), pp. 10–896. doi: 10.1002/2017GL074800.

[3209]

Ting Yang, Louis Moresi, Dapeng Zhao, Dan Sandiford, and Joanne Whittaker. “Cenozoic lithospheric deformation in Northeast Asia and the rapidly-aging Pacific Plate”. In: Earth Planet. Sci. Lett. 492 (2018), pp. 1–11. doi: 10.1016/j.epsl.2018.03.057.

[3210]

Tuoxin Yang, Pengpeng Huangfu, and Yan Zhang. “Differentiation of Continental Subduction Mode: Numerical Modeling”. In: Journal of Earth Science 30 (2019), pp. 809–822. doi: 10.1007/s12583-017-0946-y.

[3211]

C. Yao, F. Deschamps, J.P. Lowman, C. Sanchez-Valle, and P.J. Tackley. “Stagnant lid convection in bottom-heated thin 3-D spherical shells: Influence of curvature and implications for dwarf planets and icy moons”. In: J. Geophys. Res.: Solid Earth 119 (2014), pp. 1895–1913. doi: 10.1002/2014JE004653.

[3212]

Liang Yin, Chao Yang, Shi-Zhuang Ma, and Ke-Ke Zhang. “Parallel and fully implicit simulations of the thermal convection in the Earth’s outer core”. In: Computers & Fluids 193 (2019), p. 104278. doi: 10.1016/j.compfluid.2019.104278.

[3213]

Soohwan Yoo and Changyeol Lee. “Controls on melt focusing beneath old subduction zones: A case study of northeast Japan”. In: Tectonophysics 851 (2023), p. 229766. doi: 10. 1016/j.tecto.2023.229766.

[3214]

M. Yoshida. “The role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers”. In: Geophys. Res. Lett. 40 (2013), pp. 5387–5392. doi: 10.1002/2013GL057578.

[3215]

M. Yoshida, F. Tajima, S. Honda, and M. Morishige. “The 3D numerical modeling of subduction dynamics: Plate stagnation and segmentation, and crustal advection in the wet mantle transition zone”. In: J. Geophys. Res.: Solid Earth 117.B04104 (2012). doi: 10.1029/2011JB008989.

[3216]

Masaki Yoshida. “Dynamic role of the rheological contrast between cratonic and oceanic lithospheres in the longevity of cratonic lithosphere: A three-dimensional numerical study”. In: Tectonophysics 532 (2012), pp. 156–166. doi: 10.1016/j.tecto.2012.01.029.

[3217]

Masaki Yoshida. “Mantle convection with longest-wavelength thermal heterogeneity in a 3-D spherical model: Degree one or two?” In: Geophys. Res. Lett. 35.23 (2008). doi: 10.1029/ 2008GL036059.

[3218]

Masaki Yoshida. “Stress regime analysis for the transition to a stagnant-lid convection regime in the terrestrial mantle”. In: Planetary and Space Science 238 (2023), p. 105794. doi: 10.1016/j.pss.2023.105794.

[3219]

Masaki Yoshida. “Temporal evolution of the stress state in a supercontinent during mantle reorganization”. In: Geophy. J. Int. 180.1 (2010), pp. 1–22. doi: 10.1111/j.1365- 246X.2009.04399.x.

[3220]

Masaki Yoshida and Yozo Hamano. “Pangea breakup and northward drift of the Indian subcontinent reproduced by a numerical model of mantle convection”. In: Scientific Reports 5 (2015), p. 8407.

[3221]

Masaki Yoshida, Satoru Honda, Motoyuki Kido, and Yasuyuki Iwase. “Numerical simulation for the prediction of the plate motions”. In: Earth, planets and space 53.7 (2001), pp. 709–721. doi: 10.1186/BF03352399.

[3222]

Masaki Yoshida and Akira Kageyama. “Low-degree mantle convection with strongly temperature-and depth-dependent viscosity in a three-dimensional spherical shell”. In: J. Geophys. Res.: Solid Earth 111.B3 (2006). doi: 10.1029/2005JB003905.

[3223]

Masaki Yoshida and Tomoeki Nakakuki. “Effects on the long-wavelength geoid anomaly of lateral viscosity variations caused by stiff subducting slabs, weak plate margins and lower mantle rheology”. In: Phys. Earth. Planet. Inter. 172.3-4 (2009), pp. 278–288. doi: 10.1016/j.pepi.2008.10.018.

