Literature: planets, moons, celestial bodies

Contents

 1 Mercury
 2 Venus
 3 Moon
 4 Mars
 5 Pluto
 6 Super-Earths, Giant planets & exoplanets
 7 Icy satellites, icy moons
 8 Europa
 9 Ceres
 10 Enceladus
 11 Callisto
 12 Ganymede
 13 Io
 14 Planetesimals
 References

1 Mercury

2 Venus

Fabio A Capitanio, Madeleine Kerr, Dave R Stegman, and Suzanne E Smrekar. “Ishtar Terra highlands on Venus raised by craton-like formation mechanisms”. In: Nature Geoscience (2024), pp. 1–7. doi: 10.1038/s41561-024-01485-3
Iris van Zelst, Julia S Maia, Ana-Catalina Plesa, Richard Ghail, and Moritz Spühler. “Estimates on the possible annual seismicity of Venus”. In: J. Geophys. Res.: Planets 129.7 (2024), e2023JE008048. doi: 10.1029/2023JE008048

3 Moon

4 Mars

Mars fact sheet: https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html

5 Pluto

6 Super-Earths, Giant planets & exoplanets

7 Icy satellites, icy moons

Icy moons are a class of natural satellites with surfaces composed mostly of ice. An icy moon may harbor an ocean underneath the surface, and possibly include a rocky core of silicate or metallic rocks. https://en.wikipedia.org/wiki/Icy_moon

8 Europa

The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Io is closest, followed by Europa, Ganymede, and Callisto. It has a smooth and bright surface, with a layer of water surrounding the mantle of the planet, thought to be 100 kilometers thick.

9 Ceres

https://en.wikipedia.org/wiki/Ceres_(dwarf_planet) The robotic NASA spacecraft Dawn approached Ceres for its orbital mission in 2015. and found Ceres’s surface to be a mixture of water ice, and hydrated minerals such as carbonates and clay.

10 Enceladus

Enceladus is the sixth-largest moon of Saturn (19th largest in the Solar System). It is about 500 kilometers in diameter, about a tenth of that of Saturn’s largest moon, Titan. Enceladus is mostly covered by fresh, clean ice, making it one of the most reflective bodies of the Solar System. https://en.wikipedia.org/wiki/Enceladus

11 Callisto

The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Io is closest, followed by Europa, Ganymede, and Callisto (1.9 million km or 26.4 RJ from Jupiter). Callisto has the lowest mean density of all Galilean satellites.

12 Ganymede

The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Io is closest, followed by Europa, Ganymede, and Callisto.

13 Io

The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Io is closest, followed by Europa, Ganymede, and Callisto. With a diameter of 3642 kilometers, it is the fourth-largest moon in the Solar System, and is only marginally larger than Earth’s moon.

14 Planetesimals

References

[1]

Geruo A, John Wahr, and Shijie Zhong. “The effects of laterally varying icy shell structure on the tidal response of Ganymede and Europa”. In: J. Geophys. Res.: Planets 119.3 (2014), pp. 659–678. doi: 10.1002/2013JE004570.

[2]

Andrea C Adams, Dave R Stegman, Hiva Mohammadzadeh, Suzanne E Smrekar, and Paul J Tackley. “Plume-Induced Delamination Initiated at Rift Zones on Venus”. In: J. Geophys. Res.: Planets 128.10 (2023), e2023JE007879. doi: 10.1029/2023JE007879.

[3]

Andrea C Adams, David R Stegman, Suzanne E Smrekar, and Paul James Tackley. “Regional-Scale Lithospheric Recycling on Venus via Peel-Back Delamination”. In: J. Geophys. Res.: Planets 127 (2022), e2022JE007460. doi: 10.1029/2022JE007460.

[4]

Siddhant Agarwal, Nicola Tosi, Doris Breuer, Sebastiano Padovan, Pan Kessel, and Grégoire Montavon. “A machine-learning-based surrogate model of Mars’ thermal evolution”. In: Geophy. J. Int. 222.3 (2020), pp. 1656–1670. doi: 10.1093/gji/ggaa234.

[5]

KM Alley and EM Parmentier. “Numerical experiments on thermal convection in a chemically stratified viscous fluid heated from below: implications for a model of lunar evolution”. In: Phys. Earth. Planet. Inter. 108.1 (1998), pp. 15–32. doi: 10.1016/S0031-9201(98)00096- X.

[6]

D. Allu Peddinti and A. K. McNamara. “Dynamical investigation of a thickening ice-shell: Implications for the icy moon Europa”. In: Icarus 329 (2019), pp. 251–269. doi: 10.1016/ j.icarus.2019.03.037.

[7]

M. Armann and P.J. Tackley. “Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: Two-dimensional models”. In: J. Geophys. Res.: Solid Earth 117 (2012), E12003. doi: 10.1029/2012JE004231.

[8]

S. Azuma and I. Katayama. “Evolution of the rheological structure of Mars”. In: Earth, Planets and Space 69.1 (2017), pp. 1–13. doi: 10.1186/s40623-016-0593-z.

[9]

Harry A Ballantyne et al. “Investigating the feasibility of an impact-induced Martian Dichotomy”. In: Icarus 392 (2023), p. 115395. doi: 10.1016/j.icarus.2022.115395.

[10]

W Bruce Banerdt et al. “Initial results from the InSight mission on Mars”. In: Nature Geoscience 13.3 (2020), pp. 183–189. doi: 10.1038/s41561-020-0544-y.

[11]

WB Banerdt, RJ Phillips, NH Sleep, and RS Saunders. “Thick shell tectonics on one-plate planets: Applications to Mars”. In: J. Geophys. Res.: Solid Earth 87.B12 (1982), pp. 9723–9733. doi: 10.1029/JB087iB12p09723.

[12]

Debajyoti Basu Sarkar and William B Moore. “Influence of Planetary Surface Temperature on the Tectonic Transition from Heat Pipes”. In: Geophys. Res. Lett. 49 (), e2022GL100987. doi: 10.1029/2022GL100987.

[13]

Marie Běhounková, Gabriel Tobie, Gaël Choblet, and Ondřej Čadek. “Coupling mantle convection and tidal dissipation: Applications to Enceladus and Earth-like planets”. In: J. Geophys. Res.: Planets 115.E9 (2010). doi: 10.1029/2009JE003564.

[14]

V Belleguic, P Lognonné, and M Wieczorek. “Constraints on the Martian lithosphere from gravity and topography data”. In: J. Geophys. Res.: Planets 110.E11 (2005). doi: 10. 1029/2005JE002437.

[15]

Constance M Bertka and Yingwei Fei. “Density profile of an SNC model Martian interior and the moment-of-inertia factor of Mars”. In: Earth Planet. Sci. Lett. 157.1-2 (1998), pp. 79–88. doi: 10.1016/S0012-821X(98)00030-2.

[16]

M Beuthe, S Le Maistre, P Rosenblatt, M Pätzold, and Véronique Dehant. “Density and lithospheric thickness of the Tharsis Province from MEX MaRS and MRO gravity data”. In: J. Geophys. Res.: Planets 117.E4 (2012). doi: 10.1029/2011JE003976.

[17]

S Bouley et al. “Late Tharsis formation and implications for early Mars”. In: Nature 531.7594 (2016), pp. 344–347. doi: 10.1038/nature17171.

[18]

Matthew C Brennan, Rebecca A Fischer, and Jessica CE Irving. “Core formation and geophysical properties of Mars”. In: Earth Planet. Sci. Lett. 530 (2020), p. 115923. doi: 10.1016/j.epsl.2019.115923.

[19]

D Breuer, H Zhou, David A Yuen, and T Spohn. “Phase transitions in the Martian mantle: Implications for the planet’s volcanic history”. In: J. Geophys. Res.: Planets 101.E3 (1996), pp. 7531–7542. doi: 10.1029/96JE00117.

[20]

D. Breuer, D.A. Yuen, T. Spohn, and S. Zhang. “Three dimensional models of Martian mantle convection with phase transitions”. In: Geophys. Res. Lett. 25.3 (1998), pp. 229–232. doi: 10.1029/97GL03767.

[21]

Doris Breuer and Tilman Spohn. “Viscosity of the Martian mantle and its initial temperature: Constraints from crust formation history and the evolution of the magnetic field”. In: Planetary and Space Science 54.2 (2006), pp. 153–169. doi: 10.1016/j.pss.2005.08.008.

[22]

Doris Breuer, Dave A Yuen, and Tilman Spohn. “Phase transitions in the Martian mantle: Implications for partially layered convection”. In: Earth Planet. Sci. Lett. 148.3-4 (1997), pp. 457–469. doi: 10.1016/S0012-821X(97)00049-6.

[23]

A. Broquet and J.C. Andrews-Hanna. “Geophysical evidence for an active mantle plume underneath Elysium Planitia on Mars”. In: Nature Astronomy (2022). doi: 10.1038/ s41550-022-01836-3.

