Literature: codes and numerical methods
In what follows I make a quick inventory of the main codes of computational geodynamics, for crust, lithosphere and/or mantle modelling. In order to find all CIG-codes citations go to: https://geodynamics.org/cig/news/publications-refbase/
Regenauer-Lieb and Yuen [1747]
Regenauer-Lieb and Yuen [1746]
Branlund, Regenauer-Lieb, and Yuen [226]
Gerbault, Davey, and Henrys [713]
Funiciello, G. Morra, and Giardini [675]
Hetzel and Hampel [908]
Hampel and Pfiffner [857]
Capitanio, Morra, and Goes [313]
Heidbach [880], Maniatis, Kurfess, Hampel, and Heidbach [1369]
Capitanio, Morra, Goes, Weinberg, and Moresi [314]
Naliboff, Lithgow-Bertelloni, Ruff, and Koker [1532], Li and Hampel [1247]
So, Yuen, and Lee [1947]
Fourel, Goes, and Morra [649]
Peters, Veveakis, Poulet, Karrech, Herwegh, and Regenauer-Lieb [1649], Hampel and Hetzel [855], Zeumann and Hampel [2343]
Nabavi, Alavi, Mohammadi, Ghassemi, and Frehner [1497]
Nabavi, Alavi, Mohammadi, and Ghassemi [1496]
Hampel, Lüke, Krause, and Hetzel [856]
So and Capitanio [1948]
Dielforder and Hampel [542]
Chen et al. [357]
Nichols and Bassi [1559]
Bassi [98]
Bassi, Keen, and Potter [99]
Bassi [97]
Zhu, Zhang, Zhu, and Guo [2399]
A multigrid-based mantle convection simulation code
Damon, Kameyama, Knox, Porter, Yuen, and Sevre [491]
Miyagoshi, Kameyama, and Ogawa [1434], Kameyama, Miyagoshi, and Ogawa [1055]
Miyagoshi, Kameyama, and Ogawa [1433]
Marotta, Fernandez, and Sabadini [1386] (1998)
Marotta, Fernŕndez, and Sabadini [1387] (1999)
Nemčok & Henk [1545]
Guo et al. [844]
Belonging to the same family as the FLAC (Fast Lagrangian Analysis of Continua; Cundall and Board, 1988 [477]) and Parovoz codes (Poliakov and Podladchikov, 1992 [1683]; Gerbault et al. , 2009 [718]), ADELI is based on an explicit temporal finite difference approach associated with the dynamic relaxation method (Underwood, 1983). Numerical and mechanical aspects of this code in a 2-D or 3-D context can be found in Hassani et al. (1997) [871] and Chéry et al. (2001) [371].
https://code.google.com/archive/p/adeli/
https://code.google.com/archive/p/adeli/wikis/Publications.wiki
Hassani and Chéry [870]
Hassani, Jongmans, and Chéry [871]
Huc, Hassani, and Chéry [956]
Vanbrabant, Jongmans, Hassani, and Bellino [2154]
Lesne, Calais, Deverchčre, Chéry, and Hassani [1228]
Chéry, Zoback, and Hassani [371]
Provost, Chéry, and Hassani [1693]
Godard, Cattin, and Lavé [774], Berger, Jouanne, Hassani, and Mugnier [167]
Bonnardot, Hassani, and Tric [205] and Bonnardot, Hassani, Tric, Ruellan, and Regnier [206], Got, Monteiller, Monteux, Hassani, and Okubo [793], Neves, Tommasi, Vauchez, and Hassani [1554]
Gerbault, Cappa, and Hassani [712], Gibert, Gerbault, Hassani, and Tric [763]
Wang, He, Ding, and Gao [2190]
Cerpa, Hassani, Gerbault, and Prévost [335], Messager, Hassani, and Nivičre [1424]
Cerpa, Araya, Gerbault, and Hassani [333]
Cerpa, Guillaume, and J.Martinod [334], Gerbault, Hassani, Lizama, and Souche [714]
Tarayoun, Mazzotti, and Gueydan [2045]
Cerpa and Arcay [338]
Signorelli, Hassani, Tommasi, and Mameri [1929], Cerpa et al. [340]
Mameri, Tommasi, Vauchez, Signorelli, and Hassani [1364]
This code is hosted by CIG at https://geodynamics.org/cig/software/aspect/. It is an open source community code based on the finite element library deal.II [90, 42, 43]. It is massively parallel, relies on the p4est library for adaptive mesh refinement, uses the Trilinos solver library [903], and can deal with 2D and 3D geometries.
Kronbichler, Heister, and Bangerth [1152]
Dannberg and Heister [495], Gassmöller, Dannberg, Bredow, Steinberger, and Torsvik [695], Zhang and O’Neill [2355]
He, Puckett, and Billen [875], Dannberg, Eilon, Faul, Gassmöller, Moulik, and Myhill [493], Heister, Dannberg, Gassmöller, and Bangerth [884], Rose, Buffet, and Heister [1798], Rose and Buffett [1799], Austermann, Mitrovica, Huybers, and Rovere [55], Thieulot [2061], Bredow, Steinberger, Gassmöller, and Dannberg [232], O’Neill, Marchi, Zhang, and Bottke [1589], Takeyama, Saitoh, and Makino [2036]
Dannberg and Gassmöller [494], O’Neill and Zhang [1590], Glerum, Thieulot, Fraters, Blom, and Spakman [768] Gassmöller, Lokavarapu, Heien, Puckett, and Bangerth [696], Perry-Houts and Karlstrom [1647], Puckett, Turcotte, He, Lokavarapu, Robey, and Kellogg [1694], Bredow and Steinberger [231], Zhang and Li [2349]
Bauville and Baumann [109], Steinberger, Bredow, Lebedev, Schaeffer, and Torsvik [1995], Corti et al. [456], Liu and King [1299], Gassmöller, Lokavarapu, Bangerth, and Puckett [699], Dannberg, Gassmöller, Grove, and Heister [498], Njinju et al. [1570], Şengül Uluocak, Pysklywec, Göğüş, and Ulugergerli [1905], Robey and Puckett [1781], Fraters, Thieulot, Berg, and Spakman [654], Fraters, Bangerth, Thieulot, Glerum, and Spakman [655], Lin, Xu, Sun, and Zhou [1274], Heron et al. [899], Heron, Pysklywec, Stephenson, and Hunen [902], Perry-Hout [1646]
Gassmöller, Dannberg, Bangerth, Heister, and Myhill [697], Farangitakis, Heron, McCaffrey, Hunen, and Kalnins [613], Louis–Napoleon, Gerbault, Bonometti, Thieulot, Martin, and Vanderhaeghe [1326], Heyn, Conrad, and Trřnnes [912], Heyn, Conrad, and Trřnnes [913], Glerum, Brune, Stamps, and Strecker [769], Lees, Rudge, and McKenzie [1190] Naliboff, Glerum, Brune, Péron-Pinvidic, and Wrona [1533], Citron et al. [386], Heron, Murphy, Nance, and Pysklywec [893], O’Neill, Lowman, and Wasiliev [1578], Assanelli, Luoni, Rebay, Roda, and Spalla [53], Muluneh et al. [1490], Negredo, de Lis Mancilla, Clemente, Morales, and Fullea [1536], Lesher et al. [1227], Mitrovica et al. [1431], Withers [2262]
Barrionuevo et al. [94], Bredow and Steinberger [233], Rajaonarison, Stamps, and Naliboff [1728], Saxena, Choi, Powell, and Aslam [1853], Grevemeyer, Rüpke, Morgan, Iyer, and Devey [818], Heckenbach, Brune, Glerum, and Bott [877], Njinju, Stamps, Neumiller, and Gallager [1569], Clevenger and Heister [393], Faccenna, Becker, Holt, and Brun [608], Neuharth, Brune, Glerum, Heine, and Welford [1549], Comeau, Stein, Becken, and Hansen [433], Gouiza and Naliboff [798], Sandiford, Brune, Glerum, Naliboff, and Whittaker [1848], Holt and Condit [930], Fraters and Billen [657], Magni, Naliboff, Prada, and Gaina [1353], Şengül Uluocak, Göğüş, Pysklywec, and Chen [1906], Richter, Brune, Riedl, Glerum, Neuharth, and Strecker [1768], Dannberg, Myhill, Gassmöller, and Cottaar [500]
Thieulot and Bangerth [2063], Palmiotto, Ficini, Loreto, Muccini, and Cuffaro [1608], Behr, Holt, Becker, and Faccenna [138], O’Neill and Aulbach [1591], Zha, Lin, Zhou, Xu, and Zhang [2346], Neuharth, Brune, Glerum, Morley, Yuan, and Braun [1550], Neuharth, Brune, Wrona, Glerum, Braun, and Yuan [1551], Lundin, Doré, Naliboff, and van Wijk [1341], Heyn and Conrad [911], Bahadori et al. [73], Liu and Yang [1293], Weerdesteijn, Conrad, and Naliboff [2221], Cloetingh, Koptev, Lavecchia, Kovács, and Beekman [397], Bahadori et al. [74], Holt [927], Liu and King [1300], Pan, Naliboff, Bell, and Jackson [1610], Xie, Huang, and Zhang [2279], Lee, Saxena, Song, Rhie, and Choi [1188], Heilman and Becker [882], Maestrelli, Brune, Corti, Keir, Muluneh, and Sani [1346], Dannberg, Gassmöller, Li, Lithgow-Bertelloni, and Stixrude [499], Pons, Sobolev, Liu, and Neuharth [1685], Stein, Comeau, Becken, and Hansen [1991] Negredo, Hunen, Rodrguez-González, and Fullea [1542]
Heron, Peace, McCaffrey, Sharif, Yu, and Pysklywec [894], Hollyday, Austermann, Lloyd, Hoggard, Richards, and Rovere [924], Weerdesteijn et al. [2222], Changsheng, Pengchao, and Dongping [343], Zheng, Zhang, Wang, Zhang, and Shi [2369], Liu et al. [1312], Schmid, Brune, Glerum, and Schreurs [1881], Lanari et al. [1162], Monaco, Dannberg, Gassmoeller, and Pugh [1436], Phillips, Naliboff, McCaffrey, Pan, Hunen, and Froemchen [1664], He and Kapp [873], Maierová, Hasalová, Schulmann, Štpská, and Souček [1357], Liu et al. [1303], Liu and Pysklywec [1308], Heron et al. [900], Bodur et al. [200], Pons, Rodriguez Piceda, Sobolev, Scheck-Wenderoth, and Strecker [1684], Gea, Negredo, and de Lis Mancilla [701] Sandiford and Craig [1849], Neuharth and Mittelstaedt [1552], Richards, Coulson, Hoggard, Austermann, Dyer, and Mitrovica [1766], Liu, Yang, and Qi [1294], Saxena, Dannberg, Gassmöller, Fraters, Heister, and Styron [1854], Njinju, Stamps, Atekwana, Rooney, and Rajaonarison [1568], Guo, Sun, and Wei [843], Dannberg, Chotalia, and Gassmöller [497], Steinberger, Grasnick, and Ludwig [1996], Zheng, Zhang, Wang, Zhang, and Shi [2369], Euen, Liu, Gassmöller, Heister, and King [596], Lee et al. [1189] Chisenga, Kolawole, Rajaonarison, Atekwana, Yan, and Shemang [372], Rajaonarison, Stamps, Naliboff, Nyblade, and Njinju [1729]
van der Wiel, van Hinsbergen, Thieulot, and Spakman [2135], Dong et al. [550], Gea, Lis Mancilla, Negredo, and Hunen [700], Goldberg and Holt [783], Xu, Li, Wang, Zhang, and Feng [2287], Zha, Zhang, Lin, Zhang, and Tian [2347], Gassmöller, Dannberg, Bangerth, Puckett, and Thieulot [698], Muluneh et al. [1489], Heyn, Shephard, and Conrad [914], Epstein, Condit, Stoner, Holt, and Guevara [589], Grima and Becker [824], Williams, Stamps, Austermann, King, and Njinju [2257], Dong et al. [548], Glerum, Brune, Magnall, Weis, and Gleeson [770], Gernon et al. [721], Wang, Király, Conrad, Hansen, and Fraters [2200], Heckenbach et al. [878], Conrad, Faccenna, Holt, and Becker [445], Şengül Uluocak, Pysklywec, Sembroni, Brune, and Faccenna [1907], Fraters et al. [656]
Crouch, Starfield, and Rizzo [471]
Katzman, Brink, and Lin [1064]
Morra, Chatelain, Tackley, and Koumoutsakos [1475]
Morra, Chatelain, Tackley, and Koumoutsakos [1474]
Morra, Yuen, Boschi, Chatelain, Koumoutsakos, and Tackley [1477], Ribe [1764]
Quevedo, Morra, and Müller [1722], Butterworth, Quevedo, Morra, and Müller [297], Li and Ribe [1262]
Quevedo, Hansra, Morra, Butterworth, and Müller [1721]
Xu and Ribe [2286]
Gerardi, Ribe, and Tackley [708]
From http://homepages.see.leeds.ac.uk/~eargah/basil/: Basil is a finite element program which calculates quantities which describe stress and strain in non-linear viscous materials, for strains up to the of order 100%. The calculations describe very viscous Earth materials which undergo irreversible large-strain deformation at high temperature and over long time periods, under the influence of body forces and surface tractions. Sybil is the post-processing program that permits basil solutions to be examined in detail using an interactive graphical user interface.
The program permits a spatially variable Newtonian or non-Newtonian viscosity in a 2-D geometry with boundary conditions on traction and/or velocity. It is also possible to include a single fault or discontinuity in the problem in a dynamically self consistent way. The 2-D deformation field represents either plane-strain deformation, or it permits a specified distribution of normal stress in the third direction. The latter is referred to as the thin viscous sheet formulation when the normal force is due to gravity acting on variations of the layer thickness. Plane-stress calculations are a specific case of the thin viscous sheet formulation.
The programs basil and sybil have been developed mainly at Monash University since 1988, and before that at ANU and Harvard. The present set of programs has been developed mainly by Greg Houseman, Terence Barr and Lynn Evans.
ELLE is an open-source multi-process and multi-scale software for the simulation of geologic processes, especially (but not only) during deformation and metamorphism. It is coupled to/based on BASIL. See http://elle.ws/ for a complete list of publications.
In Barr and Houseman [92] we find in the appendix: “we use triangular elements with quadratic interpolation func- tions for velocity and linear interpolation functions”, i.e. P2 × P1 elements.
Barr and Houseman [93](?)
Houseman and Gubbins [939], Houseman and Molnar [935], Bons, Barr, and Ten Brink [208], Neil and Houseman [1544]
Houseman, Neil, and Kohler [940]
Tenczer, Stüwe, and Barr [2046], Jessell, Bons, Evans, Barr, and Stüwe [1025]
Bons, Koehn, and Jessell [207]
Walters, England, and Houseman [2178]
Llorens [1316]
Citcom (California Institute of Technology COnvection in the Mantle) was developed by Louis Moresi at the California Institute of Technology (Moresi, 1992). This code solved the equations of viscous fluid dynamics, and, as the name implies, was geared towards modelling convection in the Earth’s mantle. Moresi and Solomatov (1995) provide a detailed description of the multigrid finite element algorithm. After this and during his time at CSIRO, Dr. Moresi modified the code to include mobile integration points. The code became a particle-in-cell finite-element code named CItcom , which was able to track and evolve material properties on particles. This work at CSIRO resulted in a new generation of the software, named Ellipsis.
Taken from a presentation give by Quenette at CIG meeting in 2009.
Taken from a poster by Tan et al. at Geomath, Sept. 26th, 2008.
These codes are hosted by CIG at
https://geodynamics.org/cig/software/citcomcu/
https://geodynamics.org/cig/software/citcoms/
Solomatov and Moresi [1959], Moresi and Gurnis [1455], Zhong and Gurnis [2384]
Moresi and Lenardic [1453], Burgess, Gurnis, and Moresi [273], Solomatov and Moresi [1962]
Moresi and Solomatov [1457], Zhong, Gurnis, and Moresi [2378], Gurnis, Müller, and Moresi [851], Reese, Solomatov, and Moresi [1744]
Moresi and Lenardic [1461], Burgess and Moresi [274], van Keken and Zhong [2143], Lenardic and Moresi [1198], Reese, Solomatov, and Moresi [1745]
Zhong, Zuber, Moresi, and Gurnis [2382], Gurnis, Mitrovica, Ritsema, and Heijst [847], Gurnis, Moresi, and Müller [850], Lenardic, Moresi, and Mühlhaus [1197], Solomatov and Moresi [1960]
Billen and Gurnis [180], Lenardic and Moresi [1212], Zhong [2387]
Hunen and Zhong [972], Conrad and Gurnis [442], Billen and Gurnis [181], Lenardic, Moresi, and Mühlhaus [1214], Vezolainen, Solomatov, Head, Basilevsky, and Moresi [2162], Lenardic and Moresi [1196], Billen, Gurnis, and Simons [186],
Ke and Solomatov [1078], Solomatov [1955], Freeman, Moresi, and May [660], Lenardic, Nimmo, and Moresi [1215], Cooper, Lenardic, and Moresi [450], McNamara and Zhong [1409], Vezolainen, Solomatov, Basilevsky, and Head [2161], Roberts and Zhong [1780]
Hunen, Zhong, Shapiro, and Ritzwoller [974], Billen and Hirth [182], Elkins-Tanton, Zaranek, Parmentier, and Hess [576], McNamara and Zhong [1411], McNamara and Zhong [1410], Lenardic, Moresi, Jellinek, and Manga [1213], Zhong [2386]
Solomatov and Barr [1957], Becker [126], Becker, Chevrot, Schulte-Pelkum, and Blackman [130], Piromallo, Becker, Funiciello, and Faccenna [1670], Tan, Choi, Thoutireddy, Gurnis, and Aivazis [2037], Zhang and Pysklywec [2350] Becker, Schulte-Pelkum, Blackman, Kellogg, and O’Connell [128], Conrad and Lithgow-Bertelloni [443], Freeman, Moresi, and May [659], Cooper, Lenardic, and Moresi [449], Zhong [2370], Ke and Solomatov [1077], Roberts and Zhong [1778], Cooper, Lenardic, Levander, Moresi, and Benn [452]
Solomatov and Barr [1958], Billen and Hirth [183], Zhong, Zhang, Li, and Roberts [2381], Manea and Gurnis [1365], Ballmer, Hunen, Ito, Tackley, and Bianco [84], Ritsema, McNamara, and Bull [1772], Moucha, Forte, Mitrovica, and Daradich [1480], Conrad, Behn, and Silver [441], Quenette, Moresi, Sunter, and Appelbe [1719], Huang and Davies [947], Roberts and Zhong [1779]
Garnero and McNamara [693], Wijk, Hunen, and Goes [2243], Di Giuseppe, Van Hunen, Funiciello, Faccenna, and Giardini [537], Zhong, McNamara, Tan, Moresi, and Gurnis [2379], Höink and Lenardic [920], Lenardic, Jellinek, and Moresi [1211], Liu, Spasojević, and Gurnis [1289], Chen, Zhang, Yuen, Zhang, Zhang, and Shi [358], Becker, Kustowski, and Ekström [133], Becker [135], Sleep [1943], Leng and Zhong [1218], King [1109], Leng and Zhong [1223], Liu and Gurnis [1285], Métivier and Conrad [1425], Roberts and Nimmo [1777], Spasojevic, Liu, Gurnis, and Müller [1969],
Ke and Solomatov [1076], Bull, McNamara, and Ritsema [259], Spasojevic, Liu, and Gurnis [1968], Lia and Zhong [1265], Armitage, Henstock, Minshull, and Hopper [41], Naliboff, Conrad, and Lithgow-Bertelloni [1531], Zhang, Zhong, and McNarmara [2354], Andrews and Billen [34], Roberts, Lillis, and Manga [1776], Foley and Becker [647], Burkett and Billen [275], Becker and Faccenna [124], Ballmer, Hunen, Ito, Bianco, and Tackley [83], Leng and Zhong [1217], Bower, Gurnis, Jackson, and Sturhahn [219], Zhong [2371], Conrad and Husson [438], Cooper and Conrad [446], Manea, Manea, Leeman, and Schutt [1366]
Leng and Zhong [1224], Bull, McNamara, Becker, and Ritsema [258], Srámek and Zhong [1974], Wijk et al. [2247], Ballmer, Ito, Hunen, and Tackley [85], Alpert, Becker, and Bailey [28], Burkett and Billen [276], Zhang, Zhong, Leng, and Li [2353], Leng and Zhong [1222], Billen [178], Conrad and Behn [436], Jadamec and Billen [1004], Zhu, Shi, and Tackley [2403], Boschi, Faccenna, and Becker [212], Höink and Lenardic [922], Harig, Zhong, and Simons [867], Faccenna, Becker, Lallemand, Lagabrielle, Funiciello, and Piromallo [606], DiCaprio, Muller, and Gurnis [541], Faccenna and Becker [605], Ghosh, Becker, and Zhong [758], Lassak, McNamara, Garnero, and Zhong [1170], McNamara, Garnero, and Rost [1408], Shephard, Müller, Liu, and Gurnis [1920], Spasojevic, Gurnis, and Sutherland [1966], Spasojevic, Gurnis, and Sutherland [1967]
Becker and Faccenna [127], Lenardic, Moresi, Jellinek, O’Neill, Cooper, and Lee [1210], Becker and Kawakatsu [136], van Hunen and Allen [2139], Leng and Gurnis [1219], Liu and Stegman [1287], Ballmer, Ito, Hunen, and Tackley [86], Bower, Wicks, Gurnis, and Jackson [220], Trubitsyn, Evseev, Evseev, and Kharybin [2109], Obermaier, Billen, Hagen, Hering-Bertram, and Hamann [1592], Bianco, Conrad, and Smith [176], Zhang, Xing, Yuen, Zhang, and Shi [2359], DiCaprio, Gurnis, Muller, and Tan [540], Orth and Solomatov [1603], Matthews, Hale, Gurnis, Müller, and DiCaprio [1397], Tan, Leng, Zhong, and Gurnis [2041], Ramsay and Pysklywec [1731], Schaefer, Boschi, Becker, and Kissling [1856], Hinsbergen, Steinberger, Doubrovine, and Gassmöller [916], Summeren, Conrad, and Gaidos [2008], Zhang and Zhong [2351]
Arredondo and Billen [48], Jadamec and Billen [1001], Billen and Jadamec [184], Bottrill, Hunen, and Allen [214], Husson, Conrad, and Faccenna [977], Zhong, Yuen, Moresi, and Knepley [2383], Hines and Billen [915], Jadamec, Billen, and Kreylos [1005], Manea, Pérez-Gussinyé, and Manea [1368], Solomatov [1956], Trubitsyn [2108], Cottaar and Buffett [458], Han, Tobie, and Showman [862], Höink, Lenardic, and Richards [921], Husson and Conrad [976], Liu and Stegman [1286], Miller and Becker [1427], Summeren, Conrad, and Lithgow-Bertelloni [2009], Natarov and Conrad [1535], Roberts and Arkani-Hamed [1774], Roberts and Barnouin [1775], Shephard, Liu, Müller, and Gurnis [1919], Srámek and Zhong [1975], Weller and Lenardic [2229], Zhang, Zhong, and Flowers [2352], Zahirovic, Müller, Seton, Flament, Gurnis, and Whittaker [2340], Magni, Hunen, Funiciello, and Faccenna [1349]