[3224]

Masaki Yoshida and Masaki Ogawa. “Plume heat flow in a numerical model of mantle convection with moving plates”. In: Earth Planet. Sci. Lett. 239.3-4 (2005), pp. 276–285. doi: 10.1016/j.epsl.2005.09.006.

[3225]

Masaki Yoshida and Masaki Ogawa. “The role of hot uprising plumes in the initiation of plate-like regime of three-dimensional mantle convection”. In: Geophys. Res. Lett. 31.5 (2004). doi: 10.1029/2003GL017376.

[3226]

Masaki Yoshida, Saneatsu Saito, and Kazunori Yoshizawa. “Dynamics of continental lithosphere extension and passive continental rifting from numerical experiments of visco-elasto-plastic thermo-chemical convection in 2-D Cartesian geometry”. In: Tectonophysics 796 (2020), p. 228659. doi: 10.1016/j.tecto.2020.228659.

[3227]

Masaki Yoshida, Saneatsu Saito, and Kazunori Yoshizawa. “Possible tectonic patterns along the eastern margin of Gondwanaland from numerical studies of mantle convection”. In: Tectonophysics 787 (2020), p. 228476. doi: 10.1016/j.tecto.2020.228476.

[3228]

S. Yoshioka and M.J.R. Wortel. “Three-dimensional numerical modeling of detachment of subducted lithosphere”. In: J. Geophys. Res.: Solid Earth 100.B10 (1995), pp. 20, 223–20, 244.

[3229]

Shoichi Yoshioka, Yoku Torii, and Michael R Riedel. “Impact of phase change kinetics on the Mariana slab within the framework of 2-D mantle convection”. In: Phys. Earth. Planet. Inter. 240 (2015), pp. 70–81. doi: 10.1016/j.pepi.2014.12.001.

[3230]

Richard E. Young. “Finite-amplitude thermal convection in a spherical shell”. In: Journal of Fluid Mechanics 63.4 (1974), pp. 695–721. doi: 10.1017/S0022112074002151.

[3231]

Qian Yuan, Michael Gurnis, Paul D Asimow, and Yida Li. “A Giant Impact Origin for the First Subduction on Earth”. In: Geophys. Res. Lett. 51 (2024), e2023GL106723. doi: 10.1029/2023GL106723.

[3232]

Qian Yuan and Mingming Li. “Instability of the African large low-shear-wave-velocity province due to its low intrinsic density”. In: Nature Geoscience (2022). doi: 10.1038/ s41561-022-00908-3.

[3233]

D.A. Yuen, O. Cadek, A. Chopelas, and C. Matyska. “Geophysical inferences of thermal-chemical structures in the lower mantle”. In: Geophys. Res. Lett. 20.10 (1993), pp. 899–902. doi: 10.1029/93GL00867.

[3234]

D.A. Yuen and L. Fleitout. “Stability of the oceanic lithosphere with variable viscosity: an initial-value approach”. In: Phys. Earth. Planet. Inter. 34.3 (1984), pp. 173–185. doi: 10.1016/0031-9201(84)90005-0.

[3235]

D.A. Yuen, L. Fleitout, G. Schubert, and C. Froidevaux. “Shear deformation zones along major transform faults and subducting slabs”. In: Geophysical Journal of the Royal Astronomical Society 54.1 (1978), pp. 93–119. doi: 10.1111/j.1365-246X.1978. tb06758.x.

[3236]

D.A. Yuen, A.M. Leitch, and U. Hansen. Dynamical influences of pressure-dependent thermal expansivity on mantle convection. 1990, pp. 663–701. doi: 10.1007/978-94-011-3374- 6_31.

[3237]

D.A. Yuen and W.R. Peltier. “Mantle plumes and the thermal stability of the D” layer”. In: Geophys. Res. Lett. 7.9 (1980), pp. 625–628. doi: 10.1029/GL007i009p00625.

[3238]

D.A. Yuen, W.R. Peltier, and G. Schubert. “On the existence of a second scale of convection in the upper mantle”. In: Geophysical Journal of the Royal Astronomical Society 65.1 (1981), pp. 171–190. doi: 10.1111/j.1365-246X.1981.tb02707.x.

[3239]

D.A. Yuen, R.C.A. Sabadini, P. Gasperini, and E. Boschi. “On transient rheology and glacial isostasy”. In: J. Geophys. Res.: Solid Earth 91.B11 (1986), pp. 11420–11438. doi: 10.1029/JB091iB11p11420.