[24]

Paul K Byrne, Richard C Ghail, AM Celâl Şengör, Peter B James, Christian Klimczak, and Sean C Solomon. “A globally fragmented and mobile lithosphere on Venus”. In: Proceedings of the National Academy of Sciences 118.26 (2021). doi: 10.1073/pnas.2025919118.

[25]

Fabio A Capitanio, Madeleine Kerr, Dave R Stegman, and Suzanne E Smrekar. “Ishtar Terra highlands on Venus raised by craton-like formation mechanisms”. In: Nature Geoscience (2024), pp. 1–7. doi: 10.1038/s41561-024-01485-3.

[26]

Evan Carnahan, Natalie S Wolfenbarger, Jacob S Jordan, and Marc A Hesse. “New insights into temperature-dependent ice properties and their effect on ice shell convection for icy ocean worlds”. In: Earth Planet. Sci. Lett. 563 (2021), p. 116886. doi: 10.1016/j.epsl.2021. 116886.

[27]

James P Cassanelli and James W Head. “Glaciovolcanism in the Tharsis volcanic province of Mars: Implications for regional geology and hydrology”. In: Planetary and Space Science 169 (2019), pp. 45–69. doi: 10.1016/j.pss.2019.02.006.

[28]

Patrick Cassen and Ray T Reynolds. “Convection in the Moon: Effect of variable viscosity”. In: J. Geophys. Res.: Solid Earth 79.20 (1974), pp. 2937–2944. doi: 10 . 1029 / JB079i020p02937.

[29]

Patrick Cassen and Ray T Reynolds. “Role of convection in the Moon”. In: J. Geophys. Res.: Solid Earth 78.17 (1973), pp. 3203–3215. doi: 10.1029/JB078i017p03203.

[30]

Patrick Cassen, Ray T Reynolds, Frank Graziani, Audrey Summers, John McNellis, and Linda Blalock. “Convection and lunar thermal history”. In: Phys. Earth. Planet. Inter. 19.2 (1979), pp. 183–196. doi: 10.1016/0031-9201(79)90082-7.

[31]

Kar Wai Cheng, AB Rozel, GJ Golabek, HA Ballantyne, Martin Jutzi, and PJ Tackley. “Mars’s crustal and volcanic structure explained by southern giant impact and resulting mantle depletion”. In: Geophys. Res. Lett. 51.6 (2024), e2023GL105910. doi: 10.1029/ 2023GL105910.

[32]

Karina K Cheung and Scott D King. “Geophysical evidence supports migration of Tharsis volcanism on Mars”. In: J. Geophys. Res.: Solid Earth 119.5 (2014), pp. 1078–1085. doi: 10.1002/2014JE004632.

[33]

Gael Choblet, Gabriel Tobie, Christophe Sotin, Klara Kalousova, and Olivier Grasset. “Heat transport in the high-pressure ice mantle of large icy moons”. In: Icarus 285 (2017), pp. 252–262. doi: 10.1016/j.icarus.2016.12.002.

[34]

R. I. Citron, M. Manga, and E. Tan. “A hybrid origin of the Martian crustal dichotomy: Degree-1 convection antipodal to a giant impact”. In: Earth Planet. Sci. Lett. 491 (2018), pp. 58–66. doi: 10.1016/j.epsl.2018.03.031.

[35]

Fabio Crameri. “Sinking plates on Venus”. In: Nature Geoscience 10 (2017), pp. 330–331. doi: 10.1038/ngeo2941.

[36]

A Davaille, SE Smrekar, and S Tomlinson. “Experimental and observational evidence for plume-induced subduction on Venus”. In: Nature Geoscience 10.5 (2017), p. 349. doi: 10. 1038/NGEO2928.

[37]

Frédéric Deschamps and Christophe Sotin. “Thermal convection in the outer shell of large icy satellites”. In: J. Geophys. Res.: Planets 106.E3 (2001), pp. 5107–5121. doi: 10.1029/ 2000JE001253.

[38]

Min Ding, Jian Lin, Chen Gu, Qinghua Huang, and Maria T Zuber. “Variations in Martian lithospheric strength based on gravity/topography analysis”. In: J. Geophys. Res.: Planets 124.11 (2019), pp. 3095–3118. doi: 10.1029/2019JE005937.

[39]

James M Dohm, Shigenori Maruyama, Motoyuki Kido, and Victor R Baker. “A possible anorthositic continent of early Mars and the role of planetary size for the inception of Earth-like life”. In: Geoscience Frontiers 9.4 (2018), pp. 1085–1098. doi: 10.1016/j.gsf. 2016.12.003.

[40]

Mélanie Drilleau et al. “Constraints on lateral variations of Martian crustal thickness from seismological and gravity field measurements”. In: Geophys. Res. Lett. 51.4 (2024), e2023GL105701. doi: 10.1029/2023GL105701.

[41]

L. T. Elkins-Tanton, B. H. Hager, and T. L. Grove. “Magmatic effects of the lunar late heavy bombardment”. In: Earth Planet. Sci. Lett. 222.1 (2004), pp. 17–27. doi: 10.1016/j. epsl.2004.02.017.

[42]

L. T. Elkins-Tanton, J. A. van Orman, B. H. Hager, and T. L. Grove. “Re-examination of the lunar magma ocean cumulate overturn hypothesis: melting or mixing is required”. In: Earth Planet. Sci. Lett. 196.3-4 (2002), pp. 239–249. doi: 10.1016/S0012-821X(01)00613- 6.

[43]

Linda T Elkins-Tanton, Sarah E Zaranek, EM Parmentier, and PC Hess. “Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn”. In: Earth Planet. Sci. Lett. 236.1-2 (2005), pp. 1–12. doi: 10.1016/j.epsl.2005.04.044.

[44]

M Evonuk. “Convection in deformed bodies: The effect of equatorial ellipticity on convective behavior”. In: Earth Planet. Sci. Lett. 430 (2015), pp. 249–259. doi: 10.1016/j.epsl. 2015.07.047.

[45]

M Evonuk and H Samuel. “Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?” In: Earth Planet. Sci. Lett. 317 (2012), pp. 1–7. doi: 10.1016/j.epsl.2011.11.036.

[46]

Martha Evonuk and Gary A Glatzmaier. “A 2D study of the effects of the size of a solid core on the equatorial flow in giant planets”. In: Icarus 181.2 (2006), pp. 458–464. doi: 10.1016/j.icarus.2005.12.004.

[47]

Mohammad Farhat, Pierre Auclair-Desrotour, Gwenaël Boué, and Jacques Laskar. “The resonant tidal evolution of the Earth-Moon distance”. In: Astronomy & Astrophysics 665 (2022), p. L1. doi: 10.1051/0004-6361/202243445.

[48]

Agnès Fienga, Shijie Zhong, Anthony Mémin, and Arthur Briaud. “Tidal dissipation with 3-D finite element deformation code CitcomSVE v2.1: comparisons with the semi-analytical approach, in the context of the Lunar tidal deformations”. In: Celestial Mechanics and Dynamical Astronomy 136.5 (2024), p. 43. doi: 10.1007/s10569-024-10202-6.

[49]

AC Fowler and SBG O’Brien. “A mechanism for episodic subduction on Venus”. In: J. Geophys. Res.: Planets 101.E2 (1996), pp. 4755–4763. doi: 10.1029/95JE03261.

[50]

J Freeman. “Non-Newtonian stagnant lid convection and the thermal evolution of Ganymede and Callisto”. In: Planetary and Space Science 54.1 (2006), pp. 2–14. doi: 10.1016/j. pss.2005.10.003.

[51]

Antonio Genova. “ORACLE: A mission concept to study Mars’ climate, surface and interior”. In: Acta Astronautica 166 (2020), pp. 317–329. doi: 10.1016/j.actaastro.2019.10.006.

[52]

Antonio Genova et al. “Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science”. In: Icarus 272 (2016), pp. 228–245. doi: 10.1016/j.icarus. 2016.02.050.

[53]

TV Gerya. “Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus”. In: Earth Planet. Sci. Lett. 391 (2014), pp. 183–192.

[54]

Richard Ghail. “Rheological and petrological implications for a stagnant lid regime on Venus”. In: Planetary and Space Science 113 (2015), pp. 2–9. doi: 10.1016/j.pss.2015.02.005.

[55]

Domenico Giardini et al. “The seismicity of Mars”. In: Nature Geoscience 13.3 (2020), pp. 205–212. doi: 10.1038/s41561-020-0539-8.

[56]

Cedric Gillmann and Paul Tackley. “Atmosphere/mantle coupling and feedbacks on Venus”. In: J. Geophys. Res.: Planets 119.6 (2014), pp. 1189–1217.

[57]

Gregor J Golabek, Bernard Bourdon, and Taras V Gerya. “Numerical models of the thermomechanical evolution of planetesimals: Application to the acapulcoite-lodranite parent body”. In: Meteoritics & Planetary Science 49.6 (2014), pp. 1083–1099.