Ballmer, Conrad, Smith, and Harmon [81], Bower, Gurnis, and Seton [217], Bower, Gurnis, and Sun [218], Jadamec, Billen, and Roeske [1002], Quéré, Lowman, Arkani-Hamed, Roberts, and Moucha [1720], Faccenna, Becker, Jolivet, and Keskin [609], Olson, Deguen, Hinnov, and Zhong [1598], Arrial and Billen [49], Faccenna, Becker, Conrad, and Husson [607], Conrad, Steinberger, and Torsvik [444], Burkett and Gurnis [277], Showman, Han, and Hubbard [1926], Flament, Gurnis, and Müller [644], Conrad [435], O’Neill, Debaille, and Griffin [1583] Ghosh, Becker, and Humphreys [757], Huang, Yang, and Zhong [948], Key, Constable, Liu, and Pommier [1096], Summeren, Gaidos, and Conrad [2010], Magni, Faccenna, Hunen, and Funiciello [1354], Alpert, Miller, Becker, and Allam [29]
Rudolph and Zhong [1808], Flament et al. [641], Becker, Conrad, Schaeffer, and Lebedev [131], Bull, Domeier, and Torsvik [257], Kaislaniemi and Hunen [1050], Zhu [2404] Arrial, Flyer, Wright, and Kellogg [50], Wang, van Hunen, Pearson, and Allen [2185], Magni, Bouilhol, and Hunen [1352], Sekhar and King [1900], Agrusta, Hunen, and Goes [11], Li, McNamara, and Garnero [1239]
Wong and Solomatov [2271], Zhong and Rudolph [2391], Williams, Li, McNamara, Garnero, and Soest [2256], Ballmer, Conrad, Smith, and Johnsen [82], Bower, Gurnis, and Flament [216], Becker, Lowry, Faccenna, Schmandt, Borsa, and Yu [134], Bouilhol, Magni, Hunen, and Kaislaniemi [215], Seton, Flament, Whittaker, Müller, Gurnis, and Bower [1908], Dannberg and Sobolev [496], Hunen and Miller [971], Wang, Huang, and Zhong [2196], Wang, van Hunen, and Pearson [2184], Wang, Agrusta, and Hunen [2183], Hassan, Flament, Gurnis, Bower, and Múller [869], Leng and Gurnis [1221], Taramon, Rodriguez-Gonzalez, Negredo, and Billen [2044], King [1118], Wang, Huang, and Zhong [2201], Ballmer, Schmerr, Nakagawa, and Ritsema [87], Motoki and Ballmer [1479], Liu and Zhong [1305], Weller, Lenardic, and O’Neill [2231], Holt, Becker, and Buffett [926], Holt, Buffett, and Becker [929]
Wong and Solomatov [2270] Wong and Solomatov [2272], Weller, Lenardic, and Moore [2232], Weller and Lenardic [2230], Jadamec [1000], Jadamec [1003], Fritzell, Bull, and Shephard [661], Rodrguez-González, Billen, Negredo, and Montesi [1789], Liu and Zhong [1307], Bobrova and Baranov [197], Maunder, Hunen, Magni, and Bouilhol [1400], Li, Black, Zhong, Manga, Rudolph, and Olson [1237], Gu, Li, McCammon, and Lee [826], Kiefer and Li [1104], Leonard and Liu [1225], McKinnon et al. [1407], Wang, Huang, Zhong, and Chen [2197], Yang and Gurnis [2313], Hu, Liu, Hermosillo, and Zhou [943]
Agrusta, Goes, and Hunen [10], Magni, Allen, Hunen, and Bouilhol [1351], Becker [129], Freeburn, Bouilhol, Maunder, Magni, and Hunen [658], Haynie and Jadamec [872], Faccenna, Oncken, Holt, and Becker [611], MacDougall, Jadamec, and Fischer [1345], Ghosh, Thyagarajulu, and Steinberger [760], Ballmer, Lourenço, Hirose, Caracas, and Nomura [89], Taposeea, Armitage, and Collier [2043], Yang, Gurnis, and Zhan [2311], Li, McNamara, Garnero, and Yu [1240], Li and Zhong [1242], Holt and Becker [928], Zhou and Liu [2395]
Heyn, Conrad, and Tronnes [910], King [1112], Riel, Capitanio, and Velic [1769], Kaislaniemi, Hunen, and Bouilhol [1051], Wang, Hunen, and Pearson [2186], Király, Holt, Funiciello, Faccenna, and Capitanio [1124], Hu, Liu, and Zhou [944], Li, Zhong, and Olson [1235], Bellas, Zhong, Bercovici, and Mulyukova [140], Citron, Manga, and Tan [385], Trubitsyn and Evseev [2110], Trubitsyn and Trubitsyn [2107], Weller and Lenardic [2235], Yang, Gurnis, and Zahirovic [2314], Mao and Zhong [1379], Billen and Arredondo [179], Faccenna, Holt, Becker, Lallemand, and Royden [610]
Flament [642], Maunder, Hunen, Bouilhol, and Magni [1399], Weller, Fuchs, Becker, and Soderlund [2233], Fuchs and Becker [663], Magni [1350], Li and Zhong [1241], Ma, Liu, Gurnis, and Zhang [1343], Mao and Zhong [1377], Paul, Ghosh, and Conrad [1622], Bobrov and Baranov [196], Lenardic, Weller, Höink, and Seales [1199], Huang et al. [946], Schliffke, Hunen, Magni, and Allen [1871], Allu Peddinti and McNamara [25], Reali, Jackson, Orman, Bower, Carrez, and Cordier [1737] Wang and Becker [2189], Trubitsyn [2106]
Weller and Kiefer [2234], Briaud, Agrusta, Faccenna, Funiciello, and Hunen [235], Paul and Ghosh [1621], van den Broek, Magni, Gaina, and Buiter [2134], Hertgen, Yamato, Guillaume, Magni, Schliffke, and Hunen [906], Lourenço and Rudolph [1328], Billen [185], Semple and Lenardic [1904], Dang, Zhang, Li, Huang, Spencer, and Liu [492], Wang and Li [2202],
Cao, Flament, and Müller [306], Liu, Gurnis, Leng, Jia, and Zhan [1283], Luo and Leng [1342], Schliffke, Hunen, Gueydan, Magni, and Allen [1870], Liu, Gurnis, and Leng [1282], Manjón-Cabeza Córdoba and Ballmer [1371], Wang and Li [2203], Cao, Flament, Bodur, and Müller [305], Mao and Zhong [1378] Hu, Liu, and Gurnis [942], Moreno and Manea [1451], Samuel, Ballmer, Padovan, Tosi, Rivoldini, and Plesa [1844], Mao and Zhong [1376]
Li and McNamara [1238], Schliffke, Hunen, Allen, Magni, and Gueydan [1869], Yuan and Li [2335], Flament, Bodur, Williams, and Merdith [643], King et al. [1121], Ronghua, Jian, and Yong [1797], Ghosh and Pal [759], Manjón-Cabeza Córdoba and Ballmer [1372], Peng and Liu [1628], Fuchs and Becker [666], Wu, Wang, and Huang [2274]
Li [1236], Liu, Li, Zhang, and Sun [1306], Bodur and Flament [201], Hansen, Garnero, Li, Shim, and Rost [866], Wang et al. [2199], Liu, Leng, Wang, and Zheng [1284], Zhang, Zhang, Liang, and Tokle [2360], Li [1236], Becker and Fuchs [132], Paul, Conrad, Becker, and Ghosh [1620], Turino, Magni, Kjřll, and Jakob [2112], Zhao and Leng [2366], Peng and Liu [1627], Pal and Ghosh [1607], Yuan et al. [2336]
Bellas-Manley and Royden [144], Lobkovsky, Baranov, Bobrov, and Chuvaev [1319], Murphy and King [1494], Weber and Flament [2220], Saki, Wirp, Billen, and Thomas [1829], Dong et al. [548], Liu et al. [1301], Peng and Stegman [1629]
It is a massively parallelized finite element software package for modeling elastic and viscoelastic deformation on regional and global scales due to surface loads or tidal loads. It employs a Lagrangian deformable grid and works for 3-D Cartesian, regional spherical, and global spherical geometries, and was first developed from CitcomS It incorporates dynamic sea-level equation, degree-1 motion, true polar wander, and mantle compressibility. The package makes use of massively parallel computations that enables high resolution and efficient modeling. As these loading models share similar numerical algorithms and finite element structures to their counterparts of convection models, they are benefitted directly from new developments to convection models including non-linear rheology and parallel computing.
Zhong, Paulson, and Wahr [2389]
Paulson, Zhong, and Wahr [1623]
Zhong, Qin, A, and Wahr [2390]
A, Wahr, and Zhong [1]
Qin, Zhong, and Wahr [1712]
Bellas, Zhong, and Watts [142]
Kang, Zhong, A, and Mao [1056], Bellas, Zhong, and Watts [143], Zhong, Kang, A, and Qin [2388]
Fienga, Zhong, Mémin, and Briaud [637]
van Keken et al. [2147]
Currenti and Williams [479], Paczkowski, Montési, Long, and Thissen [1606]
Ratnaswamy, Stadler, and Gurnis [1736], Khaleque, Fowler, Howell, and Vynnycky [1097]
Chapman [344], Trim, Butler, and Spiteri [2100], Khaleque and Motaleb [1098] Lee, Seoung, and Cerpa [1186], Dasgupta, Sen, and Mandal [504]
This code is hosted by CIG at https://geodynamics.org/cig/software/conman/
King, Raefsky, and Hager [1116], King and Ritsema [1120], Gurnis [845] Humphreys and Hager [968], King and Hager [1111]
Squyres, Jankowski, Simons, Solomon, Hager, and McGill [1973], Zhong and Gurnis [2375]
Kellogg and King [1087], Kiefer [1100], Lenardic and Kaula [1201] Lenardic, Kaula, and Bindschadler [1206], Zhong, Gurnis, and Hulbert [2376], Zhong and Gurnis [2372]
Ita and King [994], Farnetani and Richards [616] Gaherty and Hager [679], Gurnis and Torsvik [848] King and Hager [1110], Lenardic and Kaula [1204] Lenardic and Kaula [1205] Zhong and Gurnis [2373]
King and Ita [1119], King and Anderson [1113], Lenardic and Kaula [1202], Lenardic, Kaula, and Bindschadler [1207], Puster, Hager, and Jordan [1699], Puster, Jordan, and Hager [1700], Zhong and Gurnis [2374]
Larson and Kincaid [1168], Lenardic and Kaula [1203], Moresi, Zhong, and Gurnis [1458]
van Keken, King, Schmeling, Christensen, Neumeister, and Doin [2146], Kellogg and King [1088], Kellogg [1085], Moresi and Lenardic [1453]
King and Anderson [1114], Ita and King [995], van Keken et al. [2147], King and Anderson [1114], Lenardic [1200], Montague, Kellogg, and Manga [1441]
Becker, Faccenna, O’Connell, and Giardini [125], Lenardic and Moresi [1198], Conrad and Molnar [439], Coltice and Ricard [427], Han and Gurnis [858], Rowland and Davies [1800] Sidorin, Gurnis, and Helmberger [1928]
Lenardic and Moresi [1209], Conrad [434], Montague and Kellogg [1442], Elkins-Tanton and Hager [573], Lenardic and Moresi [1209]
Elkins-Tanton, Orman, Hager, and Grove [575]
Farnetani and Samuel [619], Tackley and King [2021], Samuel and Farnetani [1842], Tackley and King [2021]
Elkins-Tanton, Hager, and Grove [574], Showman and Han [1925], Redmond and King [1739], Nagel, Breuer, and Spohn [1499]
Koglin Jr., Ghias, King, Jarvis, and Lowman [1132], Coltice [424], Mitri and Showman [1429], Showman and Han [1924], Tan and Gurnis [2039]
Naliboff and Kellogg [1527], Davies, Davies, Hassan, Morgan, and Nithiarasu [507], Coltice, Phillips, Bertrand, Ricard, and Rey [426], Elkins-Tanton [572], Long, Hager, Hoop, and Hilst [1325], Naliboff and Kellogg [1527], Redmond and King [1738]
Han and Showman [861], Davies, Davies, Hassan, Morgan, and Nithiarasu [511]
Farnetani and Hofmann [615], Hebert, Antoshechkina, Asimow, and Gurnis [876], King [1108], Lee and King [1183], Watters, Zuber, and Hager [2218]
King et al. [1107], Conrad, Wu, Smith, Bianco, and Tibbetts [440], Han and Showman [859], Lee and King [1184]
King, Frost, and Rubie [1115], Kim, Lee, and Kim [1106], Lim and Lee [1272]
Gasc et al. [694]
SCAM (Spherical Convection in an Axisymmetric Mantle) is a spherical, axisymmetric version of the finite element code ConMan (!). It is used in Kellogg & King (1997) [1088], King (1997) [1117], Kiefer & Kellogg (1998) [1103], Kiefer (2003)[1102], Redmond & King (2004) [1739], Li & Kiefer [1243], Kiefer & Li [1104]. Also probably [616] and [620].
Yoshida [2326]
Yoshida and Nakakuki [2328]
Morishige, Honda, and Yoshida [1466]
Yoshida, Tajima, Honda, and Morishige [2324], Yoshida [2325]
Yoshida [2323]
Yoshida, Saito, and Yoshizawa [2332]
Yoshida [2327]
Noack, Rivoldini, and van Hoolst [1571]
Braun, Thieulot, Fullsack, DeKool, and Huismans [227], Thieulot, Fullsack, and Braun [2064]
Yamato, Husson, Braun, Loiselet, and Thieulot [2294]
Murphy, Taylor, Gosse, Silver, Whipp, and Beaumont [1495], Whipp, Beaumont, and Braun [2239]
Nettesheim, Ehlers, Whipp, and Koptev [1548]
Koptev, Ehlers, Nettesheim, and Whipp [1143]
Schütt and Whipp [1898]
Koptev, Nettesheim, and Ehlers [1144], Koptev, Nettesheim, Falkowski, and Ehlers [1145]
By critically evaluating the strengths and weaknesses of the FLAC algorithm, Choi et al. (2013) created a new code, DynEarthSol2D, and Tan et al. (2013) [AGU abstract] further extended it to three dimensions, DynEarthSol3D. DynEarthSol3D (Dynamic Earth Solver in three Dimensions) is a robust, flexible, open source finite element code for modeling non-linear responses of continuous media and thus suitable for long-term tectonic modeling. https://github.com/tan2/DynEarthSol
Choi, Tan, Lavier, and Calo [375]
Jammes, Lavier, and Reber [1018], Ta, Choo, Tan, Jang, and Choi [2016]
Logan, Lavier, Choi, Tan, and Catania [1322]
Elmer is an open source multiphysical simulation software mainly developed by CSC - IT Center for Science (CSC). Elmer development was started 1995 in collaboration with Finnish Universities, research institutes and industry. Elmer includes physical models of fluid dynamics, structural mechanics, electromagnetics, heat transfer and acoustics, for example. These are described by partial differential equations which Elmer solves by the Finite Element Method (FEM). https://www.csc.fi/web/elmer
Tosi et al. [2091], Maffione, Thieulot, Hinsbergen, Morris, Plümper, and Spakman [1347]
Buiter et al. [255]
Thieulot [2061], Lavecchia, Thieulot, Beekman, Cloetingh, and Clark [1171]
Plunder, Thieulot, and Hinsbergen [1677]
Fraters, Thieulot, Berg, and Spakman [654]
Section 3 of [1719] presents the evolutionary path which lead to this code.
Moresi, Dufour, and Mühlhaus [1460]
Moresi, Dufour, and Mühlhaus [1454], Wijns, Boschetti, and Moresi [2249] Mühlhaus, Moresi, and Čada [1485], Weinberg, Moresi, and Van der Borgh [2225] O’Neill and Moresi [1587], O’Neill, Moresi, Lenardic, and Cooper [1579]
Wijns, Weinberg, Gessner, and Moresi [2248], O’Neill, Moresi, and Lenardic [1586], O’Neill, Moresi, and Jaques [1588]
O’Neill, Moresi, Müller, Albert, and Dufour [1581]
Moresi, Quenette, Lemiale, Mériaux, Appelbe, and Mühlhaus [1456], Gessner, Wijns, and Moresi [748] Dyksterhuis, Rey, Mueller, and Moresi [567], O’Neill, Lenardic, Moresi, Torsvik, and Lee [1585]
O’Neill, Lenardic, Griffin, and O’Reilly [1582], Clark, Stegman, and Müller [391]
O’Neill, Lenardic, Jellinek, and Moresi [1584], Rey, Teyssier, and Whitney [1762]
Pysklywec, Ellis, and Gorman [1707]
Leng and Gurnis [1219], Rey, Teyssier, Kruckenberg, and Whitney [1761]
Leng, Gurnis, and Asimov [1216]
Zhang and Leng [2356]
Zhang, Li, Leng, and Gurnis [2358], Zhang, Leng, and Chen [2357]
Rey, Coltice, and Flament [1759]
Roy, Gold, Johnson, Osuna Orozco, Holtzman, and Gaherty [1801]
The FEniCS Project is a modern collection of open source software components directed at the automated solution of differential equations by finite element methods.
Vynnytska, Rognes, and Clark [2175]
Alisic, Rudge, Katz, Wells, and Rhebergen [18]
Jiménez, Duddu, and Bassis [1027]
Reuber and Simons [1757]
Jones, Sime, and van Keken [1038]
Allken, Huismans, and Thieulot [22]
Allken, Huismans, Fossen, and Thieulot [24]
Erdos, huismans, Beek, and Thieulot [591], Thieulot, Steer, and Huismans [2065]
Erdos, huismans, and Beek [590]
Salazar-Mora, Huismans, Fossen, and Egydio-Silva [1830]
Erdős, Huismans, and Beek [592], Theunissen and Huismans [2050], Wolf and Huismans [2265]
Erdős, Huismans, Faccenna, and Wolf [594]
Theunissen and Huismans [2051], Wolf, Huismans, Braun, and X. [2264], Erdős, Huismans, and Faccenna [593], Theunissen, Huismans, Lu, and Riel [2052], Pichel, Huismans, Gawthorpe, Faleide, and Theunissen [1668], Pichel, Huismans, Gawthorpe, Faleide, and Theunissen [1667]
Pichel, Huismans, Gawthorpe, and Faleide [1666]
Lu, May, and Huismans [1339]
Although the code name is not mentioned in Weinberg and Schmeling [2224] [269] cites this paper when mentioning FDCON.
Weinberg and Schmeling [2224]
Koyi [1148]
Enns, Becker, and Schmeling [588]
Chemia, Koyi, and Schmeling [348]
Chemia, Schmeling, and Koyi [347]
buks11
Crameri et al. [462], Burchardt, Koyi, Schmeling, and Fuchs [269], Burchardt, Koyi, and Schmeling [268]
Fuchs and Schmeling [665]
Fuchs, Koyi, and Schmeling [667]
Fuchs, Koyi, and Schmeling [664]
Rathgeber et al. [1735]
Betteridge, Farrell, and Ham [169]
Davies, Kramer, Ghelichkhan, and Gibson [506]
Nixon-Hill, Shapero, Cotter, and Ham [1567], Ghelichkhan, Gibson, Davies, Kramer, and Ham [754]
Davies, Wilson, and Kramer [509]
Kramer, Wilson, and Davies [1149]
Garel, Goes, Davies, Davies, Kramer, and Wilson [689], Voci, Davies, Goes, Kramer, and Wilson [2166]
Davies, Le Voci, Goes, Kramer, and Wilson [512], Jones, Davies, Campbell, Wilson, and Kramer [1036], Perrin, Goes, Prytulak, Davies, Wilson, and Kramer [1642]
Hedjazian, Garel, Davies, and Kaminski [879]
Perrin, Goes, Prytulak, Rondenay, and Davies [1643]
Alsaif, Garel, Gueydan, and Davies [30], Maunder, Prytulak, Goes, and Reagan [1398], Garel, Thoraval, Tommasi, Demouchy, and Davies [691]
Suchoy, Goes, Maunder, Garel, and Davies [2006], Knight, Davies, and Capitanio [1131], Beall, Fagereng, Huw Davies, Garel, and Rhodri Davies [110], Duvernay, Davies, Mathews, Gibson, and Kramer [566], Garel and Thoraval [690]
Cerpa, Sigloch, Garel, Heuret, Davies, and Mihalynuk [339], Chen, Davies, Goes, Suchoy, and Kramer [349], Chen, Davies, Goes, Suchoy, and Kramer [351]
Pilia et al. [1669]
Chen, Davies, Goes, Suchoy, and Kramer [350]
GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional finite element software package for the modeling of solid stress and strain in geophysical and other continuum domain applications. The physics models supported include isotropic linear elasticity and both Newtonian and power-law viscoelasticity, via implicit quasi-static time stepping. In addition to triangular, quadrilateral, tetrahedral and hexahedral continuum elements, GeoFEST supports split-node faulting, body forces, and surface tractions.
Parker et al. [1616]
Hüttig and Stemmer [980]
Tosi and Yuen [2092]
Noack, Breuer, and Spohn [1573]
Hüttig, Tosi, and Moore [979], Plesa, Tosi, and Hüttig [1676], Noack and Breuer [1572]
Maurice, Tosi, Samuel, Plesa, Hüttig, and Breuer [1401]
Plesa et al. [1675]
Neumann [1553]
Agarwal, Tosi, Breuer, Padovan, Kessel, and Montavon [8], Schulz, Tosi, Plesa, and Breuer [1897]
This code is hosted by CIG at https://geodynamics.org/cig/software/gale/ GALE was meant to become the Citcom of Long Term Tectonics at CIG. However, the LTT group summarised its status in 2009 as follows1 :
Rather logically only a handful of publications were produced with this code:
Fay, Bennett, Spinler, and Humphreys [623], Goyette, Takatsuka, Clark, Müller, Rey, and Stegman [805]
Beutel, Wijk, Ebinger, Keir, and Agostini [174], Cruz, Malinski, Wilson, Take, and Hilley [473]
Le Pourhiet, Huet, May, Labrousse, and Jolivet [1174], Li and Qi [1252]
Arrial and Billen [49]
Melosh and Raefsky [1416]
Melosh and Raefsky [1415]
Sabadini, Yuen, and Portney [1822]
Govers and Wortel [799]
Govers and Wortel [800]
Gurnis, Eloy, and Zhong [849], Giunchi, Sabadini, Boschi, and Gasperini [766], Zhong, Gurnis, and Moresi [2377], Grana and Richardson [810], Zoback and Richardson [2408]
Buiter, Govers, and Wortel [251]
Malservisi, Gans, and Furlong [1363]
Govers and Wortel [801], Wijk [2244], Wijk and Blackman [2246]
Franco, Govers, and Wortel [651], Liu and Bird [1311], Schmalzle, Dixon, Malservisi, and Govers [1877]
Wijk and Blackman [2245]
De Franco, Govers, and Wortel [517], De Franco, Govers, and Wortel [516]
Lafemina et al. [1160], Plattner, Malservisi, and Govers [1673]
Benthem and Govers [155], Plattner, Malservisi, Furlong, and Govers [1672]
Baes, Govers, and Wortel [66], Baes, Govers, and Wortel [67]
Plattner, Amelung, Baker, Govers, and Poland [1674], Warners-Ruckstuhl, Govers, and Wortel [2212]
Benthem, Govers, and Wortel [156]
Marketos, Govers, and Spiers [1383], Nijholt and Govers [1560]
George, Malservisi, Govers, Connor, and Connor [706], Marketos, Spiers, and Govers [1382]
Özbakr, Govers, and Wortel [1604]
Govers, Furlong, van de Wiel, Herman, and Broerse [803], Nijholt, Govers, and Wortel [1561], Herman, Furlong, and Govers [885], Barjasteh [91]
Herman and Govers [886]
Faccenda [599]
Chang, Ferreira, and Faccenda [342]
Sturgeon, Ferreira, Faccenda, Chang, and Schardong [2004], Ferreira, Faccenda, Sturgeon, Chang, and Schardong [635]
I3MG is described in the appendix of Faccenda and VanderBeek [604] (2023).