[3240]

D.A. Yuen, S. Zhang, and S.E. Langenberger. “Effects of compressibility on the temperature jump at the interface of layered, spherical-shell convection”. In: Geophys. Res. Lett. 15.5 (1988), pp. 447–450. doi: 10.1029/GL015i005p00447.

[3241]

DA Yuen, R Sabadini, and E Boschi. “Mantle rheology from a geodynamical standpoint”. In: La Rivista del Nuovo Cimento (1978-1999) 5.8 (1982), pp. 1–35.

[3242]

David A Yuen. “Mantle geophysics: Variable viscosity makes waves”. In: Nature 323.6090 (1986), pp. 669–669. doi: 10.1038/323669a0.

[3243]

David A Yuen and Luce Fleitout. “Thinning of the lithosphere by small-scale convective destabilization”. In: Nature 313.5998 (1985), p. 125. doi: 10.1038/313125a0.

[3244]

David A Yuen, Ctirad Matyska, Ondrej Cadek, and Masanori Kameyama. “The dynamical influences from physical properties in the lower mantle and post-perovskite phase transition”. In: Geophysical Monograph - American Geophysical Union 174 (2007), p. 249. doi: xxxx.

[3245]

David A Yuen, Francesca Quareni, and H-J Hong. “Effects from equation of state and rheology in dissipative heating in compressible mantle convection”. In: Nature 326.6108 (1987), p. 67.

[3246]

David A Yuen, DM Reuteler, S Balachandar, V Steinbach, AV Malevsky, and JJ Smedsmo. “Various influences on three-dimensional mantle convection with phase transitions”. In: Phys. Earth. Planet. Inter. 86.1-3 (1994), pp. 185–203. doi: 10.1016/0031-9201(94)05068-6.

[3247]

David A Yuen and Roberto Sabadini. “Secular rotational motions and the mechanical structure of a dynamical viscoelastic Earth”. In: Phys. Earth. Planet. Inter. 36.3-4 (1984), pp. 391–412. doi: 10.1016/0031-9201(84)90059-1.

[3248]

David A Yuen and Gerald Schubert. “Asthenospheric shear flow: thermally stable or unstable?” In: Geophys. Res. Lett. 4.11 (1977), pp. 503–506. doi: 10 . 1029 / GL004i011p00503.

[3249]

David A Yuen, Nicola Tosi, and Ondrej Čadek. “Influences of lower-mantle properties on the formation of asthenosphere in oceanic upper mantle”. In: Journal of Earth Science 22.2 (2011), pp. 143–154. doi: 10.1007/s12583-011-0166-9.

[3250]

David A. Yuen, Marc Monnereau, Ulrich Hansen, Masanori Kameyama, and Ctirad Matyska. Dynamics of Superplumes in the Lower Mantle. 2007, pp. 239–268. doi: 10.1007/978- 1-4020-5750-2_9.

[3251]

Z. Xu Z. Li and T.V. Gerya. “Numerical Geodynamic Modeling of Continental Convergent Margins, Earth Sciences”. In: Earth Sciences. Ed. by Dr. Imran Ahmad Dar. InTech, 2012.

[3252]

VS Zakharov, NV Lubnina, AV Stepanova, and TV Gerya. “Simultaneous intruding of mafic and felsic magmas into the extending continental crust caused by mantle plume underplating: 2D magmatic-thermomechanical modeling and implications for the Paleoproterozoic Karelian Craton”. In: Tectonophysics 822 (2022), p. 229173. doi: 10.1016/j.tecto.2021.229173.

[3253]

S. Zaleski and P. Julien. “Numerical simulation of Rayleigh-Taylor instability for single and multiple salt diapirs”. In: Tectonophysics 206 (1992), pp. 55–69. doi: 10.1016/0040- 1951(92)90367-F.

[3254]

A. Zebib. “Linear and Weakly Nonlinear Variable Viscosity Convection in Spherical Shells”. In: Theoret. Comput. Fluid Dynamics 4 (1993), pp. 241–253.

[3255]

Abdelfattah Zebib, Gerald Schubert, James L Dein, and Ramesh C Paliwal. “Character and stability of axisymmetric thermal convection in spheres and spherical shells”. In: Geophysical & Astrophysical Fluid Dynamics 23.1 (1983), pp. 1–42. doi: 10.1080/ 03091928308209038.

[3256]

Abdelfattah Zebib, Gerald Schubert, and Joe M Straus. “Infinite Prandtl number thermal convection in a spherical shell”. In: Journal of Fluid Mechanics 97.2 (1980), pp. 257–277. doi: 10.1017/S0022112080002558.