[58]

Gregor J Golabek, Alexandre Emsenhuber, Martin Jutzi, Erik I Asphaug, and Taras V Gerya. “Coupling SPH and thermochemical models of planets: Methodology and example of a Mars-sized body”. In: Icarus 301 (2018), pp. 235–246. doi: 10.1016/j.icarus.2017. 10.003.

[59]

Gregor J Golabek and Martin Jutzi. “Modification of icy planetesimals by early thermal evolution and collisions: Constraints for formation time and initial size of comets and small KBOs”. In: Icarus 363 (2021), p. 114437. doi: 10.1016/j.icarus.2021.114437.

[60]

Gregor J Golabek, Tobias Keller, Taras V Gerya, Guizhi Zhu, Paul J Tackley, and James AD Connolly. “Origin of the Martian dichotomy and Tharsis from a giant impact causing massive magmatism”. In: Icarus 215.1 (2011), pp. 346–357.

[61]

Matthias Grott and Doris Breuer. “On the spatial variability of the Martian elastic lithosphere thickness: Evidence for mantle plumes?” In: J. Geophys. Res.: Planets 115.E3 (2010). doi: 10.1029/2009JE003456.

[62]

JM Guerrero, JP Lowman, and PJ Tackley. “Did the cessation of convection in Mercury’s mantle allow for a dynamo supporting increase in heat loss from its core?” In: Earth Planet. Sci. Lett. 571 (2021), p. 117108. doi: 10.1016/j.epsl.2021.117108.

[63]

A.J. Gülcher, T.V. Gerya, L.G.J. Montési, and J. Munch. “Corona structures driven by plume-lithosphere interactions and evidence for ongoing plume activity on Venus”. In: Nature Geoscience (2020). doi: 10.1038/s41561-020-0606-1.

[64]

Anna JP Gülcher, Ting-Ying Yu, and Taras V Gerya. “Tectono-Magmatic Evolution of Asymmetric Coronae on Venus: Topographic Classification and 3D Thermo-Mechanical Modeling”. In: J. Geophys. Res.: Planets 128.11 (2023), e2023JE007978. doi: 10.1029/ 2023JE007978.

[65]

L. Han and A. P. Showman. “Coupled convection and tidal dissipation in Europa’s ice shell”. In: Icarus 207.2 (2010), pp. 834–844. doi: 10.1016/j.icarus.2009.12.028.

[66]

L. Han and A. P. Showman. “Coupled convection and tidal dissipation in Europa’s ice shell using non-Newtonian grain-size-sensitive (GSS) creep rheology”. In: Icarus 212.1 (2011), pp. 262–267. doi: 10.1016/j.icarus.2010.11.034.

[67]

L. Han and A. P. Showman. “Implications of shear heating and fracture zones for ridge formation on Europa”. In: Geophys. Res. Lett. 35.3 (2008). doi: 10.1029/2007GL031957.

[68]

L. Han, G. Tobie, and A. P. Showman. “The impact of a weak south pole on thermal convection in Enceladus’ ice shell”. In: Icarus 218.1 (2012), pp. 320–330. doi: 10.1016/ j.icarus.2011.12.006.

[69]

Lijie Han and Adam P Showman. “Thermo-compositional convection in Europa’s icy shell with salinity”. In: Geophys. Res. Lett. 32.20 (2005). doi: 10.1029/2005GL023979.

[70]

Simon Hanmer. “Basic structural geology of Venus: A review of the gaps and how to bridge them”. In: Earth-Science Reviews (2023), p. 104331. doi: 10.1016/j.earscirev.2023. 104331.

[71]

H. Harder and U.R. Christensen. “A one-plume model of martian mantle convection”. In: Nature 380 (1996), pp. 507–509. doi: 10.1038/380507a0.

[72]

Helmut Harder. “Mantle convection and the dynamic geoid of Mars”. In: Geophys. Res. Lett. 27.3 (2000), pp. 301–304. doi: 10.1029/1999GL008418.

[73]

Helmut Harder. “Phase transitions and the three-dimensional planform of thermal convection in the Martian mantle”. In: J. Geophys. Res.: Planets 103.E7 (1998), pp. 16775–16797. doi: 10.1029/98JE01543.

[74]

Ludivine Harel, Caroline Dumoulin, G Choblet, G Tobie, and J Besserer. “Scaling of heat transfer in stagnant lid convection for the outer shell of icy moons: Influence of rheology”. In: Icarus 338 (2020), p. 113448. doi: 10.1016/j.icarus.2019.113448.

[75]

Ernst Hauber, Jacob Bleacher, Klaus Gwinner, David Williams, and Ron Greeley. “The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars”. In: Journal of Volcanology and Geothermal Research 185.1-2 (2009), pp. 69–95. doi: 10.1016/j.jvolgeores.2009.04.015.

[76]

Steven A Hauck and Roger J Phillips. “Thermal and crustal evolution of Mars”. In: J. Geophys. Res.: Planets 107.E7 (2002), pp. 6–1. doi: 10.1029/2001JE001801.

[77]

HJ van Heck and PJ Tackley. “Plate tectonics on super-Earths: equally or more likely than on Earth”. In: Earth Planet. Sci. Lett. 310.3-4 (2011), pp. 252–261. doi: 10.1016/j. epsl.2011.07.029.

[78]

Douglas J Hemingway and Isamu Matsuyama. “Isostatic equilibrium in spherical coordinates and implications for crustal thickness on the Moon, Mars, Enceladus, and elsewhere”. In: Geophys. Res. Lett. 44.15 (2017), pp. 7695–7705. doi: 10.1002/2017GL073334.

[79]

Christian Hirt, SJ Claessens, Michael Kuhn, and WE Featherstone. “Kilometer-resolution gravity field of Mars: MGM2011”. In: Planetary and Space Science 67.1 (2012), pp. 147–154. doi: 10.1016/j.pss.2012.02.006.

[80]

J. Huang, A. Yang, and S. Zhong. “Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics”. In: Earth Planet. Sci. Lett. 362 (2013), pp. 207–214. doi: 10.1016/j.epsl.2012.11.051.

[81]

Hauke Hussmann, Tilman Spohn, and Karin Wieczerkowski. “Thermal equilibrium states of Europa’s ice shell: Implications for internal ocean thickness and surface heat flow”. In: Icarus 156.1 (2002), pp. 143–151. doi: 10.1006/icar.2001.6776.

[82]

Michael HG Jacobs, Arie P van den Berg, Rainer Schmid-Fetzer, Jellie de Vries, Wim van Westrenen, and Yue Zhao. “Thermodynamic properties of geikielite (MgTiO3) and ilmenite (FeTiO3) derived from vibrational methods combined with Raman and infrared spectroscopic data”. In: Physics and Chemistry of Minerals 49.7 (2022), pp. 1–18. doi: 10.1007/s00269- 022-01195-5.

[83]

Peter Janle and Ercan Erkul. “Gravity studies of the Tharsis area on Mars”. In: Earth, Moon, and Planets 53.3 (1991), pp. 217–232. doi: xxxx.

[84]

JC Jansen et al. “Small-scale density variations in the lunar crust revealed by GRAIL”. In: Icarus 291 (2017), pp. 107–123. doi: 10.1016/j.icarus.2017.03.017.

[85]

Huimin Jing, Huai Zhang, Han Li, David A Yuen, and Yaolin Shi. “Parallel numerical analysis on the rheology of the martian ice-rock mixture”. In: Journal of Earth Science 22.2 (2011), p. 176. doi: 10.1007/s12583-011-0170-0.

[86]

K Kalousová, O Souček, and O Čadek. “Two-phase convection in icy satellites”. In: Acta Universitatis Carolinae. Mathematica et Physica 53.1 (2012), pp. 61–71.

[87]

Klára Kalousová, Ondřej Souček, Gabriel Tobie, Gaël Choblet, and Ondřej Čadek. “Ice melting and downward transport of meltwater by two-phase flow in Europa’s ice shell”. In: J. Geophys. Res.: Planets 119.3 (2014), pp. 532–549. doi: 10.1002/2013JE004563.

[88]

Masanori Kameyama, Takehiro Miyagoshi, and Masaki Ogawa. “Linear analysis on the onset of thermal convection of highly compressible fluids: implications for the mantle convection of super-Earths”. In: Geophy. J. Int. 200.2 (2015), pp. 1066–1077. doi: 10.1093/gji/ggu457.

[89]

RVMK Karlsson, KW Cheng, F Crameri, T Rolf, S Uppalapati, and SC Werner. “Implications of anomalous crustal provinces for Venus’ resurfacing history”. In: J. Geophys. Res.: Planets 125 (2020), e2019JE006340. doi: 10.1029/2019JE006340.