Gerya and Yuen [735], Gerya and Yuen [736], Gerya, Uken, Reinhardt, Watkeys, Maresch, and Clarke [734]
Gerya, Yuen, and Maresch [737], Gerya, Yuen, and Sevre [738], Gerya, Perchuk, Maresch, and Willner [732], Gerya, Uken, Reinhardt, Watkeys, Maresch, and Clarke [743]
Burg and Gerya [271], Maresch and Gerya [1381], Stöckhert and Gerya [2002]
Buiter et al. [248], Gerya and Stöckhert [724], Gorczyk, Gerya, Connolly, Yuen, and Rudolph [788], Gerya, Connolly, Yuen, Gorczyk, and Capel [728]
Gerya and Yuen [725], Gorczyk, Gerya, Connolly, and Yuen [787], Gerya and Burg [726], Gorczyk, Guillot, Gerya, and Hattori [790], Gorczyk, Willner, Gerya, Connolly, and Burg [792]
Schmeling et al. [1878], Gerya, Connolly, and Yuen [727], Ueda, Gerya, and Sobolev [2116], Faccenda, Gerya, and Chakraborty [601], Zhu, Gerya, Yuen, Honda, Yoshida, and Connolly [2400], Burg and Gerya [270], Castro and Gerya [331], Mishin, Gerya, Burg, and Connolly [1428], Nikolaeva, Gerya, and Connolly [1563], Gerya, Perchuk, and Burg [747]
Gerya, Fossati, Cantieni, and Seward [729], Burg et al. [272], Lin, Gerya, Tackley, Yuen, and Golabek [1275], Faccenda, Minelli, and Gerya [598], Li and Gerya [1264]
Nikolaeva, Gerya, and Marques [1562], Baumann, Gerya, and Connolly [102], Li, Gerya, and Burg [1259], Sizova, Gerya, Brown, and Perchuk [1939]
Duretz, Gerya, and May [558], Duretz, May, Gerya, and Tackley [560], Li, Xu, and Gerya [1258], Gerya [723], Gerya and Meilick [731], Blanco-Quintero, Gerya, Garcia-Casco, and Castro [193], Nikolaeva, Gerya, and Marques [1564], Golabek, Keller, Gerya, Zhu, Tackley, and Connolly [782], Lin, Gerya, Tackley, Yuen, and Golabek [1276], Perchuk and Gerya [1636], Zhu, Gerya, Honda, Tackley, and Yuen [2402], Gerya [745]
Crameri et al. [462], Duretz, Gerya, Kaus, and Andersen [557], Z. Li and Gerya [2339], Faccenda, Gerya, Mancktelow, and Moresi [602], Gorczyk, Hobbs, and Gerya [791], Ueda, Gerya, and Burg [2115], Schenker, Gerya, and Burg [1866], Sizova, Gerya, and Brown [1938], Vogt, Gerya, and Castro [2169]
Li, Xu, Gerya, and Burg [1257], Naliboff, Billen, Gerya, and saunders [1529], Malatesta, Gerya, Crispini, Federico, and Capponi [1360], Dinther, Gerya, Dalguer, Mai, Morra, and Giardini [544], Dinther, Gerya, Dalguer, Corbi, Funiciello, and Mai [543], Zhu, Gerya, Tackley, and Kissling [2401], Dymkova and Gerya [568], Gerya, May, and Duretz [730], Marques et al. [1391], Chen, Gerya, Zhang, Zhu, Duretz, and Jacoby [354], Chen, Gerya, Zhang, Aitken, Li, and Liang [355], Duretz and Gerya [556], Castro, Vogt, and Gerya [332], Liao, Gerya, and Wang [1267], Vogt, Castro, and Gerya [2168], Gerya [744], Gerya [741], Mikhailov et al. [1426], Ruh, Gerya, and Burg [1813], Schubert, Driesner, Gerya, and Ulmer [1894], Agrusta, Arcay, Tommasi, Davaille, Ribe, and Gerya [12]
Duretz, Gerya, and Spakman [559], Püthe and Gerya [1701], Vogt and Gerya [2167], Baitsch-Ghirardello, Gerya, and Burg [75], Liao and Gerya [1268], Sternai, Jolivet, Menant, and Gerya [1998], Manea, Leeman, Gerya, Manea, and Zhu [1367], Burov and Gerya [280], Gorczyk, Smithies, Korhonen, Howard, and Gromard [789], Dinther, Mai, Dalguer, and Gerya [545], Marques, Cabral, Gerya, Zhu, and May [1389], Baitsch-Ghirardello, Stracke, Connolly, Nikolaeva, and Gerya [76], Golabek, Bourdon, and Gerya [780], Gerya [739], Gerya [746], Gillmann and Tackley [764], Sizova, Gerya, and Brown [1940], Li [1263]
Ueda, Willett, Gerya, and Ruh [2117], Ruh, Pourhiet, Agard, Burov, and Gerya [1814], Gerya, Stern, M.Baes, Sobolev, and Whattam [733], Ruh, Pourhiet, Agard, Burov, and Gerya [1814], Koptev, Calais, Burov, Leroy, and Gerya [1140], Herrendörfer, Dinther, Gerya, and Dalguer [904]
Koptev et al. [1142], Malatesta, Gerya, Crispini, Federico, and Capponi [1359], Sternai et al. [2001], Fischer and Gerya [640], Mannu, Ueda, Willett, Gerya, and Strasser [1373], Huangfu, Wang, Cawood, Li, Fan, and Gerya [952], Duretz, Agard, Yamato, Ducassou, Burov, and Gerya [555], Menant, Sternai, Jolivet, Guillou-Frottier, and Gerya [1419], Huangfu, Wang, Li, Fan, and Zhang [954]
Mannu, Ueda, Willett, Gerya, and Strasser [1374], Koptev, Cloetingh, Burov, Francois, and Gerya [1141], Liao and Gerya [1269], Vogt, Matenco, and Cloetingh [2170], Shi, Wei, Li, Liu, and Liu [1923], Chen, Capitanio, Liu, and Gerya [353], Liao, Wang, Gerya, and Ballmer [1271], Huangfu, Wang, Fan, Li, and Zhou [953]
Gorczyk, Mole, and Barnes [786], Zhou, Li, Gerya, Stern, Xu, and Zhang [2396], Dal Zilio, Faccenda, and Capitanio [489], Maierová, Schulmann, and Gerya [1358], Gerya and Burov [740], Vogt, Willingshofer, Matenco, Sokoutis, Gerya, and Cloetingh [2171], Herrendörfer, Gerya, and Dinther [905], Dal Zilio, Dinther, Gerya, and Pranger [488], Liu et al. [1313], Liu and Li [1296], Yang, Li, Gerya, Xu, and Shi [2309]
Koptev, Beniest, Jolivet, and Leroy [1139], Li, Gerya, and Connolly [1261], Dal Zilio, Dinther, Gerya, and Avouac [487], Sizova, Hauzenberger, Fritz, Faryad, and Gerya [1941], Menant, Angiboust, and Gerya [1417], Lei, Li, and Liu [1192], Gülcher, Beaussier, and Gerya [834], Zelst, Wollherr, Gabriel, Madden, and Dinther [2342], Huangfu, Li, Fan, and Shi [951], Zhong and Li [2393], Van Dinther, Künsch, and Fichtner [2136], Liu and Chen [1281], Yang, Huangfu, and Zhang [2316]
Baes, Sobolev, Gerya, and Brune [68], Zhou, Li, Gerya, and Stern [2397], Schierjott, Thielmann, Rozel, Golabek, and Gerya [1868], Dai et al. [486], Chowdhury, Chakraborty, Gerya, Cawood, and Capitanio [382], Ruh [1817], Menant, Angiboust, Gerya, Lacassin, Simoes, and Grandin [1418], Chen, Liu, Capitanio, Gerya, and Li [356], Munch, Gerya, and Ueda [1492], Tang, Chen, Meng, and Wu [2042], Gülcher, Gerya, Montési, and Munch [833], Brizzi, Zelst, Funiciello, Corbi, and Dinther [238], Peral et al. [1632], Petrini, Gerya, Yarushina, Dinther, Connolly, and Madonna [1653], Perchuk, Gerya, Zakharov, and Griffin [1633], Baes, Sobolev, Gerya, and Brune [70], D’Acquisto, Dal Zilio, Molinari, Kissling, Gerya, and Dinther [484], Sternai [1999], Li et al. [1232], Yoshida, Saito, and Yoshizawa [2331], D’Acquisto, Dal Zilio, Molinari, Kissling, Gerya, and Dinther [484], Ishii and Wallis [990]
Pei, Li, and Shi [1625], Chowdhury, Chakraborty, and Gerya [381], Yan, Chen, Xiong, Wan, and Xu [2301], Qing, Liao, Li, and Gao [1714], Baes, Sobolev, Gerya, Stern, and Brune [69], Xie, Chen, Xiong, Wang, and Yan [2281], Balázs et al. [79], Zhou and Wada [2398], Kerswell, Kohn, and Gerya [1093], Behr, Gerya, Cannizzaro, and Blass [137], Cui, Li, and Liu [475], Sternai et al. [2000], Perchuk, Gerya, Zakharov, and Griffin [1634], Angiboust, Menant, Gerya, and Oncken [39], Lo Bue, Faccenda, and Yang [1317], Gerya, Bercovici, and Becker [742], Brizzi et al. [237]
Zhong and Li [2394], Zakharov, Lubnina, Stepanova, and Gerya [2341], Corradino, Balazs, Faccenna, and Pepe [455], Munch, Ueda, Schnydrig, May, and Gerya [1493], Koulakov, Schlindwein, Liu, Gerya, Jakovlev, and Ivanov [1147], Yan, Chen, Zuza, Tang, Wan, and Meng [2302], Balázs, Faccenna, Gerya, Ueda, and Funiciello [77], Van Agtmaal, Van Dinther, Willingshofer, and Matenco [2128], Shen, Liao, and Zhang [1918], Liao, Li, Gao, Shen, Qing, and Wu [1270], Dong et al. [549], Jiang, Mao, and Hu [1026] Pang, Zhang, Shi, and Gerya [1612], Balázs, Gerya, May, and Tari [78]
Wu, Liao, Qing, and Shen [2276], Zhong and Li [2392], Pang, Liao, Ballmer, and Li [1611], Andrić-Tomašević, Koptev, Maiti, Gerya, and Ehlers [35], Perchuk, Zakharov, Gerya, and Griffin [1635], Izumi, Hirauchi, and Yoshida [996], Boonma, Garca-Castellanos, Jiménez-Munt, and Gerya [209], Liu and Gerya [1295], Stanković, Gerya, Cvetkov, and Cvetković [1977], Cheng, Zhang, Lin, Ding, and Zhang [361], Wang, Li, and Huangfu [2198], Yang, Mitchell, Spencer, Sun, Zhang, and Zhao [2306], Xue, Muirhead, Moucha, Wright, and Scholz [2288], Gülcher, Yu, and Gerya [838], Sanhueza, Yáńez, Buck, Araya Vargas, and Veloso [1852], Faccenda and VanderBeek [604], Xie et al. [2282], Kerswell, Kohn, and Gerya [1094]
Xiang et al. [2278], Fu and Li [662], Chen, Zhu, Yuan, and Chen [352], Sizova, Hauzenberger, Fritz, and Gerya [1942], QIU et al. [1715], Qing, Liao, and Brune [1713], Oravecz, Balázs, Gerya, May, and Fodor [1601], Ficini, Cuffaro, Doglioni, and Gerya [636], Malatesta, Gerya, Pittaluga, and Cabiddu [1361], Xie, Balázs, Gerya, and Xiong [2285], Xie, Chen, Morgan, and Chen [2280], Yan, Chen, Zuza, Xiang, Xie, and Ai [2303], makb24, Cui and Li [474]
de Montserrat, Morgan, and Hasenclever [518]
Vannucchi, Clarke, Montserrat, Ougier-Simonin, Aldega, and Morgan [2156]
Schmeling et al. [1878]
Kaus, Mühlhaus, and May [1069]
Lechmann, May, Kaus, and Schmalholz [1180]
May [1403]
Lechmann, Schmalholz, Hetényi, May, and Kaus [1181], Collignon, Kaus, May, and fernandez [421], Baumann, Kaus, and Popov [104], Fernandez and Kaus [628], Fernandez and Kaus [629]
Pusok and Kaus [1695], Fernandez and Kaus [630], Collignon, Fernandez, and Kaus [420]
Kaus et al. [1074], Collignon, Yamato, Castelltort, and Kaus [422]
B.J.P. Kaus and Popov [61], Reuber, Kaus, Popov, and Baumann [1755], Reuber, Popov, and Kaus [1756]
Eichheimer et al. [570], Howell, Olive, Ito, Behn, Escartin, and Kaus [941], Pusok and Stegman [1696], Wang, Kaus, Zhao, Yang, and Li [2194]
Eichheimer et al. [569], Spitz, Schmalholz, Kaus, and Popov [1972], Piccolo, Kaus, White, Palin, and Reuber [1665], Pusok and Stegman [1697], Yang et al. [2308], Spitz, Bauville, Epard, Kaus, Popov, and Schmalholz [1971], Reuber, Holbach, Popov, Hanke, and Kaus [1758]
Sun et al. [2012], Yang, Li, Wan, Chen, and Kaus [2310], Wang et al. [2195]
Toffol, Yang, Pennacchioni, Faccenda, and Scambelluri [2086], Almeida, Riel, Rosas, Duarte, and Kaus [26], Moulas, Kaus, and Jamtveit [1481], Pusok, Stegman, and Kerr [1698], Spang, Baumann, and Kaus [1965], Liu, Sobolev, Babeyko, and Pons [1302], Husson et al. [978], Rojas-Agramonte et al. [1790]
Gao, Chen, Yang, and Wang [685], Riel et al. [1770], Yang, Zhao, and Li [2307]
Duarte, Riel, Rosas, Popov, Schuler, and Kaus [552], Tian, Behn, Ito, Schierjott, Kaus, and Popov [2081]
(LAgrangian Particle EXplicit, based on the prototype code PAROVOZ)
Sobolev, Petrunin, Garfunkel, and Babeyko [1949], Babeyko and Sobolev [65], Sobolev and Babeyko [1951]
Buiter et al. [248], Babeyko, Sobolev, Vietor, Oncken, and Trumbull [64], Sobolev, Babeyko, Koulakov, and Oncken [1952], Petrunin and Sobolev [1658]
Petrunin and Sobolev [1654], Babeyko and Sobolev [63], Schmeling et al. [1878]
Sobolev et al. [1950]
LARGE 0.2.0 (Lithosphere AsthenospheRe Geodynamic Evolution) is a geodynamic modelling Python package that implements a flexible and user friendly tool for the geodynamic/modelling community. It simulates 2D large scale geodynamic processes by solving the conservation equations of mass, momentum, and energy by a finite difference method with the moving tracers technique. LARGE uses advanced modern numerical libraries and algorithms but unlike common simulation code written in Fortran or C this code is written entirely in Python.
[Taken from tojn23] The initial CAGES algorithm developed by Fernŕndez et al. (1990) was improved by incorporating the geoid anomaly, which allowed for better control of the density dis- tribution at the lithospheric mantle scale. The algorithm was used to study the litho- sphere in different geodynamic scenarios, as is the case of the Atlantic margin (Torne et al. 1995), the Cantabrian margin (Ayarza et al. 2004), the transition from the Iberian Massif to the oceanic crust of the Gulf of Cádiz (Fernŕndez et al. 2004), the NW margin of Morocco and the Atlas mountains (Zeyen et al. 2005; Jiménez-Munt et al. 2010), the Western Mediterranean (Roca et al.2004), or the Variscan terrain of the SW of the Ibe- rian Peninsula (Palomeras et al. 2011), among other studies. Subsequently, geochemical and petrological data of the mantle were incorporated (Afonso et al. 2008) and the pos- sibility of introducing thermal, seismic, or compositional anomalies, or a combination of them into the sublithospheric mantle (Kumar et al. 2020), has improved the potential of these algorithms (LitMod2D code) considerably. For examples applied to the study of the Iberian Peninsula, we refer to the works of Carballo et al. (2015a, b), Pedreira et al. (2015), Jiménez-Munt et al. (2019), and Kumar et al. (2021).
See paper for more links to various flavors of this code in 3D.
Fernández, Torné, and Zeyen [631]
Zeyen and Fernandez [2345]
Ayarza, Martnez Catalán, Alvarez-Marrón, Zeyen, and Juhlin [60], Fernandez, Marzán, and Torné [627]
Zeyen, Ayarza, Fernŕndez, and Rimi [2344]
Afonso, Ranalli, and Fernandez [7]
Afonso, Fernandez, Ranalli, Griffin, and Connolly [6]
Fullea, Afonso, Connolly, Fernandez, Garcia-Castellanos, and Zeyen [669]
Fullea, Fernandez, Afonso, Verges, and Zeyen [670], Jiménez-Munt, Fernandez, Vergés, Afonso, Garcia-Castellanos, and Fullea [1029]
Palomeras et al. [1609]
Jiménez-Munt et al. [1033]
Fullea, Camacho, Negredo, and Fernández [671], Carballo, Fernandez, Torne, Jiménez-Munt, and Villaseńor [323], Carballo et al. [324], Pedreira et al. [1624]
Kumar, Fernŕndez, Jiménez-Munt, Torne, Vergés, and Afonso [1158]
Kumar, Fernŕndez, Vergés, Torne, and Jiménez-Munt [1159]
Zhang et al. [2361]
Torné et al. [2088]
Zhang et al. [2362]
Sacek and Ussami [1825]
Sacek [1823]
Salazar-Mora and Sacek [1831]
Sacek, Assunçăo, Pesce, and Silva [1824], Silva and Sacek [1931], Sacek, Assunçăo, Pesce, and Silva [1824], Sacek et al. [1826]
Silva, Sacek, and Silva [1930]
In [1891] the authors state that [1892], [585], [1889], [1600] [1599]. In [1600] we read: “ We use the finite element code MANTLE originally developed by E. Thompson [2078, 2077, 2076, 515] and applied to a variety of geodynamical problems by Schubert and Anderson [1892], Thomas and Schubert [1986, 1987], Garfunkel et al. [692] and Ellsworth and Schubert [585].
The code models the equations of infinite Prandlt number, incompressible viscous flow, and thermal transport. It employs s fixed two-dimensional Eulerian grid of triangular elements each containing six nodal points. This allows for quadratic interpolation of velocities and temperatures. Galerkin’s method is used to produce the numerical equations [Sato and Thompson, 1976; Schubert and Anderson, 1985]. Because of the need for a large number of nodal points to resolve the temperature and velocity fields (approximately 6600 nodes and and 3200 elements were employed in each calculation), the penalty method, with a penalty parameter (bulk viscosity of an element divided by shear viscosity) of 106, is used to satisfy element incompressibility and to provide average pressure in each element. The penalty method effectively reduces the number of flow equations to be solved at each time step to twice the number of nodal points. The accuracy of the penalty method for enforcing incompressibility is commensurate with the accuracy obtained using three pressure points per element. An implicit backward time-stepping method is employed. The temperature-dependent viscosity is determined on an element basis by calculating the viscosity at the beginning of a time step and holding it constant over the time step. Additional details concerning the numerical procedure are given in Schubert and Anderson [1985].”
Thompson, R.M., Lin, et al. [2078]
Thompson and Haque [2077]
Thompson [2076]
Dawson and Thompson [515]
Schubert and Anderson [1892]
Garfunkel, Anderson, and Schubert [692], Thomas and Schubert [2070]
Thomas and Schubert [2071]
Ellsworth and Schubert [585], Olson, Schubert, Anderson, and Goldman [1600], Thomas and Schubert [2072], Thomas and Squyres [2074]
Schubert, Olson, Anderson, and Goldman [1889]
Olson, Schubert, and Anderson [1599]
Schubert, Anderson, and Goldman [1891]
MC3D utilises a hybrid spectral finite difference scheme flow solver and a finite volume scheme for the solution of the energy equation. It was originally developed at Los Alamos in the late 1980’s for Cray/Vector architecture. and later parallelized (MPI) to run on clusters (1999). MC3D is second-order accurate in time and space.
Gable, O’connell, and Travis [678]
Lowman and Gable [1331]
Lowman, King, and Gable [1333]
Lowman, King, and Gable [1334]
Thomas, Kendall, and Lowman [2069], Lowman, King, and Gable [1332]
Koglin Jr., Ghias, King, Jarvis, and Lowman [1132]
Gait and Lowman [681], Gait and Lowman [680], Nettelfield and Lowman [1547], Jarvis and Lowman [1022], Lowman, Pinero-Feliciangeli, Kendall, and Shahnas [1335]
Gait, Lowman, and Gable [682], Lowman, Gait, Gable, and Kukreja [1329]
Stein, Finnenkötter, Lowman, and Hansen [1987], Heron and Lowman [891], Lowman, King, and Trim [1330]
Trim, Heron, Stein, and Lowman [2102]
Trim and Lowman [2101]
https://github.com/tduretz/MDOODZ6.0
Yamato, Tartese, Duretz, and May [2296]
Yamato, Husson, Becker, and Pedoja [2293]
Yamato, Duretz, May, and Tartese [2299]
Duretz, May, and Yamato [562], Duretz, Petri, Mohn, Schmalholz, Schenker, and Müntener [563]
Chenin, Manatschal, Decarlis, Schmalholz, Duretz, and Beltrando [364], Duretz et al. [565], Petri, Duretz, Mohn, Schmalholz, Karner, and Müntener [1652]
Poh, Yamato, Duretz, Gapais, and Ledru [1678], Bessat, Duretz, Hetényi, Pilet, and Schmalholz [168], Candioti, Schmalholz, and Duretz [303], Chenin, Schmalholz, Manatschal, and Duretz [365], Auzemery, Willingshofer, Yamato, Duretz, and Sokoutis [57]
Porkoláb, Duretz, Yamato, Auzemery, and Willingshofer [1688], Candioti, Duretz, Moulas, and Schmalholz [301], Auzemery, Willingshofer, Yamato, Duretz, and Beekman [58], Poh, Yamato, Duretz, Gapais, and Ledru [1679]
Auzemery, Yamato, Duretz, Willingshofer, Matenco, and Porkoláb [59], Yamato, Duretz, Basset, and Luisier [2298], Candioti, Duretz, and Schmalholz [302]
https://en.wikipedia.org/wiki/MSC_Marc
Negredo, Sabadini, and Giunchi [1538]
Negredo, Sabadini, Bianco, and Fernandez [1537], Negredo, Barba, Carminati, Sabadini, and Giunchi [1539], Di Donato, Negredo, Sabadini, and Vermeersen [536]
Gardi, Cocco, Negredo, Sabadini, and Singh [688]
MILAMIN is a finite element method implementation in native MATLAB that is capable of doing one million degrees of freedom per minute on a modern desktop computer. This includes pre-processing, solving, and post-processing. The MILAMIN strategies and package are applicable to a broad class of problems in Earth science. http://milamin.org/
Dabrowski, Krotkiewski, and Schmid [485], Schmid, Dabrowski, and Krotkiewski [1879]
Golabek, Gerya, Kaus, Ziethe, and Tackley [779], Kaus, Liu, Becker, Yuen, and Shi [1075]
Krotkiewski and Dabrowski [1154], Kaus [1067], Deubelbeiss, Kaus, and Connolly [534]
Yamato, Kaus, Mouthereau, and Castelltort [2297]
Gerault, Becker, Kaus, Faccenna, Moresi, and Husson [709], Ruh, Kaus, and Burg [1818], Thielmann and Kaus [2053]
Schmalholz and Podlachikov [1872]
Johnson, Brown, Kaus, and VanTongeren [1035]
Lu, Kaus, Zhao, and Zheng [1337], Gérault, Husson, Miller, and Humphreys [710], Baumann and Kaus [105], Thielmann, Kaus, and Popov [2054], Mulyukova, Steinberger, Dabrowski, and Sobolev [1491]
Jaquet, Duretz, and Schmalholz [1020], Marques and Kaus [1390], Cao, Kaus, and Paterson [304]
Duretz, Souche, de Borst, and Le Pourhiet [561], Jaquet and Schmalholz [1021], Jaquet, Duretz, Grujic, Masson, and Schmalholz [1019], Cosentino, Morgan, and Jordan [457], Jensen [1024], Ran et al. [1732], Chenin, Schmalholz, Manatschal, and Karner [363]
Siravo et al. [1937], Bauville and Baumann [109], Souche, Galland, Haug, and Dabrowski [1963], Andrés-Martnez, Pérez-Gussinyé, Armitage, and Morgan [33]
Humair, Bauville, Epard, and Schmalholz [966], Pérez-Gussinyé, Andrés-Martnez, Araújo, Xin, Armitage, and Morgan [1638]
Ma, Lu, Yang, and Zhao [1344]
Liu, Liu, Morgan, Xu, and Chen [1288], Raghuram, Pérez-Gussinyé, Andrés-Martnez, Garca-Pintado, Araujo, and Morgan [1727]
Pérez-Gussinyé et al. [1639]
This code was written by Jonas Ruh. It is a 2D elasto-visco-plastic FDM code.