[3257]

Peter K Zeitler et al. “Erosion, Himalayan geodynamics, and the geomorphology of metamorphism”. In: GSA Today 11.1 (2001), pp. 4–9. doi: 10.1130/1052-5173(2001) 011<0004:EHGATG>2.0.CO;2.

[3258]

Iris van Zelst. “Tsunamigenic earthquakes: from tectonics to dynamic rupture”. PhD thesis. ETH Zürich, 2019.

[3259]

Iris van Zelst, Cedric Thieulot, and Timothy J. Craig. “The effect of temperature-dependent material properties on simple thermal models of subduction zones”. In: Solid Earth 14 (2023), pp. 683–707. doi: 10.5194/se-14-683-2023.

[3260]

Iris van Zelst, Stephanie Wollherr, Alice-Agnes Gabriel, Elizabeth H Madden, and Ylona van Dinther. “Modeling Megathrust Earthquakes Across Scales: One-way Coupling From Geodynamics and Seismic Cycles to Dynamic Rupture”. In: J. Geophys. Res.: Solid Earth 124.11 (2019), pp. 11414–11446. doi: 10.1029/2019JB017539.

[3261]

Stefanie Zeumann and Andrea Hampel. “Deformation of erosive and accretive forearcs during subduction of migrating and non-migrating aseismic ridges: Results from 3-D finite element models and application to the Central American, Peruvian, and Ryukyu margins”. In: Tectonics 34.9 (2015), pp. 1769–1791. doi: 10.1002/2015TC003867.

[3262]

Hermann Zeyen, Ana Negredo, and Manel Fernàndez. “Extension with lateral material accommodation—‘Active’vs.‘passive’rifting”. In: Tectonophysics 266.1-4 (1996), pp. 121–137. doi: 10.1016/S0040-1951(96)00186-2.

[3263]

Caicai Zha, Jian Lin, Zhiyuan Zhou, Min Xu, and Xubo Zhang. “Effects of hotspot-induced long-wavelength mantle melting variations on magmatic segmentation at the Reykjanes Ridge: Insights from 3D geodynamic modelling”. In: J. Geophys. Res.: Solid Earth 127 (2022), e2021JB023244. doi: 10.1029/2021JB023244.

[3264]

Caicai Zha, Fan Zhang, Jian Lin, Tao Zhang, and Jinyu Tian. “On the relative importance of buoyancy and thickening of aging lithosphere in mantle upwelling and crustal production beneath global mid-ocean ridge system”. In: J. Geophys. Res.: Solid Earth 129.5 (2024), e2023JB028432. doi: 10.1029/2023JB028432.

[3265]

Changyou Zhang, Martin F Mushayandebvu, Alan B Reid, J Derek Fairhead, and Mark E Odegard. “Euler deconvolution of gravity tensor gradient data”. In: Geophysics 65.2 (2000), pp. 512–520. doi: 10.1190/1.1444745.

[3266]

Huai Zhang, Lili Ju, Max Gunzburger, Todd Ringler, and Stephen Price. “Coupled models and parallel simulations for three-dimensional full-Stokes ice sheet modeling”. In: Numerical Mathematics: Theory, Methods and Applications 4.3 (2011), pp. 396–418. doi: 10.1017/ S1004897900000416.

[3267]

Jianzhong Zhang, Benshan Zhong, Xixiang Zhou, and Yun Dai. “Gravity anomalies of 2-D bodies with variable density contrast”. In: Geophysics 66.3 (2001), pp. 809–813. doi: 10.1190/1.1444970.

[3268]

Lulu Zhang, Sergio Zlotnik, and Chun-Feng Li. “Anomalous Subduction Initiation: Young Under Old Oceanic Lithosphere”. In: Geochem. Geophys. Geosyst. 22.6 (2021), e2020GC009549. doi: 10.1029/2020GC009549.

[3269]

N. Zhang and Z-X Li. “Formation of mantle ”lone plumes” in the global downwelling zone – A case for subduction-controlled plume generation beneath the South China Sea”. In: Tectonophysics (2018). doi: 10.1016/j.tecto.2017.11.038.

[3270]

N. Zhang and S. Zhong. “Heat fluxes at the Earth’s surface and core-mantle boundary since Pangea formation and their implications for the geomagnetic superchrons”. In: Earth Planet. Sci. Lett. 306.3-4 (2011), pp. 205–216. doi: 10.1016/j.epsl.2011.04.001.