[90]

William M Kaula. “Venus reconsidered”. In: Science 270.5241 (1995), pp. 1460–1464. doi: 10.1126/science.270.5241.1460.

[91]

Y. Ke and V. S. Solomatov. “Coupled core-mantle thermal evolution of early Mars”. In: J. Geophys. Res.: Solid Earth 114.E7 (2009). doi: 10.1029/2008JE003291.

[92]

Y. Ke and V. S. Solomatov. “Early transient superplumes and the origin of the Martian crustal dichotomy”. In: J. Geophys. Res.: Solid Earth 111.E10 (2006). doi: 10.1029/ 2005JE002631.

[93]

Tobias Keller and Paul J Tackley. “Towards self-consistent modeling of the martian dichotomy: The influence of one-ridge convection on crustal thickness distribution”. In: Icarus 202.2 (2009), pp. 429–443. doi: 10.1016/j.icarus.2009.03.029.

[94]

Mathilde Kervazo, Gabriel Tobie, Gaël Choblet, Caroline Dumoulin, and Marie Běhounková. “Inferring Io’s interior from tidal monitoring”. In: Icarus 373 (2022), p. 114737. doi: 10. 1016/j.icarus.2021.114737.

[95]

Amir Khan, Dongyang Huang, C Durán, Paolo Angelo Sossi, Domenico Giardini, and Motohiko Murakami. “Evidence for a liquid silicate layer atop the Martian core”. In: Nature 622.7984 (2023), pp. 718–723. doi: 10.1038/s41586-023-06586-4.

[96]

Amir Khan et al. “A geophysical perspective on the bulk composition of Mars”. In: J. Geophys. Res.: Planets 123.2 (2018), pp. 575–611. doi: 10.1002/2017JE005371.

[97]

Amir Khan et al. “Upper mantle structure of Mars from InSight seismic data”. In: Science 373.6553 (2021), pp. 434–438. doi: 10.1126/science.abf2966.

[98]

W. S. Kiefer. “Mantle viscosity stratification and flow geometry: Implications for surface motions on Earth and Venus”. In: Geophys. Res. Lett. 20.4 (1993), pp. 265–268. doi: 10. 1029/93GL00129.

[99]

W.S. Kiefer and B. Hager. “Geoid anomalies and dynamic topography from convection in cylindrical geometry: applications to mantle plumes on Earth and Venus”. In: Geophy. J. Int. 108 (1992), pp. 198–214. doi: 10.1111/j.1365-246X.1992.tb00850.x.

[100]

Walter S Kiefer. “Melting in the Martian mantle: Shergottite formation and implications for present-day mantle convection on Mars”. In: Meteoritics & Planetary Science 38.12 (2003), pp. 1815–1832. doi: 10.1111/j.1945-5100.2003.tb00017.x.

[101]

Walter S Kiefer, Bruce G Bills, and R Steven Nerem. “An inversion of gravity and topography for mantle and crustal structure on Mars”. In: J. Geophys. Res.: Planets 101.E4 (1996), pp. 9239–9252. doi: 10.1029/95JE03699.

[102]

Walter S Kiefer, Justin Filiberto, Constantin Sandu, and Qingsong Li. “The effects of mantle composition on the peridotite solidus: Implications for the magmatic history of Mars”. In: Geochimica et Cosmochimica Acta 162 (2015), pp. 247–258. doi: 10.1016/j.gca.2015. 02.010.

[103]

Walter S Kiefer and Qingsong Li. “Water undersaturated mantle plume volcanism on present-day Mars”. In: Meteoritics & Planetary Science 51.11 (2016), pp. 1993–2010. doi: 10.1111/maps.12720.

[104]

S. D. King. “Pattern of lobate scarps on Mercury’s surface reproduced by a model of mantle convection”. In: Nature Geoscience 1.4 (2008), pp. 229–232. doi: 10.1038/ ngeo152.

[105]

S.D. King. “Venus Resurfacing Constrained by Geoid and Topography”. In: J. Geophys. Res.: Planets 123 (2018), pp. 1041–1060. doi: 10.1002/2017JE005475.

[106]

Scott D King et al. “Ceres’ Broad-Scale Surface Geomorphology Largely Due To Asymmetric Internal Convection”. In: AGU Advances 3.3 (2022), e2021AV000571. doi: 10.1029/ 2021AV000571.

[107]

Brigitte Knapmeyer-Endrun et al. “Thickness and structure of the martian crust from InSight seismic data”. In: Science 373.6553 (2021), pp. 438–443. doi: 10.1126/science.abf8966.

[108]

Alex S Konopliv, Charles F Yoder, E Myles Standish, Dah-Ning Yuan, and William L Sjogren. “A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris”. In: Icarus 182.1 (2006), pp. 23–50. doi: 10.1016/ j.icarus.2005.12.025.

[109]

Alex S Konopliv et al. “Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters”. In: Icarus 211.1 (2011), pp. 401–428. doi: 10.1016/j. icarus.2010.10.004.

[110]

OL Kuskov and VA Kronrod. “Models of the internal structure of Callisto”. In: Solar System Research 39 (2005), pp. 283–301. doi: 10.1007/s11208-005-0043-0.

[111]

Laëtitia Lebec, Stéphane Labrosse, Adrien Morison, and Paul J Tackley. “Scaling of convection in high-pressure ice layers of large icy moons and implications for habitability”. In: Icarus 396 (2023), p. 115494. doi: 10.1016/j.icarus.2023.115494.

[112]

A.M. Leitch and D.A. Yuen. “Compressible convection in a viscous Venusian mantle”. In: J. Geophys. Res.: Solid Earth 96.E1 (1991), pp. 15, 551–15, 562. doi: 10.1029/91JE01193.

[113]

A. Lenardic, W. M. Kaula, and D. L. Bindschadler. “A mechanism for crustal recycling on Venus”. In: J. Geophys. Res.: Solid Earth 98.E10 (1993), p. 18697. doi: 10.1029/ 93JE01799.

[114]

A. Lenardic, W. M. Kaula, and D. L. Bindschadler. “Some effects of a dry crustal flow law on numerical simulations of coupled crustal deformation and mantle convection on Venus”. In: J. Geophys. Res.: Solid Earth 100.E8 (1995), p. 16949. doi: 10.1029/95JE01895.

[115]

A. Lenardic, W. M. Kaula, and D. L. Bindschadler. “The tectonic evolution of Western Ishtar Terra, Venus”. In: Geophys. Res. Lett. 18.12 (1991), pp. 2209–2212. doi: 10.1029/ 91GL02734.

[116]

Adrian Lenardic, Francis Nimmo, and L Moresi. “Growth of the hemispheric dichotomy and the cessation of plate tectonics on Mars”. In: J. Geophys. Res.: Planets 109.E2 (2004). doi: 10.1029/2003JE002172.

[117]

Giovanni Leone, Paul J Tackley, Taras V Gerya, Dave A May, and Guizhi Zhu. “Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the Martian dichotomy”. In: Geophys. Res. Lett. 41.24 (2014), pp. 8736–8743. doi: 10. 1002/2014GL062261.

[118]

Qingsong Li and Walter S Kiefer. “Mantle convection and magma production on present-day Mars: Effects of temperature-dependent rheology”. In: Geophys. Res. Lett. 34.16 (2007). doi: 10.1029/2007GL030544.

[119]

Tim Lichtenberg, Tobias Keller, Richard F Katz, Gregor J Golabek, and Taras V Gerya. “Magma ascent in planetesimals: Control by grain size”. In: Earth Planet. Sci. Lett. 507 (2019), pp. 154–165. doi: 10.1016/j.epsl.2018.11.034.

[120]

A. Loddoch and U. Hansen. “Temporally transitional mantle convection: Implications for Mars”. In: J. Geophys. Res.: Solid Earth 113.E9 (2008). doi: 10.1029/2007JE003023.

[121]

A. Loddoch, C. Stein, and U. Hansen. “Temporal variations in the convective style of planetary mantles”. In: Earth Planet. Sci. Lett. 251.1-2 (2006), pp. 79–89. doi: 10.1016/j.epsl. 2006.08.026.

[122]

Philippe Lognonné et al. “Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data”. In: Nature Geoscience 13.3 (2020), pp. 213–220. doi: 10. 1038/s41561-020-0536-y.

[123]

Diogo L Lourenço. “Estranged planetary twins”. In: Nature Geoscience 16 (2023), pp. 2–3. doi: 10.1038/s41561-022-01104-z.

[124]

Anthony R Lowry and Shijie Zhong. “Surface versus internal loading of the Tharsis rise, Mars”. In: J. Geophys. Res.: Planets 108.E9 (2003). doi: 10.1029/2003JE002111.

[125]

S.J. Mackwell, M. E. Zimmerman, and D. L. Kohlstedt. “High-temperature deformation of dry diabase with application to tectonics on Venus”. In: J. Geophys. Res.: Solid Earth 103 (1998), pp. 975–984. doi: 10.1029/97JB02671.