Ruh [1816]
Granado and Ruh [812]
Heydarzadeh, Ruh, Vergés, Hajialibeigi, and Gharabeigli [909], Dal Zilio, Ruh, and Avouac [490], Ruh [1817]
Najafi et al. [1501], Granado, Ruh, Santolaria, Strauss, and Muńoz [811], Rast and Ruh [1734]
Ruh, Tokle, and Behr [1819]
Nabavi and Ruh [1498]
Ruh, Behr, and Tokle [1815]
Trompert and Hansen [2105]
Goes, Cammarano, and Hansen [776]
Loddoch, Stein, and Hansen [1321]
Stein, Fahl, and Hansen [1986]
Stein and Hansen [1993]
Tosi et al. [2091]
Stein and Hansen [1992]
Stein and Hansen [1994]
The FLAMAR code (Burov et al. , 2001) is based on the F.L.A.C. (Fast Lagrangian Analysis of Continua) algorithm developed by Cundall and Board (1988) and Cundall (1989) [478]. It is modified after the PARA(O)VOZ code from Poliakov et al. (1993) [1682] by several other studies such as Le Pourhiet (PhD thesis, 2004) and Yamato (PhD thesis, 2006).
geoflac code at https://github.com/tan2/geoflac used in [784]
Poliakov, Cundall, Podlachikov, and Lyakhovsky [1682], Zhang, Hobbs, and Jessell [2364]
Wilson and Zhang [2260]
Zhang, Hobbs, Ord, and Mühlhaus [2365]
Gerbault, Poliakov, and Daignieres [716]
Lavier, Roger Buck, and Poliakov [1173]
Lavier, Buck, and Poliakov [1172]
Burov, Jolivet, Le Pourhiet, and Poliakov [282], Burov and Poliakov [283]
Babeyko, Sobolev, Trumbull, Oncken, and Lavier [62], Cloetingh et al. [395], Koons, Zeitler, Chamberlain, Craw, and Meltzer [1137]
Hall, Gurnis, Sdrolias, Lavier, and Mueller [852], Gerbault, Henrys, and Davey [715], Upton, Koons, and Eberhart-Phillips [2122]
Gurnis, Hall, and Lavier [846], Gerbault and Willingshofer [717], Toussaint, Burov, and Avouac [2095], Tirel, Brun, and Burov [2083], Cloetingh et al. [396], Toussaint, Burov, and Jolivet [2096]
Burov and Guillou-Frottier [281]
Burov, Watts, et al. [287], Le Pourhiet, Mattioni, and Moretti [1177], Le Pourhiet, Gurnis, and Saleeby [1176]
Nagel and Buck [1500], Yamato, Agard, Burov, Pourhiet, Jolivet, and Tiberi [2291], Burov and Toussaint [284], Chemenda [346]
Yamato, Burov, Agard, Le Pourhiet, and Jolivet [2292], Tirel, Brun, and Burov [2082], Burov and Yamato [285], González et al. [785]
Gerbault, Cembrano, Mpodozis, Farias, and Pardo [718], Yamato, Husson, Braun, Loiselet, and Thieulot [2294], Burov and Cloetingh [288], Tirel, Gautier, Hinsbergen, and Wortel [2085], Yamato, Mouthereau, and Burov [2295], Bialas and Buck [175]
Burov and Cloetingh [278]
Angiboust, Wolf, Burov, Agard, and Yamato [37], Gerbault, Cappa, and Hassani [712], Tan, Lavier, van Avendonk, and Heuret [2040], Guillou-Frottier et al. [832], Gerbault [711],
Watremez et al. [2217], François, Burov, Meyer, and Agard [653], Tirel, Brun, Burov, Wortel, and Lebedev [2084], Choi, Buck, Lavier, and Petersen [378]
Francois, Burov, Agard, and Meyer [652], Ganne, Gerbault, and Block [684], Burov et al. [286], Burov, Francois, Yamato, and Wolf [279]
Wu, Lavier, and Choi [2275], Geoffroy, Burov, and Werner [705], Dias, Lavier, and Hayman [539]
Persaud, Tan, Contreras, and Lavier [1648]
Gerbault, Schneider, Reverso-Peila, and Corsini [719]
Sagazan and Olive [1827]
Gómez-Romeu, Jammes, Ducoux, Lescoutre, Calassou, and Masini [784]
von Tscharner and Schmalholz [2172]
Fuller, Willett, and Brandon [672], Fuller, Willett, Fisher, and Lu [673]
Cassola [328]
Fernández-Blanco, Mannu, Bertotti, and Willett [632]
Fernández-Blanco, Mannu, Cassola, Bertotti, and Willett [633]
Spectral method for modeling mantle convection with LVV has been developed. The method is stable under high viscosity contrast (5 orders of magnitudes). Benchmarks confirm reliability of the method in application to mantle dynamics.
Petrunin, Kaban, Rogozhina, and Trubitsyn [1657]
Petrunin, Kaban, El Khrepy, and Al-Arifi [1655], Petrunin, Kaban, El Khrepy, and Al-Arifi [1656]
A nice succinct description of the code is given in Appendix B of [1178].
Philippe [1660]
May, Brown, and Le Pourhiet [1406]
May, Brown, and Le Pourhiet [1404]
Le Pourhiet, May, Huille, Watremez, and Leroy [1178], Mao, Gurnis, and May [1380]
Jourdon, Le Pourhiet, Petit, and Rolland [1040], Le Pourhiet, Chamot-Rooke, Delescluse, May, Watremez, and Pubellier [1175], Jourdon, Le Pourhiet, Petit, and Rolland [1043], Hamai et al. [853]
Jourdon, Le Pourhiet, F, and Masini [1039]
Duclaux, Huismans, and May [553], Jourdon, Le Pourhiet, Mouthereau, and May [1042]
Jourdon, Kergaravat, Duclaux, and Huguen [1041], Ioannidi, Le Pourhiet, Agard, Angiboust, and Oncken [989], Perron et al. [1645]
Larvet, Le Pourhiet, and Agard [1169], Ioannidi, Bogatz, and Reber [988], Wolf, Huismans, Wolf, Rouby, and May [2263]
Perron, Le Pourhiet, Jourdon, Cornu, and Gout [1644]
See also poster by Yuen
Arrial, Flyer, Wright, and Kellogg [50]
Burstedde et al. [290]
Stadler, Gurnis, Burstedde, Wilcox, Alisic, and Ghattas [1976]
Alisic, Gurnis, Stadler, Burstedde, and Ghattas [17]
Burstedde et al. [289]
Elesin, Gerya, Artemieva, and Thybo [571]
SANGRE stands for Stress ANalysis of Geological REgions.
Sepran [1899] is a Fortran-based multi-purpose Finite Element package developed by SEPRA engineering company in cooperation with the department of applied mathematics of Delft Technical University starting in the early 1980s. The package has been used for 25 yr in the education and research program at Utrecht University and many students have used the package in their work dealing with numerical modelling in geodynamics. Sepran is available for a range of platforms including Linux/Unix and Microsoft Windows. It contains a mesh generator with a flexible scripting interface for general 2-D and 3-D mesh configurations.
The package provides tools for a range of applications in science and engineering, including second order elliptic, parabolic and hyperbolic equations, suitable for mechanical problems dealing with linear elasticity and for flow problems for both incompressible and compressible viscous media.
Berg, Keken, and Yuen [165]
Den Berg, Yuen, and Keken [521], Berg and Yuen [162], Van Keken, Yuen, and Petzold [2152]
De Smet, Berg, and Vlaar [520], Van Keken and Ballentine [2149]
Smet, Berg, and Vlaar [1944]
De Smet, Berg, and Vlaar [519], Van Hunen, Van Den Berg, and Vlaar [2140]
Drury, Van Roermund, Carswell, De Smet, Van Den Berg, and Vlaar [551], Van Hunen, Van den Berg, and Vlaar [2141], Schott, Van den Berg, and Yuen [1883]
McNamara, Keken, and Karato [1412], Ciskova, van Hunen, van den Berg, and Vlaar [384], Hunen, Berg, and Vlaar [969], Hunen, Berg, and Vlaar [970], Van Keken, Kiefer, and Peacock [2151], Van den Berg, Yuen, and Allwardt [2131], Schott, Van den Berg, and Yuen [1884]
McNamara, Keken, and Karato [1413], Van Thienen, Van Den Berg, De Smet, Van Hunen, and Drury [2153], Van Keken, Ballentine, and Hauri [2150]
Thienen, Berg, and Vlaar [2058], Thienen, Berg, and Vlaar [2056], Thienen, Vlaar, and Berg [2060], van den Berg, Yuen, and Rainey [2133], van Hunen, van den Berg, and Vlaar [2142]
Thienen, Vlaar, and Berg [2059], Segal and Praagman [1899], Berg, Rainey, and Yuen [161], Lin and Keken [1279]
Lin and van Keken [1277], Lin and van Keken [1278], Abers, Keken, Kneller, Ferris, and Stachnik [2]
Thienen [2057], Čžková, Hunen, and van den Berg [390], Brandenburg and Keken [225], Brandenburg and Keken [224], Kneller, van Keken, Katayama, and Karato [1126]
Plank and Keken [1671], Brandenburg, Hauri, Keken, and Ballentine [223], Kneller and van Keken [1127], Hunen and Berg [973]
Vatteville, van Keken, Limare, and Davaille [2157], Summeren, Berg, and Hilst [2011]
Berg, Hoop, Yuen, Duchkov, Hilst, and Jacobs [160], Syracuse, Keken, and Abers [2013], Vries, Berg, and Westrenen [2173], Berg, De Hoop, Yuen, Duchkov, Hilst, and Jacobs [159], van den Berg, Yuen, Beebe, and Christiansen [2132]
van Keken, Hacker, Syracuse, and Abers [2144], Jacobs and van den Berg [997], Berg, Yuen, Jacobs, and Hoop [163]
Bengtson and van Keken [154], Chertova, Geenen, Berg, and Spakman [367], Van Keken, Kita, and Nakajima [2148]
Androvicova, Čížková, and van den Berg [36], Čížková and Bina [387], Bossmann and Keken [213]
Chertova, Spakman, Geenen, Berg, and Hinsbergen [368], Morishige and Keken [1471], Chertova, Spakman, Berg, and Hinsbergen [370]
van den Berg, Segal, and Yuen [2129], Čížková and Bina [388], Morishige [1472]
Ciskova, van den Berg, and Jacobs [383], Wei, Wiens, Keken, and Cai [2223], Morishige and Keken [1468]
Spakman, Chertova, van den Berg, and van Hinsbergen [1964], Chertova, Spakman, and Steinberger [369], Morishige and Keken [1467]
Zhao, De Vries, Berg, Jacobs, and Westrenen [2367], Berg, Yuen, Umemoto, Jacobs, and Wentzcovitch [164], Capella, Spakman, Hinsbergen, Chertova, and Krijgsman [307], Keken, Wada, Sime, and Abers [1081], Čžková and Bina [389]
Morishige and Kuwatani [1469], Jones, Maguire, Keken, Ritsema, and Koelemeijer [1037], Bina, Čžková, and Chen [188]
Pokornỳ, Čžková, and van den Berg [1681], Morishige and Tasaka [1470]
Pokornỳ, Čžková, Bina, and Berg [1680]
Wiel, Pokornỳ, Čžková, Spakman, Berg, and Hinsbergen [2242], Morishige [1463]
SHELLS is a thin-shell program for modeling neotectonics of regional or global lithosphere with faults
Bird [189]
Kong and Bird [1136]
Bird and Liu [192]
Jiménez-Munt, Bird, and Fernŕndez [1028]
Jiménez-Munt, Fernŕndez, Torne, and Bird [1030]
Negredo, Bird, Sanz de Galdeano, and Buforn [1541]
Liu and Bird [1314]
Liu and Bird [1315]
Jiménez-Munt and Negredo [1032]
Negredo, Jiménez-Munt, and Villasenor [1543]
PLATES bird96 FAULTS biko94
Olive, Behn, Mittelstaedt, Ito, and Klein [1596]
Weiss, Ito, Brooks, Olive, Moore, and Foster [2228]
Hamdani, Aharonov, Olive, Parez, and Gvirtzman [854]
Popov and Sobolev [1687]
Quinteros, Sobolev, and Popov [1726]
Brune, Popov, and Sobolev [242]
Brune [240], Heine and Brune [883], Koopmann, Brune, Franke, and Breuer [1138], Brune, Heine, Pérez-Gussinyé, and Sobolev [245], Duesterhoeft, Quinteros, Oberhänsli, Bousquet, and Capitani [554]
Clift, Brune, and Quinteros [394]
Baes, Sobolev, and Quinteros [71], Tutu, Steinberger, Sobolev, Rogozhina, and Popov [2114], Tutu, Sobolev, Steinberger, Popov, and Rogozhina [2113]
Sobolev and Brown [1953], Steinberger, Conrad, Osei Tutu, and Hoggard [1997]
Angiboust, Ioannidi, and Muldashev [38]
This code was written by B. Kaus for his phd thesis work.
SNAC (StGermaiN Analysis of Continua) is an updated Lagrangian explicit finite difference code for modeling a finitely deforming elasto-visco-plastic solid in 3D. The code is hosted at https://geodynamics.org/cig/software/snac/ .
For an explanation of nested version of the numerical model, see appendix A of Wenker and Beaumont [2237].
Willett, Beaumont, and Fullsack [2251]
Willett and Beaumont [2254], Beaumont, Fullsack, and Hamilton [115], Beaumont and Quinlan [123]
Beaumont, Kamp, Hamilton, and Fullsack [120], Beaumont, Ellis, Hamilton, and Fullsack [113], Waschbusch and Beaumont [2216]
Ellis, Beaumont, Jamieson, and Quinlan [579], Jamieson, Beaumont, Fullsack, and Lee [1009], Waschbusch, Batt, and Beaumont [2215]
Willett [2253], Willett [2252], Ellis, Beaumont, and Pfiffner [580], Ellis and Beaumont [578], Beaumont, Ellis, and Pfiffner [114], Percival, Lucas, Jones, Beaumont, Eaton, and Rivers [1637]
Pysklywec, Beaumont, and Fullsack [1705], Beaumont, Munoz, Hamilton, and Fullsack [121], Pfiffner, Ellis, and Beaumont [1659]
Huismans and Beaumont [961], Pysklywec, Beaumont, and Fullsack [1704]
Huismans and Beaumont [960], Vanderhaeghe, Medvedev, Fullsack, Beaumont, and Jamieson [2155], Willett and Pope [2255], Pysklywec, Mitrovica, and Ishii [1709], Buiter and Pfiffner [253], Wissing, Ellis, and Pfiffner [2261]
Beaumont, Jamieson, Nguyen, and Medvedev [119], Pysklywec and Cruden [1706], Pysklywec and Beaumont [1703], Ellis, Schreurs, and Panien [584], Gemmer, Ings, Medvedev, and Beaumont [704], Jamieson, Beaumont, Medvedev, and Nguyen [1010]
Gemmer, Beaumont, and Ings [703], Huismans, Buiter, and Beaumont [964]
Pysklywec [1702], Selzer [1902], Panien, Buiter, Schreurs, and Pfiffner [1613], Jamieson, Beaumont, Nguyen, and Grujic [1012], Beaumont, Nguyen, Jamieson, and Ellis [122], Culshaw, Beaumont, and Jamieson [476], Cruden, Nasseri, and Pysklywec [472]
Huismans and Beaumont [963], Currie, Beaumont, and Huismans [481], Morency, Huismans, Beaumont, and Fullsack [1450], Selzer, Buiter, and Pfiffner [1903], Buiter and Torsvik [256], Jamieson, Beaumont, Nguyen, and Culshaw [1011], Shaw and Pysklywec [1917]
Selzer, Buiter, and Pfiffner [1901], Warren, Beaumont, and Jamieson [2213], Warren, Beaumont, and Jamieson [2214], Göğüş and Pysklywec [778], Buiter, Huismans, and Beaumont [252], Huismans and Beaumont [962], Currie, Huismans, and Beaumont [483]
Keppie, Currie, and Warren [1092], Beaumont, Jamieson, Butler, and Warren [117], Buiter, Pfiffner, and Beaumont [254], Gradmann, Beaumont, and Albertz [808], Simon, Huismans, and Beaumont [1936]
Albertz, Beaumont, Shimeld, Ingsand, and Gradmann [16], Albertz and Beaumont [14], Gray and Pysklywec [814], Pysklywec, Gogus, Percival, Cruden, and Beaumont [1708], Albertz, Beaumont, and Ings [15], Jamieson, Beaumont, Warren, and Nguyen [1013], Ings and Beaumont [986], Ings and Beaumont [985]
Currie and Beaumont [480], Butler, Veaumont, and Jamieson [295], Huismans and Beaumont [959], Jamieson and Beaumont [1008]
Gray and Pysklywec [815], Gray and Pysklywec [816], Komut, Gray, Pysklywec, and Gogus [1134], Gradmann and Beaumont [806], Jammes and Huismans [1014], Allen and Beaumont [21], Gradmann, Beaumont, and Ings [809], Goteti, Ings, and Beaumont [795], Beaumont and Ings [116]
Butler, Beaumont, and Jamieson [293], Chenin and Beaumont [362] Fillon, Huismans, and Beek [638], Fillon, Huismans, Beek, and Muńoz [639] Goteti, Beaumont, and Ings [794], Gray and Pysklywec [817] Kneller, Albertz, Karner, and Johnson [1128], Nilfouroushan, Pysklywec, Cruden, and Koyi [1565] Krystopowicz and Currie [1155]
Gogus [777], Jammes, Huismans, and Muńoz [1015], Huismans and Beaumont [965], Butler, Beaumont, and Jamieson [294]
Allen and Beaumont [19], Butler, Beaumont, and Jamieson [292], Heron, Pysklywec, and Stephenson [890], Currie, Ducea, DeCelles, and Beaumont [482]
Liu and Currie [1298], Allen and Beaumont [20], Kelly, Butler, and Beaumont [1089], Heron, Pysklywec, and Stephenson [898], Heron and Pysklywec [895], Heron, Pysklywec, and Stephenson [897]
Wenker and Beaumont [2237], Wenker and Beaumont [2236], Heron, Pysklywec, and Stephenson [896]
Li et al. [1253], Beucher and Huismans [172], Kelly, Beaumont, and Butler [1090]
Gün, Pysklywec, Göğüş, and Topuz [839], Lu and Huismans [1338], Wang, Currie, and DeCelles [2187]
Gün, Pysklywec, Göğüş, and Topuz [840], Kelly, Beaumont, and Jamieson [1091]
Liu, Wagner, Currie, and Caddick [1309], Kublik, Currie, and Pearson [1156]
Tackley [2020]
Schubert and Tackley [1890]
Moore, Schubert, and Tackley [1445], Thompson and Tackley [2079]
Tackley [2019], Tackley [2023], Tackley [2025], Tackley [2027]
Tackley [2022]
Farnetani, Legras, and Tackley [618], Tackley [2026], Tackley and Xie [2033]
Tackley and Xie [2034]
Xie and Tackley [2284], Xie and Tackley [2283], Nakagawa and Tackley [1513], Nakagawa and Tackley [1522] Nakagawa and Tackley [1515], Schubert, Masters, Olson, and Tackley [1893], Yoshida and Ogawa [2330]
Grigné, Labrosse, and Tackley [820], Farnetani and Samuel [617] Nakagawa and Tackley [1512], Nakagawa and Tackley [1521] Nakagawa and Buffett [1502], Yoshida and Ogawa [2329]
Mittelstaedt and Tackley [1432]
Grigné, Labrosse, and Tackley [821], Grigné, Labrosse, and Tackley [822], Honda, Morishige, and Orihashi [931], Hernlund and Tackley [888], Tackley, Nakagawa, and Hernlund [2030]
Deschamps and Tackley [529], Hernlund, Tackley, and Stevenson [889] Hernlund and Tackley [887], Samuel and Tackley [1837] Nakagawa and Tackley [1520], Tackley [2018], Van Heck and Tackley [2138]
Deschamps and Tackley [530], Nakagawa, Tackley, Deschamps, and Connolly [1523], Keller and Tackley [1084]
Deschamps, Tackley, and Nakagawa [531], Nakagawa and Tackley [1518] Morishige, Honda, and Tackley [1465], Samuel, Tackley, and Evonuk [1838], Nakagawa, Tackley, Deschamps, and Connolly [1524]
Rolf and Tackley [1793], Golabek, Keller, Gerya, Zhu, Tackley, and Connolly [782], Cammarano, Tackley, and Boschi [300] Nakagawa and Tackley [1514], Deschamps, Kaminski, and Tackley [524], Morishige and Honda [1464]
Rolf, Coltice, and Tackley [1791], Crameri, Tackley, Meilick, Gerya, and Kaus [461], Coltice, Seton, Rolf, Müller, and Tackley [431], Deschamps, Yao, Tackley, and Sanchez-Valle [532], Deschamps, Cobden, and Tackley [523], Armann and Tackley [40], Nakagawa, Tackley, Deschamps, and Connolly [1525], Ulvrová, Labrosse, Coltice, Rĺback, and Tackley [2120]
Ruedas, Tackley, and Solomon [1812], Ruedas, Tackley, and Solomon [1811], Tackley, Ammann, Brodholt, Dobson, and Valencia [2028], Nakagawa and Tackley [1516], Moore and Webb [1446], Morishige and Honda [1473]
Yao, Deschamps, Lowman, Sanchez-Valle, and Tackley [2319], Crameri and Tackley [459], Leone, Tackley, Gerya, May, and Zhu [1226], Rolf, Coltice, and Tackley [1795], Coltice, Rolf, and Tackley [423], Bello, Coltice, Rolf, and Tackley [145], Li, Deschamps, and Tackley [1249], Rozel, Besserer, Golabek, Kaplan, and Tackley [1802], Nakagawa and Tackley [1517]
Bello, Coltice, Tackley, Müller, and Cannon [146], Deschamps, Li, and Tackley [526], Nakagawa and Tackley [1519], Li, Deschamps, and Tackley [1248], Nakagawa, Nakakuki, and Iwamori [1510], Crameri and Tackley [468], Petersen, Stegman, and Tackley [1650]
Sim, Stegman, and Coltice [1933], Crameri and Tackley [460], Atkins, Valentine, Tackley, and Trampert [54], Kankanamge and Moore [1057]
Coltice, Gerault, and Ulvrova [425], Petersen, Stegman, and Tackley [1651], Rozel, Golabek, Jain, Tackley, and Gerya [1803], Ballmer, Houser, Hernlund, Wentzcovitch, and Hirose [88], Patočka, Čadek, Tackley, and Čžková [1618], Nakagawa and Spiegelman [1511], Crameri, Lithgow-Bertelloni, and Tackley [466], Ruedas and Breuer [1810], Nakagawa [1504], Nakagawa and Iwamori [1505]
Guerrero, Lowman, Deschamps, and Tackley [828], Coltice and Shephard [432], Nakagawa, Iwamori, Yanagi, and Nakao [1507], Bocher, Fournier, and Coltice [199], Coltice, Larrouturou, Debayle, and Garnero [429], Arnould, Coltice, Flament, Seigneur, and Müller [45], Crameri [463], Crameri and Lithgow-Bertelloni [465], Langemeyer, Lowman, and Tackley [1165], Deschamps, Rogister, and Tackley [527], Rolf, Steinberger, Sruthi, and Werner [1796], Rolf and Pesonen [1792], Rolf, Capitanio, and Tackley [1794], Khan et al. [1099], Furst, Peyret, Chery, and Mohammadi [677]
Guerrero, Lowman, and Tackley [829], Arnould, Ganne, Coltice, and Feng [47], Nakagawa and Iwamori [1506], Deschamps and Li [525], Patočka, Čžková, and Tackley [1619], Nakagawa and Nakakuki [1509], Coltice, Husson, Faccenna, and Arnould [428], Crameri, Conrad, Montési, and Lithgow-Bertelloni [464], Ulvrova, Coltice, Williams, and Tackley [2119], Gillooly, Coltice, and Wolf [765], Jain, Rozel, and Tackley [1006], Jain, Rozel, Tackley, Sanan, and Gerya [1007]
Langemeyer, Lowman, and Tackley [1164], Gülcher, Gebhardt, Ballmer, and Tackley [836], Yan, Ballmer, and Tackley [2300], Arnould, Coltice, Flament, and Mallard [46], Ribe, Tackley, and Sanan [1765], Grima, Lithgow-Bertelloni, and Crameri [825], Schierjott, Rozel, and Tackley [1867], Lourenço, Rozel, Ballmer, and Tackley [1327], Bolrăo et al. [204], Karlsson, Cheng, Crameri, Rolf, Uppalapati, and Werner [1062], Uppalapati, Rolf, Crameri, and Werner [2121]
Rodriguez, Arnould, Coltice, and Soret [1787], Langemeyer, Lowman, and Tackley [1163], Meier, Bower, Lichtenberg, Tackley, and Demory [1414], Guerrero, Lowman, and Tackley [827], Gülcher, Ballmer, and Tackley [835], Nakagawa and Karato [1508], Nakagawa and Karato [1508]
Li et al. [1251], Huang, Li, and Zhao [950], Adams, Stegman, Smrekar, and Tackley [5], Basu Sarkar and Moore [100], Langemeyer, Lowman, and Tackley [1166], Gülcher, Golabek, Thielmann, Ballmer, and Tackley [837], Borgeat and Tackley [210]
Qu, Zhu, Ji, Xie, Zeng, and Zhang [1716], Tian, Tackley, and Lourenço [2080], Li, Zhang, Li, Shi, and Zhao [1250], Adams, Stegman, Mohammadzadeh, Smrekar, and Tackley [4], Guerrero, Deschamps, Li, Hsieh, and Tackley [830], Lebec, Labrosse, Morison, and Tackley [1179], Nakagawa [1503]
Javaheri, Lowman, and Tackley [1023], Desiderio and Ballmer [533], Cheng, Rozel, Golabek, Ballantyne, Jutzi, and Tackley [360], Mather et al. [1396]
STREAMV, an Eulerian, particle-in-cell, Finite Difference /Finite Volume numerical code that solves for the conservation of mass, momentum, energy and composition for an incompressible, multi-component viscous fluid:
where the dimensionless quantities , t, T, p, ε, k, κci, Ci, H, are respectively, the velocity vector, time, potential temperature, dynamic pressure, deviatoric strain rate tensor, thermal conductivity, composition for material ’i’, chemical diffusivity of material ’i’, internal heating, and the unit vector aligned in the direction of the gravity field. Pr is the Prandtl number; Ralocal and Rblocal are thermal and compositional Rayleigh numbers depending on the local composition.