[3271]

N. Zhang, S. Zhong, and R. M. Flowers. “Predicting and testing continental vertical motion histories since the Paleozoic”. In: Earth Planet. Sci. Lett. 317-318 (2012), pp. 426–435. doi: 10.1016/j.epsl.2011.10.041.

[3272]

N. Zhang, S. Zhong, W. Leng, and Z.-X. Li. “A model for the evolution of the Earth’s mantle structure since the Early Paleozoic”. In: J. Geophys. Res.: Solid Earth 115.B06401 (2010). doi: 10.1029/2009JB006896.

[3273]

N. Zhang, S. Zhong, and A.K. McNarmara. “Supercontinent formation from stochastic collision and mantle convection models”. In: Gondwana Research 15 (2009), pp. 267–275. doi: 10.1016/j.gr.2008.10.002.

[3274]

Nan Zhang, Mark D Behn, E Marc Parmentier, and Christopher Kincaid. “Melt Segregation and Depletion During Ascent of Buoyant Diapirs in Subduction Zones”. In: J. Geophys. Res.: Solid Earth 125.2 (2020), e2019JB018203. doi: 10.1029/2019JB018203.

[3275]

S Zhang and DA Yuen. “Intense local toroidal motion generated by variable viscosity compressible convection in 3-D spherical-shell”. In: Geophys. Res. Lett. 23.22 (1996), pp. 3135–3138. doi: 10.1029/96GL03029.

[3276]

S. Zhang and U. Christensen. “Some effects of lateral viscosity variations on geoid and surface velocities induced by density anomalies in the mantle”. In: Geophy. J. Int. 114 (1993), pp. 531–547. doi: 10.1111/j.1365-246X.1993.tb06985.x.

[3277]

S. Zhang and D.A. Yuen. “The influences of lower mantle viscosity stratification on 3D spherical-shell mantle convection”. In: Earth Planet. Sci. Lett. 132 (1995), pp. 157–166. doi: 10.1016/0012-821X(95)00038-E.

[3278]

Shengxing Zhang and Wei Leng. “Subduction Polarity Reversal: Induced or Spontaneous?” In: Geophys. Res. Lett. 48.11 (2021), e2021GL093201. doi: 10.1029/2021GL093201.

[3279]

Shengxing Zhang, Wei Leng, and Ling Chen. “Continental tip with thinned lithosphere and thickened crust is a favorable location for subduction initiation”. In: J. Geophys. Res.: Solid Earth 128 (2023), e2023JB027067. doi: 10.1029/2023JB027067.

[3280]

Shengxing Zhang, Yiliang Li, Wei Leng, and Michael Gurnis. “Photoferrotrophic bacteria initiated plate tectonics in the Neoarchean”. In: Geophys. Res. Lett. 50.13 (2023), e2023GL103553. doi: 10.1029/2023GL103553.

[3281]

Y Zhang, BE Hobbs, and MW Jessell. “Crystallographic preferred orientation development in a buckled single layer: a computer simulation”. In: Journal of Structural Geology 15.3-5 (1993), pp. 265–276. doi: 10.1016/0191-8141(93)90125-T.

[3282]

Y Zhang, BE Hobbs, A Ord, and HB Mühlhaus. “Computer simulation of single-layer buckling”. In: Journal of Structural Geology 18.5 (1996), pp. 643–655. doi: 10.1016/ S0191-8141(96)80030-7.

[3283]

Yi Zhang, Walter D Mooney, and Chao Chen. “Forward calculation of gravitational fields with variable resolution 3D density models using spherical triangular tessellation: Theory and Applications”. In: Geophy. J. Int. 215.1 (2018), pp. 363–374. doi: 10.1093/gji/ggy278.

[3284]

Hui Zhao and Wei Leng. “Aseismic ridge subduction and flat subduction: Insights from three-dimensional numerical models”. In: Earth and Planetary Physics 7.2 (2023), pp. 269–281. doi: 10.26464/epp2023032.

[3285]

W. Zhao and D.A. Yuen. “The effects of adiabatic and viscous heatings on plumes”. In: Geophys. Res. Lett. 14.12 (1987), pp. 1223–1226. doi: 10.1029/GL014i012p01223.

[3286]

Wuling Zhao, David A Yuen, and Satoru Honda. “Multiple phase transitions and the style of mantle convection”. In: Phys. Earth. Planet. Inter. 72.3-4 (1992), pp. 185–210. doi: 10.1016/0031-9201(92)90201-6.