[126]

JS Maia, MA Wieczorek, and A-C Plesa. “The mantle viscosity structure of Venus”. In: Geophys. Res. Lett. 50.15 (2023), e2023GL103847. doi: 10.1029/2023GL103847.

[127]

Julia S Maia and Mark A Wieczorek. “Lithospheric structure of Venusian crustal plateaus”. In: J. Geophys. Res.: Planets 127.2 (2022), e2021JE007004. doi: 10.1029/2021JE007004.

[128]

Michael Manga. “Interactions between mantle diapirs”. In: Geophys. Res. Lett. 24.15 (1997), pp. 1871–1874. doi: 10.1029/97GL01889.

[129]

Jean-Luc Margot et al. “Spin state and moment of inertia of Venus”. In: Nature Astronomy 5.7 (2021), pp. 676–683. doi: 10.1038/s41550-021-01339-7.

[130]

Dan McKenzie, David N Barnett, and Dah-Ning Yuan. “The relationship between Martian gravity and topography”. In: Earth Planet. Sci. Lett. 195.1-2 (2002), pp. 1–16. doi: 10. 1016/S0012-821X(01)00555-6.

[131]

Dan McKenzie et al. “Features on Venus generated by plate boundary processes”. In: J. Geophys. Res.: Planets 97.E8 (1992), pp. 13533–13544. doi: 10.1029/92JE01350.

[132]

W. B. McKinnon et al. “Convection in a volatile nitrogen-ice-rich layer drives Pluto’s geological vigour”. In: Nature 534.7605 (2016), pp. 82–85. doi: 10.1038/nature18289.

[133]

William B. McKinnon, Paul M. Schenk, and Andrew J. Dombard. “Chaos on Io: A model for formation of mountain blocks by crustal heating, melting, and tilting”. In: Geology 29.2 (2001), pp. 103–106. doi: 10.1130/0091-7613(2001)029<0103:COIAMF>2.0.CO;2.

[134]

Daniel Mege and Philippe Masson. “Stress models for Tharsis formation, Mars”. In: Planetary and Space Science 44.12 (1996), pp. 1471–1497. doi: 10.1016/S0032-0633(96)00112-2.

[135]

Tobias G Meier, Dan J Bower, Tim Lichtenberg, Paul J Tackley, and Brice-Olivier Demory. “Hemispheric tectonics on super-Earth LHS 3844b”. In: The Astrophysical Journal Letters 908.2 (2021), p. L48. doi: 10.3847/2041-8213/abe400.

[136]

G. Mitri and A. P. Showman. “Convective-conductive transitions and sensitivity of a convecting ice shell to perturbations in heat flux and tidal-heating rate: Implications for Europa”. In: Icarus 177.2 (2005), pp. 447–460. doi: 10.1016/j.icarus.2005.03.019.

[137]

Takehiro Miyagoshi, Masanori Kameyama, and Masaki Ogawa. “Thermal convection and the convective regime diagram in super-Earths”. In: J. Geophys. Res.: Planets 120.7 (2015), pp. 1267–1278. doi: 10.1002/2015JE004793.

[138]

L. Moresi and V. Solomatov. “Mantle convection with a brittle lithosphere: thoughts on the global tectonics styles of the Earth and Venus”. In: Geophy. J. Int. 133 (1998), pp. 669–682.

[139]

Louis Moresi and Barry Parsons. “Interpreting gravity, geoid, and topography for convection with temperature dependent viscosity: Application to surface features on Venus”. In: J. Geophys. Res.: Planets 100.E10 (1995), pp. 21155–21171. doi: 10.1029/95JE01622.

[140]

Steve Mueller and William B McKinnon. “Three-layered models of Ganymede and Callisto: Compositions, structures, and aspects of evolution”. In: Icarus 76.3 (1988), pp. 437–464. doi: 10.1016/0019-1035(88)90014-0.

[141]

Josh P Murphy and Scott D King. “Reconciling Mars InSight Results, Geoid, and Melt Evolution with 3D Spherical Models of Convection”. In: J. Geophys. Res.: Planets 129 (2023), e2023JE008143. doi: 10.1029/2023JE008143.

[142]

K Nagel, D Breuer, and T Spohn. “A model for the interior structure, evolution, and differentiation of Callisto”. In: Icarus 169.2 (2004), pp. 402–412. doi: 10.1016/j.icarus. 2003.12.019.

[143]

Amanda L Nahm and Richard A Schultz. “Magnitude of global contraction on Mars from analysis of surface faults: Implications for martian thermal history”. In: Icarus 211.1 (2011), pp. 389–400. doi: 10.1016/j.icarus.2010.11.003.

[144]

Wladimir Neumann. “Towards 3D modelling of convection in planetesimals and meteorite parent bodies”. In: Monthly Notices of the Royal Astronomical Society: Letters 490.1 (2019), pp. L47–L51. doi: 10.1093/mnrasl/slz147.

[145]

F Nimmo and DJ Stevenson. “Estimates of Martian crustal thickness from viscous relaxation of topography”. In: J. Geophys. Res.: Planets 106.E3 (2001), pp. 5085–5098. doi: 10. 1029/2000JE001331.

[146]

Lena Noack, Doris Breuer, and Tilman Spohn. “Coupling the atmosphere with interior dynamics: Implications for the resurfacing of Venus”. In: Icarus 217.2 (2012), pp. 484–498. doi: 10.1016/j.icarus.2011.08.026.

[147]

Craig O’Neill, L Moresi, and Adrian Lenardic. “Insulation and depletion due to thickened crust: effects on melt production on Mars and Earth”. In: Geophys. Res. Lett. 32.14 (2005), p. L14304. doi: 10.1029/2005GL022855.

[148]

Masaki Ogawa. “A Numerical Model of a Coupled Magmatism-Mantle Convection System in Venus and the Earth’s Mantle beneath Archean Continental Crusts”. In: Icarus 102.1 (1993), pp. 40–61.

[149]

Masaki Ogawa. “Numerical models of magmatism in convecting mantle with temperature-dependent viscosity and their implications for Venus and Earth”. In: J. Geophys. Res.: Planets 105.E3 (2000), pp. 6997–7012.

[150]

C. P. Orth and V. S. Solomatov. “The isostatic stagnant lid approximation and global variations in the Venusian lithospheric thickness”. In: Geochem. Geophys. Geosyst. 12.7 (2011). doi: 10.1029/2011GC003582.

[151]

C.P. Orth and V.S. Solomatov. “Constraints on the Venusian crustal thickness variations in the isostatic stagnant lid approximation”. In: Geochem. Geophys. Geosyst. 13.11 (2012). doi: 10.1029/2012GC004377.

[152]

Roger J Phillips and Vicki L Hansen. “Geological evolution of Venus: Rises, plains, plumes, and plateaus”. In: Science 279.5356 (1998), pp. 1492–1497.

[153]

A-C Plesa et al. “The thermal state and interior structure of Mars”. In: Geophys. Res. Lett. 45.22 (2018), pp. 12–198. doi: 10.1029/2018GL080728.

[154]

Ana-Catalina Plesa, Mark Wieczorek, Martin Knapmeyer, Attilio Rivoldini, Michaela Walterova, and Doris Breuer. “Interior dynamics and thermal evolution of Mars–a geodynamic perspective”. In: Advances in geophysics. Vol. 63. 2022, pp. 179–230. doi: 10.1016/bs. agph.2022.07.005.

[155]

Chuan Qin, Shijie Zhong, and Roger Phillips. “Formation of the lunar fossil bulges and its implication for the early Earth and Moon”. In: Geophys. Res. Lett. 45.3 (2018), pp. 1286–1296. doi: 10.1002/2017GL076278.

[156]

Chuan Qin, Shijie Zhong, and John Wahr. “Elastic tidal response of a laterally heterogeneous planet: a complete perturbation formulation”. In: Geophy. J. Int. 207.1 (2016), pp. 89–110. doi: 10.1093/gji/ggw257.

[157]

H. L. Redmond and S. D. King. “Does mantle convection currently exist on Mercury?” In: Phys. Earth. Planet. Inter. 164.3-4 (2007), pp. 221–231. doi: 10.1016/j.pepi.2007.07. 004.

[158]

Hannah L Redmond and Scott D King. “A numerical study of a mantle plume beneath the Tharsis Rise: Reconciling dynamic uplift and lithospheric support models”. In: J. Geophys. Res.: Planets 109.E9 (2004). doi: 10.1029/2003JE002228.

[159]

C.C. Reese, C.P. Orth, and V.S. Solomatov. “Impact megadomes and the origin of the martian crustal dichotomy”. In: Icarus 213.2 (2011), pp. 433–442. doi: 10.1016/j.icarus.2011. 03.028.

[160]

C.C. Reese, C.P. Orth, and V.S. Solomatov. “Impact origin for the Martian crustal dichotomy: Half emptied or half filled?” In: J. Geophys. Res.: Planets 115.5 (2010). doi: 10.1029/ 2009JE003506.