To solve the momentum equation STREAMV uses a formal stream function formulation on a staggered grid, which satisfies exactly mass conservation. Although the code is Eulerian, it uses Lagrangian tracers for solving the advective part of the conservation of energy and the conservation of composition with a 4th order Runge-Kutta integration scheme. This formalism easily allows one to solve accurately Equation (6) for κci = 0 with negligible numerical diffusion. In addition, the Lagrangian tracers can be used to calculate in real time, stirring properties or anisotropy induced by the flow. Tracers also carry out information on material properties such as viscosity, density, thermal expansion and thermal conductivity. This Eulerian-Lagrangian formalism allows handling very large and sharp contrasts in material properties. For instance, viscosity contrasts of more than five orders of magnitude across a single cell are easily handled by STREAMV.
Samuel [1840]
Samuel [1839]
Samuel and Evonuk [1841]
Samuel, Aleksandrov, and Deo [1836]
Samuel [1843]
Salvador and Samuel [1833]
Marotta, Spelta, and Rizzetto [1385]
Marotta and Spalla [1384]
Roda, Marotta, and Spalla [1783]
Roda, Spalla, and Marotta [1785]
Regorda, Marotta, and Spalla [1748]
Regorda, Roda, Marotta, and Spalla [1750]
Marotta, Roda, Conte, and Spalla [1388]
Roda, Regorda, Spalla, and Marotta [1784]
Roda, Zucali, Regorda, and Spalla [1786], Regorda, Lardeaux, Roda, Marotta, and Spalla [1749]
Regorda, Spalla, Roda, Lardeaux, and Marotta [1751]
Bollino, Regorda, Sabadini, and Marotta [203]
https://www.susannebuiter.eu/sulec.html
Sulec is a 2D/3D arbitrary Lagrangian Eulerian finite-element code developed by Susanne Buiter and Susan Ellis. It solves the equation for conservation of momentum for an incompressible fluid combined with the heat equation. Pressure is calculated as mean stress following an Uzawa iterative penalty formulation (Pelletier et al. (1989) [1626]). Materials are tracked with tracers which are advected with a 2nd-order Runge-Kutta scheme. A true free surface is obtained by a slight vertical stretch of the Eulerian mesh to accommodate surface displacements and the effects of surface processes (Fullsack 1995[674]). Sulec includes a stabilization term that suppresses numerical overshoot of isostatic restoring forces at interfaces with strong density contrasts (Kaus et al. (2010) [1069]; Quinquis et al. (2011) [1724]). The mechanical and thermal equations are solved using the direct sparse solver PARDISO (Schenk and Gaertner (twothousandfour) [1865]).
Not completely up to date (see website)
Quinquis, Buiter, and Ellis [1724], Ellis, Little, Wallace, Hacker, and Buiter [582]
Buiter [249], Tetreault and Buiter [2047], Crameri et al. [462], Grigull, Ellis, Little, Hill, and Buiter [823]
Ghazian and Buiter [749]
Naliboff and Buiter [1526]
Zwaan, Scheurs, Naliboff, and Buiter [2410], Ellis, Williams, Ristau, Reyners, Eberhart-Phillips, and Wallace [577]
Naliboff, Buiter, Péron-Pinvidic, Osmundsen, and Tetreault [1530]
Tetreault and Buiter [2048], Fagereng, Diener, Ellis, and Remitti [612], Webber, Ellis, and Fagereng [2219]
Ellis, Ghisetti, Barnes, Boulton, Fagereng, and Buiter [583], Biemiller, Ellis, Mizera, Little, Wallace, and Lavier [177]
Peron-Pinvidic and Naliboff [1641]
Peron-Pinvidic, Fourel, and Buiter [1640]
Hummel, Buiter, and Erdős [967]
TEMESCH (TEmperature and Motion Equation SCHeme) is a MATLAB 2D finite difference code developed by Valera, and others, which solves the equations of conservation of mass, momentum and energy for an incompressible fluid. Density variations have been neglected in the motion equation except when they are coupled to the gravitational acceleration in the buoyancy force term. Inertial forces are neglected. The thermal effects of radiogenic heat production and adiabatic heating are included in the energy equation whereas shear heating is neglected.
Valera, Negredo, and Villaseńor [2127]
Valera [2124]
Valera, Negredo, and Jiménez-Munt [2126]
Valera, Negredo, Billen, and Jiménez-Munt [2125]
This code permits the calculation of temperature and density anomaly distributions in deep subduction zones, taking into account self-consistently the olivine to spinel phase transformation.
Negredo, Valera, and Carminati [1540]
Carminati, Negredo, Valera, and Doglioni [326]
Duesterhoeft, Quinteros, Oberhänsli, Bousquet, and Capitani [554]
The numerics are explained in [938] and the theory in [936]. This code is also called TDCON in Coltice and Schmalzl [430] (2006).
Houseman [938]
Schmalzl, Houseman, and Hansen [1876] (check when I have access to pdf)
Schmalzl, Houseman, and Hansen [1875]
Schmalzl, Breuer, and Hansen [1874]
Schmalzl, Breuer, and Hansen [1873]
Coltice and Schmalzl [430]
The computational grid is based on a projection of the regular icosahedron onto a sphere and successive dyadic refinements, see Baumgardner and Frederickson [107]. Concentric copies of such spherical layers of nodes build the domain in radial direction. The first main improvement was being parallelised Bunge and Baumgardner [265]. Particles were added in Stegman, Richards, and Baumgardner [1983].
Baumgardner writes on his site: “As part of my Ph.D. thesis research at UCLA I developed the 3-D spherical code now known as TERRA for modeling the dynamics of planetary mantles. This code utilized the then newly discovered multigrid method for solving the large elliptic systems of equations arising in this application. The efficiency of multigrid plus the advantages of the almost uniform icosahedral grid made such 3-D calculations feasible for the first time. This code was the first 3-D spherical code of its kind and continues almost 30 years later to be the state of the art and used by several research groups around the world. ”
Baumgardner [108]
Baumgardner [106]
Glatzmaier [767]
Tackley, Stevenson, Glatzmaier, and Schubert [2031]
Tackley, Stevenson, Glatzmaier, and Schubert [2032]
Bunge and Baumgardner [265]
Bunge and Richards [267]
Bunge, Richards, Lithgow-Bertelloni, Baumgardner, Grand, and Romanowicz [262]
Tackley, Baumgardner, Glatzmaier, Olson, and Clune [2029], Richards, Bunge, Ricard, and Baumgardner [1767], Reese, Solomatov, Baumgardner, and Yang [1743]
Bunge and Davies [260], Bunge, Ricard, and Matas [261], Davies and Bunge [514]
Bunge, Richards, and Baumgardner [264], Stegman, Richards, and Baumgardner [1983]
Bunge, Hagelberg, and Travis [266], Stegman, Jellinek, Zatman, Baumgardner, and Richards [1982]
Reese, Solomatov, Baumgardner, Stegman, and Vezolainen [1742], Walzer, Hendel, and Baumgardner [2182]
Reese, Solomatov, and Baumgardner [1741], Phillips and Bunge [1661], Fukao et al. [668]
Davies and Bunge [513], Gottschaldt, Walzer, Hendel, Stegman, Baumgardner, and Mühlhaus [796]
Heidbach, Iaffaldano, and Bunge [881], Shahnas, Lowman, Jarvis, and Bunge [1909], Walzer and Hendel [2180]
Phillips, Bunge, and Schaber [1663], Wolstencroft, Davies, and Davies [2268], Gottschaldt, Walzer, Stegman, Baumgardner, and Mühlhaus [797], Iaffaldano and Bunge [981], Schaber, Bunge, Schuberth, Malservisi, and Horbach [1855], Schuberth, Bunge, Steinle-Neumann, Moder, and Oeser [1896], Schuberth, Bunge, and Ritsema [1895], Oeser, Bunge, Mohr, and Igel [1594], Davies and Davies [510]
Yanagisawa, Yamagishi, Hamano, and Stegman [2304]
Wolstencroft and Davies [2267], Iaffaldano, Husson, and Bunge [982]
Davies, Goes, Davies, Schuberth, Bunge, and Ritsema [505], Shephard et al. [1921]
Davies, Davies, Bollada, Hassan, Morgan, and Nithiarasu [508], O’Farrell, Lowman, and Bunge [1576], Walzer and Hendel [2181]
Butterworth et al. [296]
Amodeo, Schuberth, Bunge, Carrez, and Cordier [31], Colli, Bunge, and Schuberth [418]
van Heck, Davies, Elliott, and Porcelli [2137], Nerlich, Colli, Ghelichkhan, Schuberth, and Bunge [1546], Price [1690]
Wolstencroft and Davies [2269], Barry et al. [95], Rubey, Brune, Heine, Davies, Williams, and Müller [1804], Walzer and Hendel [2179]
Ghelichkhan and Bunge [752], Colli, Ghelichkhan, Bunge, and Oeser [419], Price and Davies [1692]
Price, Davies, and Panton [1691]
Colli, Bunge, and Oeser [417]
Ghelichkhan, Bunge, and Oeser [751]
Lin, Colli, and Wu [1273], Brown, Colli, and Bunge [239], Panton, Davies, Elliott, Andersen, Porcelli, and Price [1614]
Taiwo, Bunge, Schuberth, Colli, and Vilacis [2035], Panton, Davies, and Myhill [1615]
TerraFERMA is the Transparent Finite Element Rapid Model Assembler, a software system for the rapid and reproducible construction and exploration of coupled multi-physics models.
TerraFERMA leverages three advanced open-source libraries for scientific computation that provide high level problem description (FEniCS), composable solvers for coupled multi-physics problems (PETSc) and a science neutral options handling system (SPuD) that allows the hierarchical management of all model options.
TerraFERMA inherits most of its functionality from the underlying libraries but adds a layer of control and guidance for building reusable and reproducible applications.
Wilson, Spiegelman, Keken, and Hacker [2259]
Spiegelman, May, and Wilson [1970]
Wilson, Spiegelman, and Keken [2258], Cerpa, Wada, and Wilson [337]
Sim, Spiegelman, Stegman, and Wilson [1932], Abers, Keken, and Wilson [3]
Cerpa, Arcay, and Padrón-Navarta [341]
https://ivone.geo3bcn.csic.es/research_uhuru.html https://github.com/daniggcc/uhurutisc The developed computer program is named UhuruTISC after the two independent codes from which it derives: the thin-sheet thermomechanical model Uhuru [1031] and an improved version of the surface process and flexural isostasy model TISC [686].
2005 Jiménez-Munt, Garcia-Castellanos, and Fernandez [1031]
2015 Garcia-Castellanos and Jimenez-Munt [687]
Section 3 of [1719] presents the evolutionary path which lead to this code. Also check [1375] for Underworld2.
Taken from a presentation by L. Moresi
Stegman, Freeman, Schellart, Moresi, and May [1979], Moresi and Mühlhaus [1452]
Moresi, Quenette, Lemiale, Mériaux, Appelbe, and Mühlhaus [1456], Schellart, Freeman, Stegman, Moresi, and May [1858], Quenette, Moresi, Sunter, and Appelbe [1719]
Lemiale, Mühlhaus, Moresi, and Stafford [1193], OzBench et al. [1605], Goyette, Takatsuka, Clark, Müller, Rey, and Stegman [805], Stegman et al. [1984], Schellart, Stegman, Farrington, and Moresi [1862]
Stegman, Freeman, and May [1981]
Capitanio, Stegman, Moresi, and Sharples [311], Mason, Moresi, Betts, and Miller [1394], Stegman, Schellart, and Freeman [1980], Stegman, Farrington, Capitanio, and Schellart [1978], Farrington, Stegman, Moresi, Sandiford, and May [622], Capitanio, Zlotnik, and Faccenna [312]
Mériaux, Mansour, Moresi, Kerr, and May [1423], Capitanio, Faccenna, Zlotnik, and Stegman [309], Lev and Hager [1229]
Betts, Mason, and Moresi [170], Schellart and Moresi [1859], Faccenda and Capitanio [600], Capitanio and Replumaz [310], Cooper, Moresi, and Lenardic [447]
Farrington, Moresi, and Capitanio [621], Sharples, Jadamec, Moresi, and Capitanio [1914], Griffin et al. [819], Cooper and Miller [453]
Quenette, Xi, Mansour, Moresi, and Abramson [1718], Betts, Moresi, Miller, and Willis [171], Schellart and Spakman [1860], Sharples, Moresi, and Revote [1915], Capitanio, Replumaz, and Riel [317]
Sharples, Moresi, Velic, Jadamec, and May [1916], O’Neill, Lenardic, Weller, Moresi, Quenette, and Zhang [1580], Kiraly, Capitanio, Funiciello, and Faccenna [1122], Salerno, Capitanio, Farrington, and Riel [1832]
Beall, Moresi, and Stern [111], Király, Capitanio, Funiciello, and Faccenna [1123], Schellart [1857], Wang, Kusky, and Capitanio [2205]
Mériaux, D, Mansour, Chen, and Kaluza [1422], Yang, Moresi, Zhao, Sandiford, and Whittaker [2315], Beall, Moresi, and Cooper [112], Mondy, Rey, Duclaux, and Moresi [1440], Wang, Kusky, and Capitanio [2206], Wang, Kusky, and Capitanio [2207]
Sandiford and Moresi [1847], Yang et al. [2312], Capitanio, Nebel, Cawood, Weinberg, and Clos [316], Carluccio, Kaus, Capitanio, and Moresi [325], Sandiford, Moresi, Sandiford, and Yang [1851], Bodur and Rey [202], Smith, Bianchi, and Capitanio [1945], Capitanio, Nebel, Cawood, Weinberg, and Chowdhury [315]
Mansour et al. [1375], Sandiford, Moresi, Sandiford, Farrington, and Yang [1850], Capitanio [318], Ghosh, Bose, Mandal, and Laik [761], Capitanio, Nebel, and Cawood [321], Cooper, Farrington, and Miller [448], Gunawardana, Morra, Chowdhury, and Cawood [842], Schellart [1861]
Korchinski, Teyssier, Rey, Whitney, and Mondy [1146], Qi, Zhang, Xu, and Wang [1711], Strak and Schellart [2003], Zhang, Zlotnik, and Li [2348], Schellart and Strak [1863], Xiang, Wang, and Kusky [2277], Knight, Capitanio, and Weinberg [1130]
Wang, Kusky, and Wang [2208], Almeida, Riel, Rosas, Duarte, and Schellart [27], Peral, Fernŕndez, Vergés, Zlotnik, and Jiménez-Munt [1631], Oliveira et al. [1597], Bahadori et al. [73], Capitanio, Nebel, Moyen, and Cawood [322], Wang, Capitanio, Wang, and Kusky [2204], Bahadori et al. [74], Zuhair, Gollapalli, Capitanio, Betts, and Graciosa [2409], Artemieva, Yang, and Thybo [51]
Laik, Schellart, and Strak [1161], Gianni, Likerman, Navarrete, Gianni, and Zlotnik [762], Yang, Artemieva, and Thybo [2305], Schellart, Strak, Beniest, Duarte, and Rosas [1864], Mondy, Rey, and Duclaux [1439], Li and Gurnis [1254], Li and Gurnis [1255]
Deng, Yang, Zhao, and Zhou [522], Gunawardana, Chowdhury, Morra, and Cawood [841], Yuan, Gurnis, Asimow, and Li [2334], Cooper and Miller [451], Wang and Xu [2209], Capitanio, Kerr, Stegman, and Smrekar [320], Shi and Morgan [1922], Li, Capitanio, Cawood, Wu, Zhai, and Wang [1234], Li, Hu, Li, Zhou, and Zhang [1233]
Beuchert and Podladchikov [173]
This stands for ’Yet Another Convection Code’.
Tosi, Yuen, and Čadek [2093]
Yuen, Tosi, and Čadek [2338]
Samuel and Tosi [1845]
Tosi, Yuen, Koker, and Wentzcovitch [2094]
Tosi et al. [2091]
Tosi, Maierová, and Yuen [2089]
Thibault Duretz, L Räss, YY Podladchikov, and SM Schmalholz. “Resolving thermomechanical coupling in two and three dimensions: spontaneous strain localization owing to shear heating”. In: Geophy. J. Int. 216.1 (2019), pp. 365–379. doi: 10. 1093/gji/ggy434
Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y Podladchikov. “Assessing the robustness and scalability of the accelerated pseudo-transient method”. In: Geosci. Model. Dev. 15.14 (2022), pp. 5757–5786. doi: 10.5194/gmd-15-5757-2022
Siddhant Agarwal, Nicola Tosi, Pan Kessel, Doris Breuer, and Grégoire Montavon. “Deep learning for surrogate modeling of two-dimensional mantle convection”. In: Physical Review Fluids 6.11 (2021), p. 113801. doi: 10.1103/PhysRevFluids.6.113801
Yunyue Elita Li, Daniel O’Malley, Greg Beroza, Andrew Curtis, and Paul Johnson. Machine Learning Developments and Applications in Solid-Earth Geosciences: Fad or Future? 2023. doi: 10.1029/2022JB026310
W.S. Kiefer and B. Hager. “Geoid anomalies and dynamic topography from convection in cylindrical geometry: applications to mantle plumes on Earth and Venus”. In: Geophy. J. Int. 108 (1992), pp. 198–214. doi: 10.1111/j.1365-246X.1992.tb00850.x
Scott D King. “Geoid and topographic swells over temperature-dependent thermal plumes in spherical-axisymmetric geometry”. In: Geophys. Res. Lett. 24.23 (1997), pp. 3093–3096. doi: 10.1029/97GL53154
Walter S Kiefer. “Melting in the Martian mantle: Shergottite formation and implications for present-day mantle convection on Mars”. In: Meteoritics & Planetary Science 38.12 (2003), pp. 1815–1832. doi: 10.1111/j.1945-5100.2003.tb00017.x
Hannah L Redmond and Scott D King. “A numerical study of a mantle plume beneath the Tharsis Rise: Reconciling dynamic uplift and lithospheric support models”. In: J. Geophys. Res.: Planets 109.E9 (2004). doi: 10.1029/2003JE002228
Qingsong Li and Walter S Kiefer. “Mantle convection and magma production on present-day Mars: Effects of temperature-dependent rheology”. In: Geophys. Res. Lett. 34.16 (2007). doi: 10.1029/2007GL030544
Wei Leng and Shijie Zhong. “Surface subsidence caused by mantle plumes and volcanic loading in large igneous provinces”. In: Earth Planet. Sci. Lett. 291.1-4 (2010), pp. 207–214. doi: 10.1016/j.epsl.2010.01.015
Wei Leng and Michael Gurnis. “Shape of thermal plumes in a compressible mantle with depth-dependent viscosity”. In: Geophys. Res. Lett. 39.5 (2012). doi: 10.1029/2012GL050959
William H Reed and TR Hill. Triangular mesh methods for the neutron transport equation. Tech. rep. Los Alamos Scientific Lab., N. Mex.(USA), 1973
Francesco Bassi and S. Rebay. “High-order accurate discontinuous finite element solution of the 2D Euler equations”. In: J. Comp. Phys. 138.2 (1997), pp. 251–285
B. Cockburn and C.-W. Shu. “The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems”. In: SIAM J. Numer. Anal. 35.6 (1998), pp. 2440–2463
Béatrice Rivičre, Mary F Wheeler, and Vivette Girault. “Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I”. In: Computational Geosciences 3.3-4 (1999), pp. 337–360
B. Cockburn, G.E. Karniadakis, and C.W.Shu. “The Development of Discontinuous Galerkin Methods”. In: Discontinuous Galerkin
Methods. Lecture Notes in Computational Science and Engineering 11 (2000)
Franco Brezzi, Gianmarco Manzini, Donatella Marini, Paola Pietra, and Alessandro Russo. “Discontinuous Galerkin approximations
for elliptic problems”. In: Numerical Methods for Partial Differential Equations: An International Journal 16.4 (2000), pp. 365–378
P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau. “An a priori error analysis of the local discontinuous Galerkin method for
elliptic problems”. In: SIAM J. Numer. Anal. 38 (2000), pp. 1676–1706
Peter Hansbo, Mats Larson, and Mats G Larson. “A simple nonconforming bilinear element for the elasticity problem”. In: Trends in Computational Structural Mechanics. 2001
P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau. “Local discontinuous Galerkin methods for elliptic problems”. In: Commun.