[3287]

QunFan Zheng, Huai Zhang, Qin Wang, Zhen Zhang, and YaoLin Shi. “Upper mantle anisotropy and dynamics beneath Cenozoic South China and its surroundings: insights from numerical simulation”. In: Chinese Journal of Geophysics 66.5 (2023), pp. 2007–2018. doi: 10.6038/cjg2022P0780.

[3288]

S. Zhong. “Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature”. In: J. Geophys. Res.: Solid Earth 111.B4 (2006). issn: 0148-0227. doi: 10.1029/2005JB003972.

[3289]

S. Zhong. Some Remarks on Dynamic Topography. Tech. rep. 2018.

[3290]

S. Zhong and M. Gurnis. “Dynamic feedback between a continentlike raft and thermal convection”. In: J. Geophys. Res.: Solid Earth 98.B7 (1993), pp. 12219–12232. doi: 10. 1029/93JB00193.

[3291]

S. Zhong and M. Gurnis. “Mantle convection with plates and Mobile, Faulted Plate Margins”. In: Science 267.5199 (1995), pp. 838–843. doi: 10.1126/science.267.5199.838.

[3292]

S. Zhong and M. Gurnis. “Role of plates and temperature-dependent viscosity in phase change dynamics”. In: J. Geophys. Res.: Solid Earth 99.B8 (1994), p. 15903. doi: 10. 1029/94JB00545.

[3293]

S. Zhong and M. Gurnis. “Towards a realistic simulation of plate margins in mantle convection”. In: Geophys. Res. Lett. 22.8 (1995), pp. 981–984. doi: 10.1029/95GL00782.

[3294]

S. Zhong and M. Gurnis. “Viscous flow model of a subduction zone with a faulted lithosphere: Long and short wavelength topography, gravity and geoid”. In: Geophys. Res. Lett. 19.18 (1992), pp. 1891–1894. doi: 10.1029/92GL02142.

[3295]

S. Zhong, M. Gurnis, and L. Moresi. “Free-surface formulation of mantle convection-I. Basic theory and application to plumes”. In: Geophy. J. Int. 127.3 (1996), pp. 708–718. doi: 10.1111/j.1365-246X.1996.tb04049.x.

[3296]

S. Zhong, M. Gurnis, and L. Moresi. “Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models”. In: J. Geophys. Res.: Solid Earth 103.B7 (1998), pp. 15, 255–15, 268. doi: 10.1029/98JB00605.

[3297]

S. Zhong, N. Zhang, Z.-X. Li, and J.H. Roberts. “Supercontinent cycles, true polar wander, and very long-wavelength mantle convection”. In: Earth Planet. Sci. Lett. 261 (2007), pp. 551–564. doi: 10.1016/j.epsl.2007.07.049.

[3298]

S. Zhong, M.T. Zuber, L.N. Moresi, and M. Gurnis. “The role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection”. In: J. Geophys. Res.: Solid Earth 105.B5 (2000), pp. 11, 063–11, 082. doi: 10.1029/2000JB900003.

[3299]

Sh. Zhong and M. Gurnis. “Controls on trench topography from dynamic models of subducted slabs”. In: J. Geophys. Res.: Solid Earth 99.B8 (1994), pp. 15, 683–15, 695. doi: 10.1029/94JB00809.

[3300]

Sh. Zhong and M. Gurnis. “Interaction of weak faults and non-Newtonian rheology produces plate tectonics in a 3D model of mantle flow”. In: Nature 383 (1996), pp. 245–247. doi: 10.1038/383245a0.

[3301]

Shijie Zhong. “Dynamics of thermal plumes in three-dimensional isoviscous thermal convection”. In: Geophy. J. Int. 162.1 (2005), pp. 289–300. doi: 10.1111/j.1365- 246X.2005.02633.x.

[3302]

Shijie Zhong. “Role of ocean-continent contrast and continental keels on plate motion, net rotation of lithosphere, and the geoid”. In: J. Geophys. Res.: Solid Earth 106.B1 (2001), pp. 703–712. doi: 10.1029/2000JB900364.

[3303]

Shijie Zhong and Bradford H Hager. “Entrainment of a dense layer by thermal plumes”. In: Geophy. J. Int. 154.3 (2003), pp. 666–676. doi: 10.1046/j.1365-246X.2003.01988.x.