[161]

C.C. Reese and V.S. Solomatov. “Early martian dynamo generation due to giant impacts”. In: Icarus 207.1 (2010), pp. 82–97. doi: 10.1016/j.icarus.2009.10.016.

[162]

C.C. Reese and V.S. Solomatov. “Fluid dynamics of local martian magma oceans”. In: Icarus 184.1 (2006), pp. 102–120. doi: 10.1016/j.icarus.2006.04.008.

[163]

C.C. Reese, V.S. Solomatov, and J.R. Baumgardner. “Survival of impact-induced thermal anomalies in the Martian mantle”. In: J. Geophys. Res.: Planets 107.10 (2002), pp. 12–1. doi: 10.1029/2000JE001474.

[164]

C.C. Reese, V.S. Solomatov, J.R. Baumgardner, D.R. Stegman, and A.V. Vezolainen. “Magmatic evolution of impact-induced Martian mantle plumes and the origin of Tharsis”. In: J. Geophys. Res.: Planets 109.8 (2004), E08009. doi: 10.1029/2003JE002222.

[165]

C.C. Reese, V.S. Solomatov, and C.P. Orth. “Interaction between local magma ocean evolution and mantle dynamics on Mars”. In: Special Paper of the Geological Society of America 430 (2007), pp. 913–932. doi: 10.1130/2007.2430(42).

[166]

C.C. Reese, V.S. Solomatov, and C.P. Orth. “Mechanisms for cessation of magmatic resurfacing on Venus”. In: J. Geophys. Res.: Planets 112.4 (2007). doi: 10.1029/ 2006JE002782.

[167]

CC Reese, VS Solomatov, and L-N Moresi. “Heat transport efficiency for stagnant lid convection with dislocation viscosity: Application to Mars and Venus”. In: J. Geophys. Res.: Planets 103.E6 (1998), pp. 13643–13657.

[168]

CC Reese, VS Solomatov, and L-N Moresi. “Non-newtonian stagnant lid convection and magmatic resur facing on venus”. In: Icarus 139.1 (1999), pp. 67–80.

[169]

JA Richardson, Jacob E Bleacher, CB Connor, and Lori Sherea Glaze. “Small Volcanic Vents of the Tharsis Volcanic Province, Mars”. In: J. Geophys. Res.: Planets 126.2 (2021), e2020JE006620. doi: 10.1029/2020JE006620.

[170]

J. H. Roberts and J. Arkani-Hamed. “Impact-induced mantle dynamics on Mars”. In: Icarus 218.1 (2012), pp. 278–289. doi: 10.1016/j.icarus.2011.11.038.

[171]

J. H. Roberts and O. S. Barnouin. “The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury”. In: J. Geophys. Res.: Planets 117.E2 (2012). doi: 10.1029/ 2011JE003876.

[172]

J. H. Roberts, R. J. Lillis, and M. Manga. “Giant impacts on early Mars and the cessation of the Martian dynamo”. In: J. Geophys. Res.: Solid Earth 114.E4 (2009). doi: 10.1029/ 2008JE003287.

[173]

J. H. Roberts and F. Nimmo. “Tidal heating and the long-term stability of a subsurface ocean on Enceladus”. In: Icarus 194.2 (2008), pp. 675–689. doi: 10.1016/j.icarus.2007.11. 010.

[174]

J. H. Roberts and S. Zhong. “Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy”. In: J. Geophys. Res.: Solid Earth 111.E6 (2006). doi: 10. 1029/2005JE002668.

[175]

J. H. Roberts and S. Zhong. “The cause for the north-south orientation of the crustal dichotomy and the equatorial location of Tharsis on Mars”. In: Icarus 190.1 (2007), pp. 24–31. doi: 10.1016/j.icarus.2007.03.002.

[176]

James H Roberts and Shijie Zhong. “Plume-induced topography and geoid anomalies and their implications for the Tharsis rise on Mars”. In: J. Geophys. Res.: Planets 109.E3 (2004). doi: 10.1029/2003JE002226.

[177]

Tobias Rolf, Bernhard Steinberger, U Sruthi, and Stephanie C Werner. “Inferences on the mantle viscosity structure and the post-overturn evolutionary state of Venus”. In: Icarus 313 (2018), pp. 107–123. doi: 10.1016/j.icarus.2018.05.014.

[178]

Tobias Rolf et al. “Dynamics and evolution of venus’ mantle through time”. In: Space Science Reviews 218.8 (2022), p. 70. doi: 10.1007/s11214-022-00937-9.

[179]

A Rozel, J Besserer, GJ Golabek, M Kaplan, and PJ Tackley. “Self-consistent generation of single-plume state for Enceladus using non-Newtonian rheology”. In: J. Geophys. Res.: Planets 119.3 (2014), pp. 416–439. doi: 10.1002/2013JE004473.

[180]

Thomas Ruedas and Doris Breuer. “On the relative importance of thermal and chemical buoyancy in regular and impact-induced melting in a Mars-like planet”. In: J. Geophys. Res.: Planets 122.7 (2017), pp. 1554–1579. doi: 10.1002/2016JE005221.

[181]

Thomas Ruedas, Paul J Tackley, and Sean C Solomon. “Thermal and compositional evolution of the Martian mantle: Effects of water”. In: Phys. Earth. Planet. Inter. 220 (2013), pp. 50–72. doi: 10.1016/j.pepi.2013.04.006.

[182]

Thomas Ruedas, Paul J. Tackley, and Sean C. Solomon. “Thermal and compositional evolution of the martian mantle: Effects of phase transitions and melting”. In: Phys. Earth. Planet. Inter. 216 (2013), pp. 32–58. doi: 10.1016/j.pepi.2012.12.002.

[183]

Henri Samuel, Maxim D Ballmer, Sebastiano Padovan, Nicola Tosi, Attilio Rivoldini, and Ana-catalina Plesa. “The Thermo-Chemical Evolution of Mars With a Strongly Stratified Mantle”. In: J. Geophys. Res.: Planets 126.4 (2021), e2020JE006613. doi: 10.1029/ 2020JE006613.

[184]

Henri Samuel et al. “Geophysical evidence for an enriched molten silicate layer above Mars’s core”. In: Nature 622.7984 (2023), pp. 712–717. doi: 10.1038/s41586-023-06601-8.

[185]

Joe W Schools and Laurent GJ Montési. “The generation of barriers to melt ascent in the Martian lithosphere”. In: J. Geophys. Res.: Planets 123.1 (2018), pp. 47–66. doi: 10. 1002/2017JE005396.

[186]

B Schott, AP Van den Berg, and DA Yuen. “Focussed time-dependent martian volcanism from chemical differentiation coupled with variable thermal conductivity”. In: Geophys. Res. Lett. 28.22 (2001), pp. 4271–4274. doi: 10.1029/2001GL013638.

[187]

B Schott, AP Van den Berg, and DA Yuen. “Slow secular cooling and long lived volcanism on Mars, explained”. In: Lunar and Planetary Science Conference. 2002, p. 1285. doi: xxxx.

[188]

G Schubert and DT Sandwell. “A global survey of possible subduction sites on Venus”. In: Icarus 117.1 (1995), pp. 173–196. doi: 10.1006/icar.1995.1150.

[189]

G Schubert, DL Turcotte, and ER Oxburgh. “Stability of planetary interiors”. In: Geophy. J. Int. 18.5 (1969), pp. 441–460. doi: 10.1111/j.1365-246X.1969.tb03370.x.

[190]

Gerald Schubert, D. Bercovici, and G.A. Glatzmaier. “Mantle dynamics in Mars and Venus: Influence of an immobile lithosphere on three-dimensional mantle convection”. In: J. Geophys. Res.: Solid Earth 95.B9 (1990), pp. 14105–14129.

[191]

P. Sekhar and S.D. King. “3D spherical models of Martian mantle convection constrained by melting history”. In: Earth Planet. Sci. Lett. 388 (2014), pp. 27–37. doi: 10.1016/j. epsl.2013.11.047.

[192]

MH Shahnas and RN Pysklywec. “Penetrative Superplumes in the Mantle of Large Super-Earth Planets: A Possible Mechanism for Active Tectonics in the Massive Super-Earths”. In: Geochem. Geophys. Geosyst. 24.2 (2023), e2022GC010678. doi: 10. 1029/2022GC010678.

[193]

MH Shahnas, RN Pysklywec, and WR Peltier. “Layered convection in Io: Implications for short-wavelength surface topography and heat flow”. In: Icarus 225.1 (2013), pp. 15–27. doi: 10.1016/j.icarus.2013.03.014.

[194]

A. P. Showman and L. Han. “Effects of plasticity on convection in an ice shell: Implications for Europa”. In: Icarus 177.2 (2005), pp. 425–437. doi: 10.1016/j.icarus.2005.02.020.