Numer. Meth. Engng 18 (2002), pp. 69–75
B. Cockburn, G. Kansschat, D. Schoetzau, and C. Schwab. “Local discontinuous Galerkin methods for the Stokes system”. In:
SIAM J. Numer. Anal. 40.1 (2002), pp. 319–343
Douglas N Arnold, Franco Brezzi, Bernardo Cockburn, and L Donatella Marini. “Unified analysis of discontinuous Galerkin methods
for elliptic problems”. In: SIAM journal on numerical analysis 39.5 (2002), pp. 1749–1779. doi: 10.1137/S0036142901384162
M.J. Guillot, B. Rivičre, and M.F. Wheeler. “Discontinuous Galerkin methods for mass conservation equations for environmental
modelling”. In: Computational Methods in Water Resources, Developments in Water Science. Ed. by Gray W.G. Hassanizadeh
S.M. Schotting R.J. and Pinder G.F. 2002, pp. 939–946
Bernardo Cockburn. “Discontinuous galerkin methods”. In: ZAMM-Journal of Applied Mathematics and Mechanics 83.11 (2003),
pp. 731–754. doi: 10.1002/zamm.200310088
Peter Hansbo and Mats G Larson. “Discontinuous Galerkin and the Crouzeix–Raviart element: application to elasticity”. In:
ESAIM: Mathematical Modelling and Numerical Analysis 37.1 (2003), pp. 63–72. doi: 10.1051/m2an:2003020
B. Cockburn, G. Kanschat, and D. Schötzau. “A locally conservative LDG method for the incompressible Navier-Stokes equations”. In: Mathematics of Computation 74.251 (2004), pp. 1067–1095
J. Carrero, B. Cockburn, and D. Schötzau. “Hybridized globally divergence-free LDG methods. Part I: The Stokes problem”. In:
Mathematics of Computation 75.254 (2005), pp. 533–563
B. Cockburn, G. Kanschat, and D. Schötzau. “The local discontinuous Galerkin method for linearized incompressible fluid flow: a
review”. In: Computers and Fluids 34 (2005), pp. 491–506
B. Cockburn and J. Gopalakrishnan. “Incompressible Finite elements via Hybridization. Part I: The Stokes System in Two Space
Dimensions”. In: SIAM J. Numer. Anal. 43.4 (2005), pp. 1627–1650
B. Cockburn and J. Gopalakrishnan. “Incompressible Finite elements via Hybridization. Part II: The Stokes System in Three Space
Dimensions”. In: SIAM J. Numer. Anal. 43.4 (2005), pp. 1651–1672
B. Cockburn and J. Gopalakrishnan. “New hybridization techniques”. In: GAMM-Mitt 28.2 (2005), pp. 154–182
B. Cockburn, G. Kanschat, and D. Schötzau. “A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier-Stokes
Equations”. In: J. Sci. Comput. 31.112 (2007), pp. 61–73
Miloslav Feistauer and V Kučera. “On a robust discontinuous Galerkin technique for the solution of compressible flow”. In: J.
Comp. Phys. 224.1 (2007), pp. 208–221. doi: 10.1016/j.jcp.2007.01.035
G. Kanschat. “Divergence-free discontinuous Galerkin schemes for the Stokes equations and the MAC scheme”. In: Int. J. Num.
Meth. Fluids 56 (2008), pp. 941–950. doi: 10.1002/fld.1566
A. Montlaur, S. Fernandez-Mendez, and A. Huerta. “Discontinuous Galerkin methods for the Stokes equations using divergence-free
approximations”. In: Int. J. Num. Meth. Fluids 57.08 (2008), pp. 1071–1092
Vt Dolejš. “Analysis and application of the IIPG method to quasilinear nonstationary convection–diffusion problems”. In:
Journal of Computational and Applied Mathematics 222.2 (2008), pp. 251–273
J. Peraire and P.-O. Persson. “The compact discontinuous Galerkin method for elliptic problems”. In: SIAM J. Sci. Comput. 30.4
(2008), pp. 1806–1824. doi: 10.1137/070685518
B. Cockburn, G. Kanschat, and D. Schötzau. “An Equal-Order DG Method for the Incompressible Navier-Stokes Equations”. In:
J. Sci. Comput. 40 (2009), pp. 188–210
B. Cockburn and J. Gopalakrishnan. “The derivation of hybridizable discontinuous Galerkin methods for Stokes flow”. In: SIAM
J. Numer. Anal. 47.2 (2009), pp. 1092–1125
B. Cockburn, J. Gopalakrishnan, and R. Lazarov. “Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous
Galerkin Methods for Second Order Elliptic Problems”. In: Mathematics and Statistics Faculty Publications and Presentations
(2009)
N.C. Nguyen, J. Peraire, and B. Cockburn. “An implicit high-order hybridizable discontinuous Galerkin method for linear
convection-diffusion equations ”. In: J. Comp. Phys. 228 (2009), pp. 3232–3254. doi: 10.1016/j.jcp.2009.01.030
Chi-Wang Shu. “Discontinuous Galerkin methods: general approach and stability”. In: Numerical solutions of partial differential
equations 201 (2009)
Bernardo Cockburn, Bo Dong, and Johnny Guzmán. “A superconvergent LDG-hybridizable Galerkin method for second-order
elliptic problems”. In: Mathematics of Computation 77.264 (2008), pp. 1887–1916. doi: 10.1090/S0025-5718-08-02123-6
Bernardo Cockburn, Johnny Guzmán, and Haiying Wang. “Superconvergent discontinuous Galerkin methods for second-order
elliptic problems”. In: Mathematics of Computation 78.265 (2009), pp. 1–24. doi: xxx
N.C. Nguyen, J. Peraire, and B. Cockburn. “A hybridizable discontinuous Galerkin method for Stokes flow”. In: Computer Methods
in Applied Mechanics and Engineering 199 (2010), pp. 582–597. doi: 10.1016/j.cma.2009.10.007
B. Cockburn, N.C. Nguyen, and J. Peraire. “A Comparison of HDG Methods for Stokes Flow”. In: J. Sci. Comput. 45 (2010),
pp. 215–237
A. Montlaur, S. Fernandez-Mendez, J. Peraire, and A. Huerta. “Discontinuous Galerkin methods for the Navier-Stokes equations
using solenoidal approximations”. In: Int. J. Num. Meth. Fluids 64 (2010), pp. 549–564. doi: 10.1002/fld.2161
G. Kanschat and B. Rivičre. “A strongly conservative finite element method for the coupling of Stokes and Darcy flow”. In: J.
Comp. Phys. 229 (2010), pp. 5933–5943
Bernardo Cockburn, Jayadeep Gopalakrishnan, and Francisco-Javier Sayas. “A projection-based error analysis of HDG methods”.
In: Mathematics of Computation 79.271 (2010), pp. 1351–1367
E.H. Georgoulis. “Discontinuous Galerkin Methods for Linear Problems: An Introduction”. In: Approximation algorithms for
Complex Systems. Ed. by E.H. Georgoulis, A. Iske, and J. Levesley. Berlin Heidelberg: Springer-Verlag, 2011, pp. 91–126. doi: 10.1007/978-3-642-16876-5_5
N.C. Nguyen, J. Peraire, and B. Cockburn. “An implicit high-order hybridizable discontinuous Galerkin method for the
incompressible Navier-Stokes equations”. In: J. Comp. Phys. 230 (2011), pp. 1147–1170. doi: 10.1016/j.jcp.2010.10.032
Peter Kaufmann. “Discontinuous Galerkin FEM in Computer Graphics”. PhD thesis. ETH Zurich, 2012
N.C. Nguyen and J. Peraire. “Hybridizable discontinuous Galerkin methods for partial differential equations in continuum
mechanics”. In: J. Comp. Phys. 231 (2012), pp. 5955–5988. doi: 10.1016/j.jcp.2012.02.033
Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equations by the finite element method:
The FEniCS book. Vol. 84. Springer Science & Business Media, 2012, chapt. 31
L. Vynnytska, M.E. Rognes, and S.R. Clark. “Benchmarking FEniCS for mantle convection simulations”. In: Computers and
Geosciences 50 (2013), pp. 95–105. doi: 10.1016/j.cageo.2012.05.012
S. Rhebergen, B. Cockburn, and J.J.W. van der Vegt. “A space-time discontinuous Galerkin method for the incompressible
Navier-Stokes equations”. In: J. Comp. Phys. 233 (2013), pp. 339–358
Andreas Klöckner, Timothy Warburton, and Jan S Hesthaven. “High-order discontinuous Galerkin methods by GPU
metaprogramming”. In: GPU Solutions to Multi-scale Problems in Science and Engineering. 2013, pp. 353–374. doi: 10.1007/
978-3-642-16405-7_23
Bernardo Cockburn and Ke Shi. “Devising HDG methods for Stokes flow: an overview”. In: Computers & Fluids 98 (2014), pp. 221–229. doi: 10.1016/j.compfluid.2013.11.017
R.S. Lehmann, M. Lukacova-Medvidova, B.J.P. Kaus, and A.A. Popov. “Comparison of continuous and discontinuous Galerkin
approaches for variable-viscosity Stokes flow”. In: Z. Angew. Math. Mech. 96.6 (2015), pp. 733–746. doi: 10.1002/zamm.201400274
H. Kabaria, A.J. Lew, and B. Cockburn. “A hybridizable discontinuous Galerkin formulation for non-linear elasticity”. In: Computer
Methods in Applied Mechanics and Engineering 283 (2015), pp. 303–329
Bernardo Cockburn. “Static condensation, hybridization, and the devising of the HDG methods”. In: Building bridges: connections
and challenges in modern approaches to numerical partial differential equations. 2016, pp. 129–177. doi: xxx
Simone Marras, Michal A Kopera, Emil M Constantinescu, Jenny Suckale, and Francis X Giraldo. “A continuous/discontinuous
Galerkin solution of the shallow water equations with dynamic viscosity, high-order wetting and drying, and implicit time
integration”. In: arXiv preprint arXiv:1607.04547 (2016). doi: xxxx
N. Fehn, W.A. Wall, and M. Kronbichler. “On the stability of projection methods for the incompressible Navier-Stokes equations
based on high-order discontinuous Galerkin discretizations”. In: J. Comp. Phys. 351 (2017), pp. 392–421. doi: 10.1016/j.jcp.
2017.09.031
I. Igreja and A.F.D. Loula. “Stabilized velocity and pressure mixed hybrid DGFEM for the stokes problem”. In: Int. J. Num. Meth.
Eng. 112 (2017), pp. 603–628. doi: 10.1002/nme.5527
Y. He, E.G. Puckett, and M.I. Billen. “A discontinuous Galerkin method with a bound preserving limiter for the advection of
non-diffusive fields in solid Earth geodynamics”. In: Phys. Earth. Planet. Inter. 263 (2017), pp. 23–37
Jian Cheng, Xiaodong Liu, Tiegang Liu, and Hong Luo. “A parallel, high-order direct discontinuous Galerkin method for the
Navier-Stokes equations on 3D hybrid grids”. In: Communications in Computational Physics 21.5 (2017), pp. 1231–1257. doi: 10.4208/cicp.OA-2016-0090
P. Schroeder and G. Lube. “Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior
layers on non-adapted meshes”. In: J. Comp. Phys. 335 (2017), pp. 760–779
P.W. Schroeder and G. Lube. “Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible
Navier-Stokes flows”. In: Journal of Numerical Mathematics 25.4 (2017), pp. 249–276
P.W. Schroeder and G. Lube. “Divergence-Free H(div)-FEM for Time-Dependent Incompressible Flows with Applications to High
Reynolds Number Vortex Dynamics”. In: J. Sci. Comput. (2007). doi: 10.1007/s10915-017-0561-1
X. Zhang. “On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations”. In: J.
Comp. Phys. 328 (2017), pp. 301–343
E.G. Puckett, D.L. Turcotte, Y. He, H. Lokavarapu, J.M. Robey, and L.H. Kellogg. “New numerical approaches for modeling
thermochemical convection in a compositionally stratified fluid”. In: Phys. Earth. Planet. Inter. 276 (2018), pp. 10–35. doi: 10.1016/j.pepi.2017.10.004
Stephanie Wollherr, Alice-Agnes Gabriel, and Carsten Uphoff. “Off-fault plasticity in three-dimensional dynamic rupture
simulations using a modal Discontinuous Galerkin method on unstructured meshes: Implementation, verification, and application”.
In: Geophy. J. Int. 214.3 (2018), 1556–1584. doi: 10.1093/gji/ggy213
Maurice S Fabien, Matthew G Knepley, and Béatrice M Rivičre. “A hybridizable discontinuous Galerkin method for two-phase
flow in heterogeneous porous media”. In: Int. J. Num. Meth. Eng. 116.3 (2018), pp. 161–177. doi: 10.1002/nme.5919
L. Mu, J. Wang, X. Ye, and S. Zhang. “A discrete divergence free weak Galerkin finite element method for the Stokes equations”.
In: Applied Numerical Mathematics 125 (2018), pp. 172–182
Alessandro M Forte and Jerry X Mitrovica. “New inferences of mantle viscosity from joint inversion of long-wavelength mantle convection and post-glacial rebound data”. In: Geophys. Res. Lett. 23.10 (1996), pp. 1147–1150
O Čadek and AP van den Berg. “Radial profiles of temperature and viscosity in the Earth’s mantle inferred from the geoid and lateral seismic structure”. In: Earth Planet. Sci. Lett. 164.3-4 (1998), pp. 607–615. doi: 10.1016/S0012-821X(98)00244-1
M. Sambridge. “Geophysical inversion with a neighbourhood algorithm -I. Searching a parameter space”. In: Geophy. J. Int. 138
(1999), pp. 479–494. doi: 10.1046/j.1365-246X.1999.00876.x
M. Sambridge. “Geophysical inversion with a neighbourhood algorithm -II. Appraising the ensemble”. In: Geophy. J. Int. 138
(1999), pp. 727–746. doi: 10.1046/j.1365-246x.1999.00900.x
Frédéric Deschamps and Christophe Sotin. “Inversion of two-dimensional numerical convection experiments for a fluid with a strongly temperature-dependent viscosity”. In: Geophy. J. Int. 143.1 (2000), pp. 204–218. doi: 10.1046/j.1365-246x.2000. 00228.x
F Boschetti and Louis Moresi. “Interactive inversion in geosciences”. In: Geophysics 66.4 (2001), pp. 1226–1234. doi: 10.1190/
1.1487069
B.J.P. Kaus and Y.Y. Podlachikov. “Forward and Reverse Modeling of the Three-Dimensional Viscous Rayleigh-Taylor Instability”.
In: Geophys. Res. Lett. 28.6 (2001), pp. 1095–1098
Mikhail K Kaban and Peter Schwintzer. “Oceanic upper mantle structure from experimental scaling of Vs and density at different
depths”. In: Geophy. J. Int. 147.1 (2001), pp. 199–214. doi: 10.1046/j.0956-540x.2001.01520.x
NM Shapiro and MH Ritzwoller. “Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle”. In:
Geophy. J. Int. 151.1 (2002), pp. 88–105. doi: 10.1046/j.1365-246X.2002.01742.x
H.-P. Bunge, M.A. Richards, and J.R. Baumgardner. “Mantle-circulation models with sequential data assimilation: Inferring
present-day mantle structure from plate-motion histories”. In: Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 360.1800 (2002), pp. 2545–2567. doi: 10.1098/rsta.2002.1080
J.X. Mitrovica and A.M. Forte. “A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data”. In: Earth Planet. Sci. Lett. 225.1-2 (2004), pp. 177–189. doi: 10.1016/j.epsl.2004.06.005
Nathan A Simmons, Alessandro M Forte, and Stephen P Grand. “Constraining mantle flow with seismic and geodynamic data: a
joint approach”. In: Earth Planet. Sci. Lett. 246.1-2 (2006), pp. 109–124. doi: 10.1016/j.epsl.2006.04.003
AT Ismail-Zadeh, AI Korotkii, and IA Tsepelev. “Three-dimensional numerical simulation of the inverse problem of thermal
convection using the quasi-reversibility method”. In: Computational Mathematics and Mathematical Physics 46.12 (2006),
pp. 2176–2186. doi: 10.1134/S0965542506120153
A Ismail-Zadeh, A Korotkii, G Schubert, and I Tsepelev. “Quasi-reversibility method for data assimilation in models of mantle dynamics”. In: Geophy. J. Int. 170.3 (2007), pp. 1381–1398. doi: 10.1111/j.1365-246X.2007.03496.x
N.A. Simmons, A.M. Forte, and S.P. Grand. “Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity: Implications for the relative importance of thermal versus compositional heterogeneity”. In: Geophy. J. Int. 177 (2009), pp. 1284–1304. doi: 10.1111/j.1365-246X.2009.04133.x
S. I. Natarov and C. P. Conrad. “The role of Poiseuille flow in creating depth-variation of asthenospheric shear: Poiseuille flow and asthenospheric shear”. In: Geophy. J. Int. 190.3 (2012), pp. 1297–1310. doi: 10.1111/j.1365-246X.2012.05562.x
Qing Liang, Chao Chen, and Yaoguo Li. “3-D inversion of gravity data in spherical coordinates with application to the GRAIL
data”. In: J. Geophys. Res.: Planets 119.6 (2014), pp. 1359–1373. doi: 10.1002/2014JE004626
T.S. Baumann, B.J.P. Kaus, and A.A. Popov. “Constraining effective rheology through parallel joint geodynamic inversion”. In:
Tectonophysics 631 (2014), pp. 197–211. doi: 10.1016/j.tecto.2014.04.037
Petar Glišović and Alessandro M Forte. “Reconstructing the Cenozoic evolution of the mantle: Implications for mantle plume
dynamics under the Pacific and Indian plates”. In: Earth Planet. Sci. Lett. 390 (2014), pp. 146–156. doi: 10.1016/j.epsl.
2014.01.010
Xinguo Wang, William E Holt, and Attreyee Ghosh. “Joint modeling of lithosphere and mantle dynamics: Evaluation of constraints
from global tomography models”. In: J. Geophys. Res.: Solid Earth 120.12 (2015), pp. 8633–8655. doi: 10.1002/2015JB012188
L. Colli, H.-P. Bunge, and B.S.A. Schuberth. “On retrodictions of global mantle flow with assimilated surface velocities”. In:
Geophys. Res. Lett. 42.20 (2015), pp. 8341–8348. doi: 10.1002/2015GL066001
Gaia Soldati, Lapo Boschi, Steve Della Mora, and Alessandro M Forte. “Tomography of core-mantle boundary and lowermost
mantle coupled by geodynamics: joint models of shear and compressional velocity”. In: Annals of Geophysics 57.6 (2015). doi: 10.4401/ag-6603
TS Baumann and Boris JP Kaus. “Geodynamic inversion to constrain the non-linear rheology of the lithosphere”. In: Geophy. J.
Int. 202.2 (2015), pp. 1289–1316. doi: 10.1093/gji/ggv201
M Bocher, Nicolas Coltice, Alexandre Fournier, and Paul J Tackley. “A sequential data assimilation approach for the joint
reconstruction of mantle convection and surface tectonics”. In: Geophy. J. Int. 204.1 (2016), pp. 200–214
Ting Yang and Michael Gurnis. “Dynamic topography, gravity and the role of lateral viscosity variations from inversion of global
mantle flow”. In: Geophy. J. Int. 207.2 (2016), pp. 1186–1202. doi: 10.1093/gji/ggw335
T.S. Baumann. “Appraisal of geodynamic inversion results: a data mining approach”. In: Geophy. J. Int. 207.2 (2016), pp. 667–679.
doi: 10.1093/gji/ggw279
Matthew Price. “Investigating the initial condition of mantle models using data assimilation”. PhD thesis. Cardiff University, 2016
Quan Zhou and Lijun Liu. “A hybrid approach to data assimilation for reconstructing the evolution of mantle dynamics”. In: Geochem. Geophys. Geosyst. 18.11 (2017), pp. 3854–3868. doi: 10.1002/2017GC007116
Marie Bocher, Alexandre Fournier, and Nicolas Coltice. “Ensemble Kalman filter for the reconstruction of the Earth’s mantle
circulation”. In: Nonlinear Processes in Geophysics 25.1 (2018), pp. 99–123
MH Shahnas, DA Yuen, and RN Pysklywec. “Inverse problems in geodynamics using machine learning algorithms”. In: J. Geophys.
Res.: Solid Earth 123.1 (2018), pp. 296–310. doi: 10.1002/2017JB014846
Xinguo Wang, William E Holt, and Attreyee Ghosh. “Joint modeling of lithosphere and mantle dynamics: Sensitivity to viscosities within the lithosphere, asthenosphere, transition zone, and D” layers”. In: Phys. Earth. Planet. Inter. 293 (2019), p. 106263. doi: 10.1016/j.pepi.2019.05.006
Chang Lu et al. “The Sensitivity of Joint Inversions of Seismic and Geodynamic Data to Mantle Viscosity”. In: Geochem. Geophys.