[3304]

Shijie Zhong, Archie Paulson, and John Wahr. “Three-dimensional finite-element modelling of Earth’s viscoelastic deformation: effects of lateral variations in lithospheric thickness”. In: Geophy. J. Int. 155.2 (2003), pp. 679–695. doi: 10.1046/j.1365-246X.2003.02084.x.

[3305]

Shijie Zhong, Chuan Qin, Geruo A, and John Wahr. “Can tidal tomography be used to unravel the long-wavelength structure of the lunar interior?” In: Geophys. Res. Lett. 39.15 (2012). doi: 10.1029/2012GL052362.

[3306]

Shijie Zhong and Maxwell L Rudolph. “On the temporal evolution of long-wavelength mantle structure of the Earth since the early Paleozoic”. In: Geochem. Geophys. Geosyst. 16.5 (2015), pp. 1599–1615. doi: 10.1002/2015GC005782.

[3307]

Xinyi Zhong and Zhong-Hai Li. “Compression at Strike-Slip Fault Is a Favorable Condition for Subduction Initiation”. In: Geophys. Res. Lett. 50.4 (2023), e2022GL102171. doi: 10. 1029/2022GL102171.

[3308]

Xinyi Zhong and Zhong-Hai Li. “Forced subduction initiation at passive continental margins: velocity-driven versus stress-driven”. In: Geophys. Res. Lett. 46 (2019), pp. 11, 054–11, 064. doi: 10.1029/2019GL084022.

[3309]

Xinyi Zhong and Zhong-Hai Li. “Formation of Metamorphic Soles underlying Ophiolites during Subduction Initiation: A Systematic Numerical Study”. In: J. Geophys. Res.: Solid Earth 127 (), e2021JB023431. doi: 10.1029/2021JB023431.

[3310]

Quan Zhou and Lijun Liu. “A hybrid approach to data assimilation for reconstructing the evolution of mantle dynamics”. In: Geochem. Geophys. Geosyst. 18.11 (2017), pp. 3854–3868. doi: 10.1002/2017GC007116.

[3311]

X. Zhou. “2D vector gravity potential and line integrals for the gravity anomaly caused by a 2D mass of depth-dependent density contrast”. In: Geophysics 73.6 (2008), pp. 143–150. doi: 10.1190/1.2976116.

[3312]

X. Zhou, Z.-H. Li, T.V. Gerya, R.J. Stern, Z. Xu, and J. Zhang. “Subduction initiation dynamics along a transform fault control trench curvature and ophiolite ages”. In: Geology 46.7 (2018), pp. 607–610. doi: 10.1130/G40154.1.

[3313]

Xin Zhou, Zhong-Hai Li, Taras V. Gerya, and Robert J. Stern. “Lateral propagation-induced subduction initiation at passive continental margins controlled by preexisting lithospheric weakness”. In: Science Advances 6.10 (2020). doi: 10.1126/sciadv.aaz1048.

[3314]

Xin Zhou and Ikuko Wada. “Differentiating induced versus spontaneous subduction initiation using thermomechanical models and metamorphic soles”. In: Nature Communications 12.1 (2021), pp. 1–10. doi: 10.1038/s41467-021-24896-x.

[3315]

Z. Zhou, J. Lin, M.D. Behn, and J.-A. Olive. “Mechanism for normal faulting in the subducting plate at the Mariana Trench”. In: Geophys. Res. Lett. 42.11 (2015), pp. 4309–4317. doi: 10.1002/2015GL063917.

[3316]

D.Y. Zhu, C.F. Lee, and K.T. Law. “Determination of bearing capacity of shallow foundations without using superposition approximation”. In: Can. Geotech. J. 40 (2003), pp. 450–459. doi: 10.1139/t02-105.

[3317]

G. Zhu, T. Gerya, D.A. Yuen, S. Honda, T. Yoshida, and T. Connolly. “Three-dimensional dynamics of hydrous thermal-chemical plumes in oceanic subduction zones”. In: Geochem. Geophys. Geosyst. 10 (2009). doi: 10.1029/2009GC002625.

[3318]

G. Zhu, T.V. Gerya, P.J. Tackley, and E. Kissling. “Four-dimensional numerical modeling of crustal growth at active continental margins”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 4682–4698. doi: 10.1002/jgrb.50357.

[3319]

Guizhi Zhu, Taras Gerya, and David A Yuen. “Melt evolution above a spontaneously retreating subducting slab in a three-dimensional model”. In: Journal of Earth Science 22.2 (2011), pp. 137–142. doi: 10.1007/s12583-011-0165-x.