[195]

A. P. Showman and L. Han. “Numerical simulations of convection in Europa’s ice shell: Implications for surface features”. In: J. Geophys. Res.: Solid Earth 109.E1 (2004). doi: 10.1029/2003JE002103.

[196]

Adam P Showman, Lijie Han, and William B Hubbard. “The effect of an asymmetric core on convection in Enceladus’ ice shell: Implications for south polar tectonics and heat flux”. In: Geophys. Res. Lett. 40.21 (2013), pp. 5610–5614. doi: 10.1002/2013GL057149.

[197]

Norman H Sleep. “Martian plate tectonics”. In: J. Geophys. Res.: Planets 99.E3 (1994), pp. 5639–5655. doi: 10.1029/94JE00216.

[198]

David E Smith, William L Sjogren, G Leonard Tyler, Georges Balmino, Frank G Lemoine, and Alex S Konopliv. “The gravity field of Mars: results from Mars Global Surveyor”. In: Science 286.5437 (1999), pp. 94–97. doi: 10.1126/science.286.5437.94.

[199]

David E Smith et al. “Time variations of Mars’ gravitational field and seasonal changes in the masses of the polar ice caps”. In: J. Geophys. Res.: Planets 114.E5 (2009). doi: 10.1029/2008JE003267.

[200]

Suzanne E Smrekar, Colby Ostberg, and Joseph G O’Rourke. “Earth-like lithospheric thickness and heat flow on Venus consistent with active rifting”. In: Nature Geoscience (2023), pp. 13–18. doi: 10.1038/s41561-022-01068-0.

[201]

Suzanne E Smrekar et al. “Pre-mission InSights on the interior of Mars”. In: Space Science Reviews 215.1 (2019), pp. 1–72. doi: 10.1007/s11214-018-0563-9.

[202]

V.S. Solomatov and L.-N. Moresi. “Stagnant lid convection on Venus”. In: J. Geophys. Res.: Solid Earth 101.E2 (1996), pp. 4737–4753. doi: 10.1029/95JE03361.

[203]

V.S. Solomatov and V.N. Zharkov. “The thermal regime of Venus”. In: Icarus 84.2 (1990), pp. 280–295. doi: 10.1016/0019-1035(90)90038-B.

[204]

Sean C Solomon and James W Head. “Evolution of the Tharsis province of Mars: The importance of heterogeneous lithospheric thickness and volcanic construction”. In: J. Geophys. Res.: Solid Earth 87.B12 (1982), pp. 9755–9774. doi: 10.1029/JB087iB12p09755.

[205]

Dan C Spencer, Richard F Katz, Ian J Hewitt, David A May, and Laszlo P Keszthelyi. “Compositional layering in Io driven by magmatic segregation and volcanism”. In: J. Geophys. Res.: Planets 125.9 (2020), e2020JE006604. doi: 10.1029/2020JE006604.

[206]

Dan C Spencer, Richard F Katz, and IJ Hewitt. “Magmatic intrusions control Io’s crustal thickness”. In: J. Geophys. Res.: Planets 125.6 (2020), e2020JE006443. doi: 10.1029/ 2020JE006443.

[207]

T Spohn, W Konrad, D Breuer, and R Ziethe. “The longevity of lunar volcanism: Implications of thermal evolution calculations with 2D and 3D mantle convection models”. In: Icarus 149.1 (2001), pp. 54–65. doi: 10.1006/icar.2000.6514.

[208]

Tilman Spohn. “Mantle differentiation and thermal evolution of Mars, Mercury, and Venus”. In: Icarus 90.2 (1991), pp. 222–236. doi: 10.1016/0019-1035(91)90103-Z.

[209]

S. W. Squyres, D. G. Jankowski, M. Simons, S. C. Solomon, B. H. Hager, and G. E. McGill. “Plains tectonism on Venus: The deformation belts of Lavinia Planitia”. In: J. Geophys. Res.: Solid Earth 97.E8 (1992), p. 13579. doi: 10.1029/92JE00481.

[210]

O. Srámek and S. Zhong. “Long-wavelength stagnant lid convection with hemispheric variation in lithospheric thickness: Link between Martian crustal dichotomy and Tharsis?” In: J. Geophys. Res.: Solid Earth 115.E9 (2010). doi: 10.1029/2010JE003597.

[211]

O. Srámek and S. Zhong. “Martian crustal dichotomy and Tharsis formation by partial melting coupled to early plume migration”. In: J. Geophys. Res.: Planets 117.E1 (2012). doi: 10.1029/2011JE003867.

[212]

Simon C. Stähler et al. “Seismic detection of the martian core”. In: Science 373.6553 (2021), pp. 443–448. doi: 10.1126/science.abi7730.

[213]

Dave R Stegman, J Freeman, and David A May. “Origin of ice diapirism, true polar wander, subsurface ocean, and tiger stripes of Enceladus driven by compositional convection”. In: Icarus 202.2 (2009), pp. 669–680. doi: 10.1016/j.icarus.2009.03.017.

[214]

Dave R Stegman, A Mark Jellinek, Stephen A Zatman, John R Baumgardner, and Mark A Richards. “An early lunar core dynamo driven by thermochemical mantle convection”. In: Nature 421.6919 (2003), pp. 143–146. doi: 10.1038/nature01267.

[215]

C. Stein, A. Fahl, and U. Hansen. “Resurfacing events on Venus: Implications on plume dynamics and surface topography”. In: Geophys. Res. Lett. 37.1 (2010). doi: 10.1029/ 2009GL041073.

[216]

C. Stein, A. Finnenkötter, J.P. Lowman, and U. Hansen. “The pressure-weakening effect in super-Earths: Consequences of a decrease in lower mantle viscosity on surface dynamics”. In: Geophys. Res. Lett. 38.21 (2011). doi: 10.1029/2011GL049341.

[217]

C. Stein, J.P. Lowman, and U. Hansen. “The influence of mantle internal heating on lithospheric mobility: Implications for super-Earths”. In: Earth Planet. Sci. Lett. 361 (2013), pp. 448–459. doi: 10.1016/j.epsl.2012.11.011.

[218]

Bernhard Steinberger, Stephanie C Werner, and Trond H Torsvik. “Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth, Venus and Mars”. In: Icarus 207.2 (2010), pp. 564–577. doi: 10.1016/j.icarus.2009.12.025.

[219]

T Steinke, H Hu, D Höning, W Van der Wal, and B Vermeersen. “Tidally induced lateral variations of Io’s interior”. In: Icarus 335 (2020), p. 113299. doi: 10.1016/j.icarus. 2019.05.001.

[220]

Paul J Tackley. “Convection in Io’s asthenosphere: Redistribution of nonuniform tidal heating by mean flows”. In: J. Geophys. Res.: Planets 106.E12 (2001), pp. 32971–32981.

[221]

Paul J Tackley, Gerald Schubert, Gary A Glatzmaier, Paul Schenk, J Todd Ratcliff, and Jean-Philippe Matas. “Three-dimensional simulations of mantle convection in Io”. In: Icarus 149.1 (2001), pp. 79–93.

[222]

Y. van der Tang. “The Origin of Tharsis - A Deep Mantle Gravity Study”. MA thesis. Delft University of Technology, 2021.

[223]

Nicola C Taylor, Jessica H Johnson, Richard A Herd, and Catherine E Regan. “What can Olympus Mons tell us about the Martian lithosphere?” In: Journal of Volcanology and Geothermal Research 402 (2020), p. 106981. doi: 10.1016/j.jvolgeores.2020.106981.

[224]

P. van Thienen, N.J. Vlaar, and A.P. van den Berg. “Assessment of the cooling capacity of plate tectonics and flood volcanism in the evolution of Earth, Mars and Venus”. In: Phys. Earth. Planet. Inter. 150 (2005), pp. 287–315. doi: 10.1016/j.pepi.2004.11.010.

[225]

P. van Thienen, N.J. Vlaar, and A.P. van den Berg. “Plate tectonics on the terrestrial planets”. In: Phys. Earth. Planet. Inter. 142 (2004), pp. 61–74. doi: 10.1016/j.pepi.2003.12.008.

[226]

Paul J Thomas and Gerald Schubert. “Crater relaxation as a probe of Europa’s interior”. In: J. Geophys. Res.: Solid Earth 91.B4 (1986), pp. 453–459. doi: 10.1029/JB091iB04p0D453.

[227]

Paul J Thomas and Gerald Schubert. “Finite element models of non-Newtonian crater relaxation”. In: J. Geophys. Res.: Solid Earth 92.B4 (1987), E749–E758. doi: 10.1029/ JB092iB04p0E749.

[228]

Paul J Thomas and Gerald Schubert. “Power law rheology of ice and the relaxation style and retention of craters on Ganymede”. In: J. Geophys. Res.: Solid Earth 93.B11 (1988), pp. 13755–13762. doi: 10.1029/JB093iB11p13755.