Geosyst. 21.4 (2020), e2019GC008648. doi: 10.1029/2019GC008648
ML Rudolph, Pritwiraj Moulik, and V Lekić. “Bayesian Inference of Mantle Viscosity From Whole-Mantle Density Models”. In:
Geochem. Geophys. Geosyst. 21.11 (2020), e2020GC009335. doi: 10.1029/2020GC009335
Olga Ortega-Gelabert, Sergio Zlotnik, Juan Carlos Afonso, and Pedro Dez. “Fast stokes flow simulations for
geophysical-geodynamic inverse problems and sensitivity analyses based on reduced order modeling”. In: J. Geophys. Res.: Solid
Earth 125.3 (2020), e2019JB018314. doi: 10.1029/2019JB018314
M Morishige and T Kuwatani. “Bayesian inversion of surface heat flow in subduction zones: a framework to refine geodynamic
models based on observational constraints”. In: Geophy. J. Int. 222.1 (2020), pp. 103–109. doi: 10.1093/gji/ggaa149
John Keith Magali, Thomas Bodin, Navid Hedjazian, Henri Samuel, and Suzanne Atkins. “Geodynamic tomography: constraining
upper-mantle deformation patterns from Bayesian inversion of surface waves”. In: Geophy. J. Int. 224.3 (2021), pp. 2077–2099.
doi: 10.1093/gji/ggaa577
Georg S Reuber. “Statistical and deterministic inverse methods in the geosciences: introduction, review, and application to the
nonlinear diffusion equation”. In: GEM-International Journal on Geomathematics 12.1 (2021), pp. 1–49. doi: 10.1007/s13137-
021-00186-y
Hao Dong et al. “Joint Geodynamic-Geophysical Inversion Suggests Passive Subduction and Accretion of the Ontong Java Plateau”. In: Geophys. Res. Lett. 49.23 (2022), e2022GL100744. doi: 10.1029/2022GL100744
Lukas Holbach, Michael Gurnis, and Georg Stadler. “A Bayesian level set method for identifying subsurface geometries and rheological properties in Stokes flow”. In: Geophy. J. Int. 235.1 (2023), pp. 260–272. doi: 10.1093/gji/ggad220
Sia Ghelichkhan, Angus Gibson, D Rhodri Davies, Stephan C Kramer, and David A Ham. “Automatic adjoint-based inversion
schemes for geodynamics: reconstructing the evolution of Earth’s mantle in space and time”. In: Geosci. Model. Dev. 17.13 (2024),
pp. 5057–5086. doi: 10.5194/gmd-17-5057-2024
Jiashun Hu, Johann Rudi, Michael Gurnis, and Georg Stadler. “Constraining Earth’s nonlinear mantle viscosity using
plate-boundary resolving global inversions”. In: Proceedings of the National Academy of Sciences 121.28 (2024), e2318706121. doi:
10.1073/pnas.2318706121
What Is an Adjoint Model? [595]
Hans-Peter Bunge, CR Hagelberg, and BJ Travis. “Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography”. In: Geophy. J. Int. 152.2 (2003), pp. 280–301. doi: 10.1046/j.1365-246X.2003.01823.x
Alik Ismail-Zadeh, Gerald Schubert, Igor Tsepelev, and Alexander Korotkii. “Inverse problem of thermal convection: numerical approach and application to mantle plume restoration”. In: Phys. Earth. Planet. Inter. 145.1-4 (2004), pp. 99–114. doi: 10. 1016/j.pepi.2004.03.006
S. Spasojevic, L. Liu, M. Gurnis, and R. D. Müller. “The case for dynamic subsidence of the U.S. east coast since the Eocene”.
In: Geophys. Res. Lett. 35.8 (2008). doi: 10.1029/2008GL033511
L. Liu and M. Gurnis. “Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection”.
In: J. Geophys. Res.: Solid Earth 113.B8 (2008). doi: 10.1029/2008JB005594
Li Wang and Dimitri J Mavriplis. “Adjoint-based h–p adaptive discontinuous Galerkin methods for the 2D compressible Euler
equations”. In: J. Comp. Phys. 228.20 (2009), pp. 7643–7661
S. Spasojevic, L. Liu, and M. Gurnis. “Adjoint models of mantle convection with seismic, plate motion, and stratigraphic constraints:
North America since the Late Cretaceous”. In: Geochem. Geophys. Geosyst. 10.5 (2009). doi: 10.1029/2008GC002345
Markus Towara and Uwe Naumann. “A discrete adjoint model for OpenFOAM”. In: Procedia Computer Science 18 (2013), pp. 429–438. doi: 10.1016/j.procs.2013.05.206
Jennifer Worthen, Georg Stadler, Noemi Petra, Michael Gurnis, and Omar Ghattas. “Towards adjoint-based inversion for
rheological parameters in nonlinear viscous mantle flow”. In: Phys. Earth. Planet. Inter. 234 (2014), pp. 23–34
André Horbach, Hans-Peter Bunge, and Jens Oeser. “The adjoint method in geodynamics: derivation from a general operator
formulation and application to the initial condition problem in a high resolution mantle circulation model”. In: GEM-International
Journal on Geomathematics 5.2 (2014), pp. 163–194
Glen D Granzow. “A tutorial on adjoint methods and their use for data assimilation in glaciology”. In: Journal of Glaciology 60.221
(2014), pp. 440–446. doi: 10.3189/2014JoG13J205
Vishagan Ratnaswamy, Georg Stadler, and Michael Gurnis. “Adjoint-based estimation of plate coupling in a non-linear mantle
flow model: theory and examples”. In: Geophy. J. Int. 202.2 (2015), pp. 768–786. doi: 10.1093/gji/ggv166
L. Vynnytska and H.-P. Bunge. “Restoring past mantle convection structure through fluid dynamic inverse theory: regularisation
through surface velocity boundary conditions”. In: GEM - International Journal on Geomathematics 6.1 (2015), pp. 83–100. doi:
10.1007/s13137-014-0060-6
Siavash Ghelichkhan and Hans-Peter Bunge. “The compressible adjoint equations in geodynamics: derivation and numerical assessment”. In: GEM-International Journal on Geomathematics 7.1 (2016), pp. 1–30. doi: 10.1007/s13137-016-0080-5
D. Li, M. Gurnis, and G. Stadler. “Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity”. In: Geophy. J. Int. 209 (2017), pp. 86–105. doi: 10.1093/gji/ggw493
S. Ghelichkhan and H.-P. Bunge. “The adjoint equations for thermochemical compressible mantle convection: Derivation and
verification by twin experiments”. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
474.2220 (2018). doi: 10.1098/rspa.2018.0329
MG Price and JH Davies. “Profiling the robustness, efficiency and limits of the forward-adjoint method for 3-D mantle convection
modelling”. In: Geophy. J. Int. 212.2 (2018), pp. 1450–1462. doi: 10.1093/gji/ggx489
L. Colli, S. Ghelichkhan, H.-P. Bunge, and J. Oeser. “Retrodictions of Mid Paleogene mantle flow and dynamic topography in
the Atlantic region from compressible high resolution adjoint mantle convection models: Sensitivity to deep mantle viscosity and
tomographic input model”. In: Gondwana Research 53 (2018), pp. 252–272. doi: 10.1016/j.gr.2017.04.027
Georg S Reuber, Anton A Popov, and Boris JP Kaus. “Deriving scaling laws in geodynamics using adjoint gradients”. In:
Tectonophysics 746 (2018), pp. 352–363. doi: 10.1016/j.tecto.2017.07.017
Severine Furst, Michel Peyret, Jean Chery, and Bijan Mohammadi. “Lithosphere rigidity by adjoint-based inversion of interseismic
GPS data, application to the Western United States”. In: Tectonophysics 746 (2018), pp. 364–383. doi: 10.1016/j.tecto.
2017.03.015
S. Ghelichkhan, M. Murböck, L. Colli, R. Pail, and H.-P. Bunge. “On the observability of epeirogenic movement in current and
future gravity missions”. In: Gondwana Research 53 (2018), pp. 273–284. doi: 10.1016/j.gr.2017.04.016
B Mather, Louis Moresi, and P Rayner. “Adjoint inversion of the thermal structure of Southeastern Australia”. In: Geophy. J.
Int. 219.3 (2019), pp. 1648–1659. doi: 10.1093/gji/ggz368
Andrew M Bradley. PDE-constrained optimization and the adjoint method. Tech. rep. Technical Report. Stanford University, 2013.
doi: xxxx
Olga Ortega-Gelabert, Sergio Zlotnik, Juan Carlos Afonso, and Pedro Dez. “Fast stokes flow simulations for
geophysical-geodynamic inverse problems and sensitivity analyses based on reduced order modeling”. In: J. Geophys. Res.: Solid
Earth 125.3 (2020), e2019JB018314. doi: 10.1029/2019JB018314
GS Reuber, L Holbach, AA Popov, M Hanke, and BJP Kaus. “Inferring rheology and geometry of subsurface structures by
adjoint-based inversion of principal stress directions”. In: Geophy. J. Int. 223.2 (2020), pp. 851–861. doi: 10.1093/gji/ggaa344
L Colli, H-P Bunge, and J Oeser. “Impact of Model Inconsistencies on Reconstructions of Past Mantle Flow Obtained Using the
Adjoint Method”. In: Geophy. J. Int. 221.1 (2020), pp. 617–639. doi: 10.1093/gji/ggaa023
Georg S Reuber and Frederik J Simons. “Multi-physics adjoint modeling of Earth structure: combining gravimetric, seismic, and
geodynamic inversions”. In: GEM-International Journal on Geomathematics 11.1 (2020), pp. 1–38. doi: 10.1007/s13137-020-
00166-8
Georg S Reuber, Lukas Holbach, and Ludovic Räss. “Adjoint-based inversion for porosity in shallow reservoirs using pseudo-transient
solvers for non-linear hydro-mechanical processes”. In: J. Comp. Phys. 423 (2020), p. 109797. doi: 10.1016/j.jcp.2020.109797
Georg S Reuber. “Statistical and deterministic inverse methods in the geosciences: introduction, review, and application to the
nonlinear diffusion equation”. In: GEM-International Journal on Geomathematics 12.1 (2021), pp. 1–49. doi: 10.1007/s13137-
021-00186-y
S Ghelichkhan, HP Bunge, and J Oeser. “Global mantle flow retrodictions for the early Cenozoic using an adjoint method: evolving
dynamic topographies, deep mantle structures, flow trajectories and sublithospheric stresses”. In: Geophy. J. Int. 226.2 (2021),
pp. 1432–1460. doi: 10.1093/gji/ggab108
Sia Ghelichkhan, Angus Gibson, D Rhodri Davies, Stephan C Kramer, and David A Ham. “Automatic adjoint-based inversion schemes for geodynamics: reconstructing the evolution of Earth’s mantle in space and time”. In: Geosci. Model. Dev. 17.13 (2024), pp. 5057–5086. doi: 10.5194/gmd-17-5057-2024
T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. “Meshless methods: an overview and recent developments”. In: Computer Methods in Applied Mechanics and Engineering 139 (1996), pp. 3–47. doi: 10.1016/S0045-7825(96)01078-X
Ted Belytschko, Yong Guo, Wing Kam Liu, and Shao Ping Xiao. “A unified stability analysis of meshless particle methods”. In:
Int. J. Num. Meth. Eng. 48.9 (2000), pp. 1359–1400
Shaofan Li, Wei Hao, and Wing Kam Liu. “Mesh-free simulations of shear banding in large deformation”. In: International Journal
of solids and structures 37.48-50 (2000), pp. 7185–7206. doi: 10.1016/S0020-7683(00)00195-5
S. Jun and S. Im. “Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation”. In: Computational
Mechanics 15 (2000), p. 257. doi: 10.1007/s004660050474
Sergio Rodolfo Idelsohn, Mario Alberto Storti, and Eugenio Ońate. “Lagrangian formulations to solve free surface incompressible inviscid fluid flows”. In: Computer Methods in Applied Mechanics and Engineering 191.6-7 (2001), pp. 583–593. doi: 10.1016/ S0045-7825(01)00303-6
Shaofan Li and Wing Kam Liu. “Meshfree and particle methods and their applications”. In: Applied Mechanics Reviews 55.1 (2002), pp. 1–34. doi: 10.1115/1.1431547
Antonio Huerta, Sonia Fernández-Méndez, and Wing Kam Liu. “A comparison of two formulations to blend finite elements and mesh-free methods”. In: Computer Methods in Applied Mechanics and Engineering 193.12-14 (2004), pp. 1105–1117. doi: 10.1016/j.cma.2003.12.009
Leon B Lucy. “A numerical approach to the testing of the fission hypothesis”. In: The astronomical journal 82 (1977), pp. 1013–1024. doi: xxxx
JJ Monaghan. “Particle methods for hydrodynamics”. In: Computer Physics Reports 3.2 (1985), pp. 71–124. doi: 10.1016/0167- 7977(85)90010-3
Joe J Monaghan. “Smoothed particle hydrodynamics”. In: Annual review of astronomy and astrophysics 30.1 (1992), pp. 543–574. doi: 10.1146/annurev.aa.30.090192.002551
J.P. Morris, P.J. Fox, and Y. Zhu. “Modeling Low Reynolds Number Incompressible Flows Using SPH”. In: J. Comp. Phys. 136 (1997), pp. 214–226. doi: 10.1006/jcph.1997.5776
Yi Zhu, Patrick J Fox, and Joseph P Morris. “A pore-scale numerical model for flow through porous media”. In: International
journal for numerical and analytical methods in geomechanics 23.9 (1999), pp. 881–904. doi: 10.1002/(SICI)1096-
9853(19990810)23:9<881::AID-NAG996>3.0.CO;2-K
L Oger and SB Savage. “Smoothed particle hydrodynamics for cohesive grains”. In: Computer Methods in Applied Mechanics and
Engineering 180.1-2 (1999), pp. 169–183
MB Liu, GR Liu, and KY Lam. “Constructing smoothing functions in smoothed particle hydrodynamics with applications”. In:
Journal of Computational and applied Mathematics 155.2 (2003), pp. 263–284. doi: 10.1016/S0377-0427(02)00869-5
D. A. May and J. J. Monaghan. “Can a single bubble sink a ship?” In: American Journal of Physics 71.9 (2003), pp. 842–849
MB Liu, GR Liu, and KY Lam. “Investigations into water mitigation using a meshless particle method”. In: Shock waves 12.3 (2002), pp. 181–195. doi: 10.1007/s00193-002-0163-0
Vincent Lemiale, Laura Karantgis, and Philip Broadbrige. “Smoothed Particle Hydrodynamics applied to the modelling of
landslides”. In: Applied Mechanics and Materials. Vol. 553. 2014, pp. 519–524. doi: 10.4028/www.scientific.net/AMM.553.519
R Das, Y Zhang, P Schaubs, and PW Cleary. “Modelling rock fracturing caused by magma intrusion using the smoothed particle
hydrodynamics method”. In: Computational Geosciences 18.6 (2014), pp. 927–947
Cedric Thieulot, LPBM Janssen, and Pep Espańol. “Smoothed particle hydrodynamics model for phase separating fluid mixtures.
I. General equations”. In: Physical Review E 72.1 (2005), p. 016713. doi: 10.1103/PhysRevE.72.016713
Cedric Thieulot, LPBM Janssen, and Pep Espańol. “Smoothed particle hydrodynamics model for phase separating fluid mixtures.
II. Diffusion in a binary mixture”. In: Physical Review E 72.1 (2005), p. 016714. doi: 10.1103/PhysRevE.72.016714
Sonia Fernández-Méndez, Javier Bonet, and Antonio Huerta. “Continuous blending of SPH with finite elements”. In: Computers
& structures 83.17-18 (2005), pp. 1448–1458
Cedric Thieulot and Pep Espańol. “Non-isothermal diffusion in a binary mixture with smoothed particle hydrodynamics”. In:
Computer physics communications 169.1-3 (2005), pp. 172–176. doi: 10.1016/j.cpc.2005.03.039
Mou B Liu, WP Xie, and GR Liu. “Modeling incompressible flows using a finite particle method”. In: Applied mathematical
modelling 29.12 (2005), pp. 1252–1270. doi: 10.1016/j.apm.2005.05.003
MB Liu and Gui-Rong Liu. “Restoring particle consistency in smoothed particle hydrodynamics”. In: Applied numerical mathematics 56.1 (2006), pp. 19–36. doi: 10.1016/j.apnum.2005.02.012
H.H. Bui, R. Fukugawa, K. Sako, and S. Ohno. “Lagrangian meshfree particles method (SPH) for large deformation and failure
flows of geomaterial using elastic-plastic soil constitutive model”. In: Int. J. Numer. Anal. Geomech. 32.12 (2008), pp. 1537–1570
E-S Lee, Charles Moulinec, Rui Xu, Damien Violeau, Dominique Laurence, and Peter Stansby. “Comparisons of weakly compressible
and truly incompressible algorithms for the SPH mesh free particle method”. In: J. Comp. Phys. 227.18 (2008), pp. 8417–8436.
doi: 10.1016/j.jcp.2008.06.005
Ha H Bui, K Sako, and R Fukagawa. “Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (SPH) method”. In: Journal of Terramechanics 44.5 (2007), pp. 339–346. doi: 10.1016/j.jterra.2007.10.003
Rajarshi Das and PW Cleary. “Effect of rock shapes on brittle fracture using Smoothed Particle Hydrodynamics”. In: Theoretical and Applied Fracture Mechanics 53.1 (2010), pp. 47–60
Mahesh Prakash and Paul W Cleary. “Three dimensional modelling of lava flow using Smoothed Particle Hydrodynamics”. In:
Applied Mathematical Modelling 35.6 (2011), pp. 3021–3035
S Kulasegaram, Bhushan Lal Karihaloo, and A Ghanbari. “Modelling the flow of self-compacting concrete”. In: International
Journal for Numerical and Analytical Methods in Geomechanics 35.6 (2011), pp. 713–723. doi: 10.1002/nag.924
Shivakumar Karekal, Raj Das, Luke Mosse, and Paul W Cleary. “Application of a mesh-free continuum method for simulation
of rock caving processes”. In: International Journal of Rock Mechanics and Mining Sciences 48.5 (2011), pp. 703–711. doi: 10.1016/j.ijrmms.2011.04.011
Kamil Szewc, Jacek Pozorski, and A Taniere. “Modeling of natural convection with smoothed particle hydrodynamics:
non-Boussinesq formulation”. In: International Journal of Heat and Mass Transfer 54.23-24 (2011), pp. 4807–4816
David W Holmes, John R Williams, and Peter Tilke. “A framework for parallel computational physics algorithms on multi-core:
SPH in parallel”. In: Advances in Engineering Software 42.11 (2011), pp. 999–1008. doi: 10.1016/j.advengsoft.2011.05.017
Kamil Szewc, Jacek Pozorski, and J-P Minier. “Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method”. In: Int. J. Num. Meth. Eng. 92.4 (2012), pp. 343–369. doi: 10.1002/nme.4339
Andrea Komoróczi, Steffen Abe, and Janos L Urai. “Meshless numerical modeling of brittle–viscous deformation: first results on boudinage and hydrofracturing using a coupling of discrete element method (DEM) and smoothed particle hydrodynamics (SPH)”. In: Computational Geosciences 17.2 (2013), pp. 373–390. doi: 10.1007/s10596-012-9335-x
Daisuke Nishiura, Mikito Furuichi, and Hide Sakaguchi. “Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing”. In: Computer Physics Communications 194 (2015), pp. 18–32. doi: 10. 1016/j.cpc.2015.04.006‘
Damien Violeau and Benedict D Rogers. “Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future”. In: Journal of Hydraulic Research 54.1 (2016), pp. 1–26. doi: 10.1080/00221686.2015.1119209
Abdelkader Krimi, Mehdi Rezoug, Sofiane Khelladi, Xesús Nogueira, Michael Deligant, and Luis Ramrez. “Smoothed particle
hydrodynamics: a consistent model for interfacial multiphase fluid flow simulations”. In: J. Comp. Phys. 358 (2018), pp. 53–87.
doi: 10.1016/j.jcp.2017.12.006
Gregor J Golabek, Alexandre Emsenhuber, Martin Jutzi, Erik I Asphaug, and Taras V Gerya. “Coupling SPH and thermochemical
models of planets: Methodology and example of a Mars-sized body”. In: Icarus 301 (2018), pp. 235–246. doi: 10.1016/j.
icarus.2017.10.003
Harry A Ballantyne et al. “Investigating the feasibility of an impact-induced Martian Dichotomy”. In: Icarus 392 (2023), p. 115395. doi: 10.1016/j.icarus.2022.115395
Shaofan Li, Wei Hao, and Wing Kam Liu. “Mesh-free simulations of shear banding in large deformation”. In: International Journal
of solids and structures 37.48-50 (2000), pp. 7185–7206. doi: 10.1016/S0020-7683(00)00195-5
S. Jun and S. Im. “Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation”. In: Computational
Mechanics 15 (2000), p. 257. doi: 10.1007/s004660050474
Shaofan Li, Wing Kam Liu, Ares J Rosakis, Ted Belytschko, and Wei Hao. “Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition”. In: International Journal of solids and structures 39.5 (2002), pp. 1213–1240. doi: 10.1016/S0020-7683(01)00188-3
X. Wang and W.K. Liu. “Extended immersed boundary method using FEM and RKPM”. In: Computer Methods in Applied Mechanics and Engineering 193 (2004), pp. 1305–1321. doi: 10.1016/j.cma.2003.12.024
Yasuhiro Yamada, Kei Baba, and Toshifumi Matsuoka. “Analogue and numerical modelling of accretionary prisms with a decollement in sediments”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 169–183. doi: 10.1144/GSL. SP.2006.253.01.09
S. Virgo, S. Abe, and J.L. Urai. “Extension fracture propagation in rocks with veins: Insight into the crack-seal process using
Discrete Element Method modeling”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 5236–5251. doi: oi:10.1002/
2013JB010540
Andrea Komoróczi, Steffen Abe, and Janos L Urai. “Meshless numerical modeling of brittle–viscous deformation: first results on
boudinage and hydrofracturing using a coupling of discrete element method (DEM) and smoothed particle hydrodynamics (SPH)”.
In: Computational Geosciences 17.2 (2013), pp. 373–390. doi: 10.1007/s10596-012-9335-x
Qingfeng Meng and David Hodgetts. “Combined control of décollement layer thickness and cover rock cohesion on structural styles
and evolution of fold belts: A discrete element modelling study”. In: Tectonophysics 757 (2019), pp. 58–67. doi: 10.1016/j.
tecto.2019.03.004
Qingfeng Meng and David Hodgetts. “Structural styles and decoupling in stratigraphic sequences with double décollements during
thin-skinned contractional tectonics: Insights from numerical modelling”. In: Journal of Structural Geology 127 (2019), p. 103862.
doi: 10.1016/j.jsg.2019.103862
Ayumu Miyakawa, Atsushi Noda, and Hiroaki Koge. “Evolution of the geological structure and mechanical properties due to the collision of multiple basement topographic highs in a forearc accretionary wedge: insights from numerical simulations”. In: Progress in Earth and Planetary Science 9.1 (2022), pp. 1–13. doi: 10.1186/s40645-021-00461-4
P Io Ioannidi, Shae McLafferty, Jacqueline E Reber, Gabriele Morra, and Dion Weatherley. “Deformation and frictional failure of granular media in 3D analog and numerical experiments”. In: Pure Appl. Geophys. 181 (2024), pp. 2083–2105. doi: 10.1007/ s00024-024-03464-6
T. Belytschko, L. Gu, and Y.Y. Lu. “Fracture and crack growth by element free Galerkin method”. In: Modelling Simul. Mater. Sci. Eng. 2 (1994), pp. 519–534
T. Belytschko, Y.Y. Lu, and L. Gu. “Crack propagation by element-free galerkin methods”. In: Engineering Fracture Mechanics
51 (1995), pp. 295–315
T. Belytschko, Y.Y. Lu, and M. Tabbara. “Element-Free Galerkin Methods for static and dynamic fracture”. In: International
Journal of Solids and Structures 32 (1995), pp. 2547–2570
T. Belytschko, Y. Krongauz, M. Fleming, D. Organ, and W.K.S. Liu. “Smoothing and accelerated computations in the element
free Galerkin method”. In: Journal of Computational and Applied Mathematics 74 (1996), pp. 111–126
LW Cordes and B Moran. “Treatment of material discontinuity in the element-free Galerkin method”. In: Computer Methods in
Applied Mechanics and Engineering 139.1-4 (1996), pp. 75–89
T. Belytschko, P. Krysl, and Y. Krongauz. “A three-dimensional explicit element-free galerkin method”. In: Int. J. Num. Meth. Fluids 24 (1997), pp. 1253–1270. doi: 10.1002/(SICI)1097-0363(199706)24:12<1253::AID-FLD558>3.0.CO;2-Z
J-P Ponthot and Ted Belytschko. “Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method”. In: Computer
Methods in Applied Mechanics and Engineering 152.1-2 (1998), pp. 19–46. doi: 10.1016/S0045-7825(97)00180-1
T. Zhu and S.N. Atluri. “A modified collocation method and a penalty formulation for enforcing the essential boundary conditions
in the element free Galerkin method”. In: Computational Mechanics 21 (1998), pp. 211–222. doi: 10.1007/s004660050296
D.L. Hansen. “A meshless formulation for geodynamic modeling”. In: J. Geophys. Res.: Solid Earth 108 (2003). doi: 10.1029/ 2003JB002460
MH Kargarnovin, HE Toussi, and SJ Fariborz. “Elasto-plastic element-free Galerkin method”. In: Computational Mechanics 33.3
(2004), pp. 206–214. doi: 10.1007/s00466-003-0521-5
Antonio Huerta, Yolanda Vidal, and Pierre Villon. “Pseudo-divergence-free element free Galerkin method for incompressible fluid
flow”. In: Computer Methods in Applied Mechanics and Engineering 193.12-14 (2004), pp. 1119–1136. doi: 10.1016/j.cma.