[3320]

Guizhi Zhu, Taras V Gerya, Satoru Honda, Paul J Tackley, and David A Yuen. “Influences of the buoyancy of partially molten rock on 3-D plume patterns and melt productivity above retreating slabs”. In: Phys. Earth. Planet. Inter. 185.3-4 (2011), pp. 112–121. doi: 10.1016/j.pepi.2011.02.005.

[3321]

Guizhi Zhu, Yaolin Shi, and Paul Tackley. “Subduction of the western Pacific plate underneath Northeast China: implications of numerical studies”. In: Phys. Earth. Planet. Inter. 178.1-2 (2010), pp. 92–99. doi: 10.1016/j.pepi.2009.10.008.

[3322]

Yi Zhu, Patrick J Fox, and Joseph P Morris. “A pore-scale numerical model for flow through porous media”. In: International journal for numerical and analytical methods in geomechanics 23.9 (1999), pp. 881–904. doi: 10.1002/(SICI)1096-9853(19990810)23: 9<881::AID-NAG996>3.0.CO;2-K.

[3323]

Peter A Ziegler. “Geodynamics of rifting and implications for hydrocarbon habitat”. In: Tectonophysics 215.1-2 (1992), pp. 221–253. doi: 10.1016/0040-1951(92)90083-I.

[3324]

Peter A Ziegler. “Plate tectonics, plate moving mechanisms and rifting”. In: Tectonophysics 215.1-2 (1992), pp. 9–34. doi: 10.1016/0040-1951(92)90072-E.

[3325]

S. Zlotnik, P. Diez, M. Fernandez, and J. Verges. “Numerical modelling of tectonic plates subduction using X-FEM”. In: Computer Methods in Applied Mechanics and Engineering 196 (2007), pp. 4283–4293. doi: 10.1016/j.cma.2007.04.006.

[3326]

S. Zlotnik, M. Fernandez, P. Diez, and J. Verges. “Modelling gravitational instabilities: slab break-off and Rayleigh-Taylor diapirism”. In: Pure Appl. Geophys. 165 (2008), pp. 1491–1510. doi: 10.1007/s00024-004-0386-9.

[3327]

M.L. Zoback. “First- and second-order patterns of stress in the lithosphere: the World Stress Map project”. In: J. Geophys. Res.: Solid Earth 97.B8 (1992), pp. 11, 703–11, 728. doi: 10.1029/92JB00132.

[3328]

M.T. Zuber and E.M. Parmentier. “Lithospheric necking: a dynamic model for rift morphology”. In: Earth Planet. Sci. Lett. 77 (1986), pp. 373–383. doi: 10.1016/0012- 821X(86)90147-0.

[3329]

M.T. Zuber, E.M. Parmentier, and R.C. Fletcher. “Extension of Continental Lithosphere: A Model for Two Scales of Basin and Range Deformation”. In: J. Geophys. Res.: Solid Earth 91.B5 (1986), pp. 4826–4838. doi: 10.1029/JB091iB05p04826.

[3330]

Mohd Zuhair, Thyagarajulu Gollapalli, Fabio A Capitanio, Peter G Betts, and Juan Carlos Graciosa. “The Role of Slab Steps on Tectonic Loading Along Subduction Zones: Inferences on the Seismotectonics of the Sunda Convergent Margin”. In: Tectonics 41.9 (2022), e2022TC007242. doi: 10.1029/2022TC007242.

[3331]

F. Zwaan, G. Scheurs, J. Naliboff, and S.J.H. Buiter. “Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models”. In: Tectonophysics 693 (2016), pp. 239–260. doi: 10.1016/j.tecto.2016.02.036.

[3332]

F. Zwaan, G. Schreurs, and S.J.H. Buiter. “A systematic comparison of experimental set-ups for modelling extensional tectonics”. In: Solid Earth 10 (2019), pp. 1063–1097. doi: 10. 5194/se-10-1063-2019.

[3333]

Frank Zwaan, Guido Schreurs, and Matthias Rosenau. “Rift propagation in rotational versus orthogonal extension: Insights from 4D analogue models”. In: Journal of Structural Geology 135 (2020), p. 103946. doi: 10.1016/j.jsg.2019.103946.

[3334]

T. Zwinger, R. Greve, O. Gagliardini, T. Shiraiwa, and M. Lyly. “A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka”. In: Annals of Glaciology 45 (2007), pp. 29–37.