[229]

Paul J Thomas and Steven W Squyres. “Formation of crater palimpsests on Ganymede”. In: J. Geophys. Res.: Solid Earth 95.B12 (1990), pp. 19161–19174. doi: 10.1029/ JB095iB12p19161.

[230]

Paul J Thomas and Steven W Squyres. “Relaxation of impact basins on icy satellites”. In: J. Geophys. Res.: Solid Earth 93.B12 (1988), pp. 14919–14932. doi: 10.1029/ JB093iB12p14919.

[231]

Paul J Thomas, Steven W Squyres, and Michael H Carr. “Flank tectonics of Martian volcanoes”. In: J. Geophys. Res.: Solid Earth 95.B9 (1990), pp. 14345–14355. doi: 10. 1029/JB095iB09p14345.

[232]

Jiacheng Tian, Paul J Tackley, and Diogo L Lourenço. “The tectonics and volcanism of Venus: New modes facilitated by realistic crustal rheology and intrusive magmatism”. In: Icarus (2023), p. 115539. doi: 10.1016/j.icarus.2023.115539.

[233]

Nicola Tosi and Sebastiano Padovan. “Mercury, Moon, Mars: Surface Expressions of Mantle Convection and Interior Evolution of Stagnant-Lid Bodies”. In: Mantle convection and surface expressions (2021), pp. 455–489.

[234]

DL Turcotte, AT Hsui, KE Torrance, and ER Oxburgh. “Thermal structure of the Moon”. In: J. Geophys. Res.: Solid Earth 77.35 (1972), pp. 6931–6939. doi: 10 . 1029 / JB077i035p06931.

[235]

DL Turcotte and ER Oxburgh. “Lunar convection”. In: J. Geophys. Res.: Solid Earth 75.32 (1970), pp. 6549–6552. doi: 10.1029/JB075i032p06549.

[236]

Ken’yo U, Masanori Kameyama, and Masaki Ogawa. “The volcanic and radial expansion/contraction history of the Moon simulated by numerical models of magmatism in the convective mantle”. In: J. Geophys. Res.: Planets 128 (2023), e2023JE007845. doi: 10.1029/2023JE007845.

[237]

S Uppalapati, T Rolf, F Crameri, and SC Werner. “Dynamics of Lithospheric Overturns and Implications for Venus’s Surface”. In: J. Geophys. Res.: Planets 125.11 (2020), e2019JE006258. doi: 10.1029/2019JE006258.

[238]

A.V. Vezolainen, V.S. Solomatov, A.T. Basilevsky, and J.W. Head. “Uplift of Beta Regio: Three-dimensional models”. In: J. Geophys. Res.: Planets 109.8 (2004), E08007. doi: 10. 1029/2004JE002259.

[239]

A.V. Vezolainen, V.S. Solomatov, J.W. Head, A.T. Basilevsky, and L.-N. Moresi. “Timing of formation of Beta Regio and its geodynamical implications”. In: J. Geophys. Res.: Planets 108.1 (2003), pp. 2–1. doi: 10.1029/2002JE001889.

[240]

J. de Vries, A. van den Berg, and W. van Westrenen. “Formation and evolution of a lunar core from ilmenite-rich magma ocean cumulates”. In: Earth Planet. Sci. Lett. 292 (2010), pp. 139–147.

[241]

J. de Vries et al. “Thermal equation of state of synthetic orthoferrosilite at lunar pressures and temperatures”. In: Physics and Chemistry of Minerals 40.9 (2013), pp. 691–703. doi: 10.1007/s00269-013-0605-5.

[242]

Sheng Wang and Hrvoje Tkalčić. “Scanning for planetary cores with single-receiver intersource correlations”. In: Nature Astronomy (2022). doi: 10.1038/s41550-022-01796-8.

[243]

M. B. Weller, A. Lenardic, and C. O’Neill. “The effects of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets”. In: Earth Planet. Sci. Lett. 420 (2015), pp. 85–94. doi: 10.1016/j.epsl.2015.03.021.

[244]

Matthew B Weller, Lukas Fuchs, Thorsten W Becker, and Krista M Soderlund. “Convection in thin shells of icy satellites: effects of latitudinal surface temperature variations”. In: J. Geophys. Res.: Planets 124.8 (2019), pp. 2029–2053. doi: 10.1029/2018JE005799.

[245]

Matthew B Weller and Walter S Kiefer. “The Physics of Changing Tectonic Regimes: Implications for the Temporal Evolution of Mantle Convection and the Thermal History of Venus”. In: J. Geophys. Res.: Planets 125 (2020). doi: 10.1029/2019JE005960.

[246]

Mark A Wieczorek et al. “InSight constraints on the global character of the Martian crust”. In: J. Geophys. Res.: Planets 127 (2022), e2022JE007298. doi: 10.1029/2022JE007298.

[247]

Raymond J Willemann and Donald L Turcotte. “The role of lithospheric stress in the support of the Tharsis rise”. In: J. Geophys. Res.: Solid Earth 87.B12 (1982), pp. 9793–9801. doi: 10.1029/JB087iB12p09793.

[248]

Jean-Pierre Williams, Francis Nimmo, William B Moore, and David A Paige. “The formation of Tharsis on Mars: What the line-of-sight gravity is telling us”. In: J. Geophys. Res.: Planets 113.E10 (2008). doi: 10.1029/2007JE003050.

[249]

Teresa Wong, Ulrich Hansen, Thomas Wiesehöfer, and William B McKinnon. “Layering by Double-Diffusive Convection in the Subsurface Oceans of Europa and Enceladus”. In: J. Geophys. Res.: Planets 127.12 (2022), e2022JE007316. doi: 10.1029/2022JE007316.

[250]

Ursula Wüllner and Helmut Harder. “Convection underneath a crust inhomogeneously enriched in heat sources: Application to Martian mantle dynamics”. In: Phys. Earth. Planet. Inter. 109.3-4 (1998), pp. 129–150. doi: 10.1016/S0031-9201(98)00121-6.

[251]

Jingchun Xie, Chengli Huang, and Mian Zhang. “On the formation of thrust fault-related landforms in Mercury’s Northern Smooth Plains: A new mechanical model of the lithosphere”. In: Icarus 388 (2022), p. 115197. doi: 10.1016/j.icarus.2022.115197.

[252]

Qian Yuan et al. “Moon-forming impactor as a source of Earth’s basal mantle anomalies”. In: Nature 623.7985 (2023), pp. 95–99. doi: 10.1038/s41586-023-06589-1.

[253]

Iris van Zelst, Julia S Maia, Ana-Catalina Plesa, Richard Ghail, and Moritz Spühler. “Estimates on the possible annual seismicity of Venus”. In: J. Geophys. Res.: Planets 129.7 (2024), e2023JE008048. doi: 10.1029/2023JE008048.

[254]

S. Zhang and C. O’Neill. “The early geodynamic evolution of Mars-type planets”. In: Icarus 265 (2016), pp. 187–208. issn: 0019-1035. doi: 10.1016/j.icarus.2015.10.019.

[255]

Wenbo Zhang, Nan Zhang, Yan Liang, and Leif Tokle. “The Effect of Pressure-Dependent Viscosity on the Dynamics of the Post-Overturn Lunar Mantle”. In: J. Geophys. Res.: Planets 128.10 (2023), e2023JE007933. doi: 10.1029/2023JE007933.

[256]

Y Zhao, Jellie De Vries, AP van den Berg, MHG Jacobs, and W van Westrenen. “The participation of ilmenite-bearing cumulates in lunar mantle overturn”. In: Earth Planet. Sci. Lett. 511 (2019), pp. 1–11. doi: 10.1016/j.epsl.2019.01.022.

[257]

S. Zhong. “Migration of Tharsis volcanism on Mars caused by differential rotation of the lithosphere”. In: Nature Geoscience 2.1 (2009), pp. 19–23. doi: 10.1038/ngeo392.

[258]

Shijie Zhong. “Effects of lithosphere on the long-wavelength gravity anomalies and their implications for the formation of the Tharsis rise on Mars”. In: J. Geophys. Res.: Planets 107.E7 (2002), pp. 8–1. doi: 10.1029/2001JE001589.

[259]

Shijie Zhong, Chuan Qin, Geruo A, and John Wahr. “Can tidal tomography be used to unravel the long-wavelength structure of the lunar interior?” In: Geophys. Res. Lett. 39.15 (2012). doi: 10.1029/2012GL052362.

[260]

Shijie Zhong and James H Roberts. “On the support of the Tharsis Rise on Mars”. In: Earth Planet. Sci. Lett. 214.1-2 (2003), pp. 1–9. doi: 10.1016/S0012-821X(03)00384-4.

[261]

Maria T Zuber. “The crust and mantle of Mars”. In: Nature 412.6843 (2001), pp. 220–227. doi: 10.1038/35084163.