2003.12.010
He Yiqian and Yang Haitian. “Solving inverse couple-stress problems via an element-free Galerkin (EFG) method and
Gauss–Newton algorithm”. In: Finite Elements in Analysis and Design 46.3 (2010), pp. 257–264. doi: 10.1016/j.finel.2009.
09.009
Yan Liu and Ted Belytschko. “A new support integration scheme for the weakform in mesh-free methods”. In: International journal
for numerical methods in engineering 82.6 (2010), pp. 699–715. doi: 10.1002/nme.2780
L.P. Kadanoff, G.R. McNamara, and G. Zanetti. “A Poiseuille Viscometer for Lattice Gas Automata”. In: Complex Systems 1 (1987), pp. 791–803. doi: XXX
Ch. Huber, A. Parmigiani, B. Chopard, M. Manga, and O. Bachmann. “Lattice Boltzmann model for melting with natural convection”. In: International Journal of Heat and Fluid Flow 29 (200), pp. 1469–1480. doi: 10.1016/j.ijheatfluidflow. 2008.05.002
Peter Mora and David A Yuen. “Simulation of plume dynamics by the Lattice Boltzmann Method”. In: Geophy. J. Int. 210.3 (2017), pp. 1932–1937. doi: 10.1093/gji/ggx279
P. Mora and D.A. Yuen. “Simulation of regimes of convection and plume dynamics by the thermal Lattice Boltzmann Method”. In: Phys. Earth. Planet. Inter. 275 (2018), pp. 69–79. doi: 10.1016/j.pepi.2018.01.003
Peter Mora, Gabriele Morra, and David A Yuen. “Models of plate tectonics with the Lattice Boltzmann Method”. In: Artificial Intelligence in Geosciences 4 (2023), pp. 47–58. doi: 10.1016/j.aiig.2023.03.002
U. Langer and W. Queck. “On the convergence factor of Uzawa’s algorithm”. In: Journal of Computational and Applied Mathematics 15 (1986), pp. 191–202. doi: 10.1016/0377-0427(86)90026-9 M.P. Robichaud, P.A. Tanguy, and M. Fortin. “An iterative implementation of the Uzawa algorithm for 3D fluid flow problems”. In: Int. J. Num. Meth. Fluids 10 (1990), pp. 429–442 L.P. Franca and T.J.R. Hughes. “Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations”. In: Computer Methods in Applied Mechanics and Engineering 105 (1993), pp. 285–298. doi: 10.1016/0045-7825(93)90126-I H.C. Elman and G.H. Golub. “Inexact and preconditioned Uzawa algorithms for saddle point problems”. In: SIAM J. Numer. Anal. 31.6 (1994), pp. 1645–1661 J.-P. Chebab. “Solution of generalized Stokes problems using hierarchical methods and Incremental Unknowns”. In: Applied Numerical Mathematics 21 (1996), pp. 9–42 H.C. Elman. “Multigrid and Krylov subspace methods for the discrete Stokes equations”. In: Int. J. Num. Meth. Fluids 22 (1996), pp. 755–770 J.H. Bramble, J.E. Pasciak, and A.T. Vassilev. “Analysis of the inexact Uzawa algorithm for saddle point problems”. In: SIAM J. Numer. Anal. 34 (1997), pp. 1072–1092 W. Liu and S. Xu. “A new improved Uzawa method for finite element solution of Stokes problem”. In: Computational Mechanics 27 (2001), pp. 305–310. doi: 10.1007/s004660100244 H.S. Dollar, N.I.M. Gould, W.H.A. Schilders, and A.J. Wathen. “Implicit-factorisation preconditioning and iterative solvers for regularised saddle-point systems”. In: SIAM J. Matrix Anal. Appl. 28.1 (2006), pp. 170–189 Y. Lina nd Y. Cao. “A new nonlinear Uzawa algorithm for generalised saddle point problems”. In: Applied Mathematics and Computation 175 (2006), pp. 1432–1454 N. Ho, S.D. Olson, and H.F. Walker. “Accelerating the Uzawa algorithm”. In: SIAM J. Sci. Comput. 39.5 (2017), S461–S476. doi: 10.1137/16M1076770
B. Ramaswamy and T.C. Jue. “A segregated finite element formulation of Navier-Stokes equations under laminar conditions”. In: Finite Elements in Analysis and Design 9 (1991), pp. 257–270 V. Haroutunian, M.S. Engelman, and I. Hasbani. “Segregated Finite Element algorithms for the numerical solution of large-scale incompressible flow problems”. In: Int. J. Num. Meth. Fluids 17 (1993), pp. 323–348. doi: 10.1002/fld.1650170405 R.W. Lewis, K. Ravindran, and A.S. Usmani. “Finite Element Solution of Incompressible Flows Using an Explicit Segregated Approach”. In: Archives of Computational Methods in Engineering 2.4 (1995), pp. 69–93. doi: 10.1007/BF02736197 C.G. du Toit. “Finite element solution of the Navier-Stokes equations for incompressible flow using a segregated algorithm”. In: Computer Methods in Applied Mechanics and Engineering 151 (1998), pp. 131–141 N. Wansophark and P. Dechaumphai. “Enhancement of Segregated Finite Element Method with Adaptive Meshing Technique for Viscous Incompressible Thermal Flow Analysis”. In: Science Asia 29 (2003), pp. 155–162 N. Wansophark and P. Dechaumphai. “Combined adaptive meshing technique and segregated finite element algorithm for analysis of free and forced convection heat transfer”. In: Finite Elements in Analysis and Design 40 (2004), pp. 645–663 T. Utnes. “A segregated implicit pressure projection method for incompressible flows”. In: J. Comp. Phys. 227 (2008), pp. 2198–2211. doi: 10.1016/j.jcp.2007.11.022
M. Benzi. “Preconditioning Techniques for Large Linear Systems: A Survey”. In: J. Comp. Phys. 182 (2002), pp. 418–477. doi: 10.1006/jcph.2002.7176 M. Benzi and A.J. Wathen. “Some Preconditioning Techniques for Saddle Point Problems”. In: Model Order Reduction: Theory, Research Aspects and Applications. Ed. by W.H.A. Schilders, H.A. van der Vorst, and Joost Rommes. Springer, 2008, pp. 195–211 M. ur Rehman, C. Vuik, and G. Segal. “A comparison of preconditioners for incompressible Navier-Stokes solvers”. In: Int. J. Num. Meth. Fluids 57 (2008), pp. 1731–1751. doi: 10.1002/fld.1684
this category makes little sense ... should be split? removed?
1974: Hirt et al. [917]
1975: Wakiya [2176, 2177]
1984: Yuen & Sabadini [2337], Smolarkiewicz [1946]
1989: Blankenbach et al. [194]
1990: Travis et al. [2098]
1993: Lenardic & Kaula [1201]
1994: Braun & Sambridge [230]
1995: Braun & Sambridge [229], Moresi & Solomatov [1459], Fullsack [674]
1996: [2385], [1458]
1997: [1771]
1999: [1280], [190]
2001: [1460], [1079]
2002: [1483]
2003: [2021][1454][735][736][2034][1880]
2004: [1072][1049][1052][1484]
2005: [1486]
2006: [1071][1476][1581][1488][2037]
2007: [2090], [373], [1068], [1063], [1456], [725], [507], [2407]
2008: [2379][535][2111][1153][1405][716] [2147][887][227][485][358][2018][980]
2009: [1108], [702], [2158], [1725]
2010: [1067][1069][571][1107]
2011: [560][2118][907][1487][509][1195]
2012: [462][367][1149][1403][711][52]
2013: [375][1083][730][979]
2014: [2055][1406][1318][1989]
2015: [1191][1805][374][1404]
2016: [562][195]
2017: [1798][2258][1362]
2018: Meriaux et al. [1422], Crameri [463], Wieczorek & Meshede [2240]
2019: [1299][518][699][654][2333][1781]
2020: [933][2099][697][998, 999] 2021: Clevenger & Heister [393]
U. Ghia, K.N. Ghia, and C.T. Shin. “High-Re Solutions for incompressible flow using the Navier-Stokes equations and a multigrid method”. In: J. Comp. Phys. 48 (1982), pp. 387–411
R. Verfürth. “A combined conjugate gradient-multigrid algorithm for the numerical solution of the Stokes problem”. In: IMA Journal of Numerical Analysis 4 (194), pp. 441–455
EM Parmentier, C Sotin, and BJ Travis. “Turbulent 3-D thermal convection in an infinite Prandtl number, volumetrically heated fluid: implications for mantle dynamics”. In: Geophy. J. Int. 116.2 (1994), pp. 241–251. doi: 10.1111/j.1365- 246X.1994.tb01795.x
R.A. Trompert and U. Hansen. “The application of a finite volume multigrid method to three-dimensional flow problems in a highly viscous fluid with a variable viscosity”. In: Geophysical & Astrophysical Fluid Dynamics 83.3-4 (1996), pp. 261–291. doi: 10.1080/03091929608208968
Joachim Schöberl. “Robust multigrid methods for parameter dependent problems”. PhD thesis. Johannes Kepler Universität Linz, 1999
William L Briggs, Steve F McCormick, et al. A multigrid tutorial. Vol. 72. Siam, 2000 M. Albers. “A local mesh refinement multigrid method for 3D convection problems with strongly variable viscosity”. In: J. Comp. Phys. 160 (2000), pp. 126–150 Woo-Sun Yang and John R Baumgardner. “A matrix-dependent transfer multigrid method for strongly variable viscosity infinite Prandtl number thermal convection”. In: Geophysical & Astrophysical Fluid Dynamics 92.3-4 (2000), pp. 151–195. doi: 10. 1080/03091920008203715
Pieter Wesseling and Cornelis W Oosterlee. “Geometric multigrid with applications to computational fluid dynamics”. In: Journal of Computational and Applied Mathematics 128.1-2 (2001), pp. 311–334. doi: 10.1016/S0377-0427(00)00517-3
Volker John. “Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier–Stokes equations”. In: Int. J. Num. Meth. Fluids 40.6 (2002), pp. 775–798. doi: 10.1002/d.377
Masanori Kameyama. “ACuTEMan: A multigrid-based mantle convection simulation code and its optimization to the Earth Simulator”. In: J. Earth Simulator 4 (2005), pp. 2–10. doi: xxxx
Irad Yavneh. “Why multigrid methods are so efficient”. In: Computing in science & engineering 8.6 (2006), p. 12. doi: 10.1109/MCSE.2006.125
Y. Notay. “An aggregation-based algebraic multigrid method”. In: Electron. Trans. Numer. Anal. 37 (2010), pp. 123–146. doi: xxxx
A. Napov and Y. Notay. “An algebraic multigrid method with guaranteed convergence rate”. In: SIAM J. Sci. Comput. 34 (2012), A1079–A1109. doi: 10.1137/100818509 Y. Notay. “Aggregation-based algebraic multigrid for convection-diffusion equations”. In: SIAM J. Sci. Comput. 34 (2012), A2288–A2316. doi: 10.1137/110835347
L. Zheng, H. Zhang, T. Gerya, M. Knepley, D.A. Yuen, and Y. Shi. “Implementation of a multigrid solver on a GPU for Stokes equations with strongly variable viscosity based on Matlab and CUDA”. In: International Journal of High Performance Computing Applications 28.1 (2014), pp. 50–60. doi: 10.1177/1094342013478640 Björn Gmeiner and Ulrich Rüde. “Peta-scale hierarchical hybrid multigrid using hybrid parallelization”. In: International Conference on Large-Scale Scientific Computing. 2014, pp. 439–447
D.A. May, J. Brown, and L. Le Pourhiet. “A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow”. In: Computer Methods in Applied Mechanics and Engineering 290 (2015), pp. 496–523. doi: 10.1016/j.cma.2015.03.014Bjorn Gmeiner, Ulrich Rüde, Holger Stengel, Christian Waluga, and Barbara Wohlmuth. “Performance and scalability of hierarchical hybrid multigrid solvers for Stokes systems”. In: SIAM Journal on Scientific Computing 37.2 (2015), pp. C143–C168. doi: 10.1137/130941353
Jannis Teunissen and Ute Ebert. “Afivo: A framework for quadtree/octree AMR with shared-memory parallelization and geometric multigrid methods”. In: Computer Physics Communications 233 (2018), pp. 156–166
T.C. Clevenger, T. Heister, G. Kanschat, and M. Kronbichler. “A flexible, parallel, adaptive geometric multigrid method for FEM”. In: ACM Trans. Math. Softw. 47.1 (2020). doi: 10.1145/3425193 Niklas Fehn, Peter Munch, Wolfgang A Wall, and Martin Kronbichler. “Hybrid multigrid methods for high-order discontinuous Galerkin discretizations”. In: J. Comp. Phys. (2020), p. 109538
J. Oeser, H.-P. Bunge, and M. Mohr. “Cluster design in the earth sciences tethys”. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4208 LNCS (2006), pp. 31–40
Matthew G Knepley and David A Yuen. “Why Do Scientists and Engineers Need GPU’s Today?” In: GPU Solutions to Multi-scale
Problems in Science and Engineering. 2013, pp. 3–11. doi: 10.1007/978-3-642-16405-7_1
Boris Galvan and Stephen Miller. “A full GPU simulation of evolving fracture networks in a heterogeneous poro-elasto-plastic
medium with effective-stress-dependent permeability”. In: GPU solutions to multi-scale problems in science and engineering. 2013,
pp. 305–319. doi: 10.1007/978-3-642-16405-7_20
Andreas Klöckner, Timothy Warburton, and Jan S Hesthaven. “High-order discontinuous Galerkin methods by GPU
metaprogramming”. In: GPU Solutions to Multi-scale Problems in Science and Engineering. 2013, pp. 353–374. doi: 10.1007/
978-3-642-16405-7_23
David A Sanchez, Christopher Gonzalez, David A Yuen, Grady B Wright, and Gregory A Barnett. “High rayleigh number mantle
convection on GPU”. In: GPU Solutions to Multi-scale Problems in Science and Engineering. Springer, 2013, pp. 335–352. doi: 10.1007/978-3-642-16405-7_22
L. Zheng, H. Zhang, T. Gerya, M. Knepley, D.A. Yuen, and Y. Shi. “Implementation of a multigrid solver on a GPU for Stokes equations with strongly variable viscosity based on Matlab and CUDA”. In: International Journal of High Performance Computing Applications 28.1 (2014), pp. 50–60. doi: 10.1177/1094342013478640
Tuan Ta, Kyoshin Choo, Eh Tan, Byunghyun Jang, and Eunseo Choi. “Accelerating DynEarthSol3D on tightly coupled CPU–GPU heterogeneous processors”. In: Computers and Geosciences 79 (2015), pp. 27–37. doi: 10.1016/j.cageo.2015.03.003
Maxwell L Rudolph, Taras V Gerya, David A Yuen, and Sara DeRosier. “Visualization of multiscale dynamics of hydrous cold plumes at subduction zones”. In: Visual Geosci 17 (2004), p. 59
M.L. Rudolph, T.V. Gerya, and D.A. Yuen. “Challenges in the visualization of a two-dimensional mantle dynamics simulation using one billion tracers”. In: 2005, pp. 459–462. doi: xxxx
Shi Chen, Huai Zhang, David A Yuen, Shuxia Zhang, Jian Zhang, and Yaolin Shi. “Volume rendering visualization of 3D spherical
mantle convection with an unstructured mesh”. In: Visual Geosciences 13.1 (2008), pp. 97–104
Dave R Stegman et al. “gLucifer: next generation visualization framework for high-performance computational geodynamics”. In:
Visual Geosciences 13.1 (2008), pp. 71–84. doi: 10.1007/s10069-008-0010-2
Magali I Billen et al. “A geoscience perspective on immersive 3D gridded data visualization”. In: Computers and Geosciences 34.9
(2008), pp. 1056–1072. doi: 10.1016/j.cageo.2007.11.009
B.J. Kadlec, G.A. Dorn, H.M. Tufo, and D.A. Yuen. “Interactive 3-D computation of fault surfaces using level sets”. In: Visual
Geosciences 13.1 (2008), pp. 133–138. doi: 10.1007/s10069-008-0016-9
Megan Damon, Masanori C Kameyama, Michael Knox, David H Porter, Dave Yuen, and Erik OD Sevre. “Interactive visualization
of 3d mantle convection”. In: Visual Geosciences 13 (2008), pp. 49–57. doi: 10.1007/s10069-007-0008-1
G. Farin and D. Hansford. Mathematical principles for scientific computing and visualisation. A.K. Peters, Ltd., 2008
D.A. May. “Volume reconstruction of point cloud data sets derived from computational geodynamic simulations”. In: Geochem.
Geophys. Geosyst. 13.5 (2012), Q05019. doi: 10.1029/2012GC004170
Simon Schröder, John A Peterson, Harald Obermaier, Louise H Kellogg, Kenneth I Joy, and Hans Hagen. “Visualization of
Flow Behavior in Earth Mantle Convection”. In: IEEE Transactions on Visualization and Computer Graphics 18.12 (2012),
pp. 2198–2207. doi: 10.1109/TVCG.2012.283
Markus Wiedemann, Christoph Anthes, Hans-Peter Bunge, Bernhard SA Schuberth, and Dieter Kranzlmülle. “Transforming Geodata for Immersive Visualisation”. In: 2015 IEEE 11th International Conference on e-Science. 2015, pp. 249–254. doi: 10.1109/eScience.2015.80
O. Kreylos and L. H. Kellogg. “Immersive Visualization of the Solid Earth”. In: AGU Fall Meeting Abstracts. 2017, T44D–03.
doi: xxxx
C Mallard, B Jacquet, and N Coltice. “ADOPT: A tool for automatic detection of tectonic plates at the surface of convection
models”. In: Geochem. Geophys. Geosyst. 18.8 (2017), pp. 3197–3208
Fabio Crameri. “Geodynamic diagnostics, scientific visualisation and StagLab 3.0”. In: Geoscientific Model Development 11.6 (2018), pp. 2541–2562
C Bane Sullivan and Whitney J Trainor-Guitton. “PVGeo: an open-source Python package for geoscientific visualization in VTK and ParaView”. In: Journal of Open Source Software 4.38 (2019), p. 1451. doi: 10.21105/joss.01451
Fabio Crameri, Grace E. Shephard, and Philip J. Heron. “The misuse of colour in science communication”. In: Nature Communications 11 (2020), p. 5444. doi: 10.1038/s41467-020-19160-7
Geruo A, John Wahr, and Shijie Zhong. “The effects of laterally varying icy shell structure on the tidal response of Ganymede and Europa”. In: J. Geophys. Res.: Planets 119.3 (2014), pp. 659–678. doi: 10.1002/2013JE004570.
Geoffrey A Abers, Peter E van Keken, Erik A Kneller, Aaron Ferris, and Joshua C Stachnik. “The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow”. In: Earth Planet. Sci. Lett. 241.3-4 (2006), pp. 387–397. doi: 10.1016/j.epsl.2005.11.055.
Geoffrey A Abers, Peter E van Keken, and Cian R Wilson. “Deep decoupling in subduction zones: Observations and temperature limits”. In: Geosphere 16.6 (2020), pp. 1408–1424. doi: 10.1130/GES02278.1.
Andrea C Adams, Dave R Stegman, Hiva Mohammadzadeh, Suzanne E Smrekar, and Paul J Tackley. “Plume-Induced Delamination Initiated at Rift Zones on Venus”. In: J. Geophys. Res.: Planets 128.10 (2023), e2023JE007879. doi: 10.1029/2023JE007879.
Andrea C Adams, David R Stegman, Suzanne E Smrekar, and Paul James Tackley. “Regional-Scale Lithospheric Recycling on Venus via Peel-Back Delamination”. In: J. Geophys. Res.: Planets 127 (2022), e2022JE007460. doi: 10.1029/2022JE007460.
J. C. Afonso, M. Fernandez, G. Ranalli, W.L. Griffin, and J.A.D. Connolly. “Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications”. In: Geochem. Geophys. Geosyst. 9.5 (2008). doi: 10. 1029/2007GC001834.
J.C. Afonso, G. Ranalli, and M. Fernandez. “Density structure and buoyancy of the oceanic lithosphere revisited”. In: Geophys. Res. Lett. 34 (2007), p. L10302. doi: 10.1029/ 2007GL029515.
Siddhant Agarwal, Nicola Tosi, Doris Breuer, Sebastiano Padovan, Pan Kessel, and Grégoire Montavon. “A machine-learning-based surrogate model of Mars’ thermal evolution”. In: Geophy. J. Int. 222.3 (2020), pp. 1656–1670. doi: 10.1093/gji/ggaa234.
Siddhant Agarwal, Nicola Tosi, Pan Kessel, Doris Breuer, and Grégoire Montavon. “Deep learning for surrogate modeling of two-dimensional mantle convection”. In: Physical Review Fluids 6.11 (2021), p. 113801. doi: 10.1103/PhysRevFluids.6.113801.
R. Agrusta, S. Goes, and J. van Hunen. “Subducting-slab transition-zone interaction: Stagnation, penetration and mode switches”. In: Earth Planet. Sci. Lett. 464 (2017), pp. 10–23. doi: 10.1016/j.epsl.2017.02.005.
R. Agrusta, J. van Hunen, and S. Goes. “The effect of metastable pyroxene on the slab dynamics”. In: Geophys. Res. Lett. 41 (2014), pp. 8800–8808. doi: 10.1002/ 2014GL062159.
Roberto Agrusta, Diane Arcay, Andréa Tommasi, Anne Davaille, Neil Ribe, and Taras Gerya. “Small-scale convection in a plume-fed low-viscosity layer beneath a moving plate”. In: Geophy. J. Int. 194.2 (2013), pp. 591–610. doi: 10.1093/gji/ggt128.
M. Albers. “A local mesh refinement multigrid method for 3D convection problems with strongly variable viscosity”. In: J. Comp. Phys. 160 (2000), pp. 126–150.
M. Albertz and C. Beaumont. “An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 2. Comparison of observations with geometrically complex numerical models”. In: Tectonics 29.TC4018 (2010). doi: 10 . 1029 / 2009TC002540.
M. Albertz, C. Beaumont, and S.J. Ings. “Geodynamic modeling of sedimentation-induced overpressure, gravitational spreading, and deformation of passive margin mobile shale basins”. In: AAPG Memoir 93 (2010), pp. 29–62. doi: 10.1306/l3231307M933417.
M. Albertz, C. Beaumont, J.W. Shimeld, S.J. Ingsand, and S. Gradmann. “An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: Part 1, comparison of observations with geometrically simple numerical models”. In: Tectonics 29 (2010). doi: 10.1029/2009TC002539.
L. Alisic, M. Gurnis, G. Stadler, C. Burstedde, and O. Ghattas. “Multi-scale dynamics and rheology of mantle flow with plates”. In: J. Geophys. Res.: Solid Earth 117 (2012). doi: 10.1029/2012JB009234.
L. Alisic, J.F. Rudge, R.F. Katz, G.N. Wells, and S. Rhebergen. “Compaction around a rigid, circular inclusion in partially molten rock”. In: J. Geophys. Res.: Solid Earth 119 (2014), pp. 5903–5920. doi: 10.1002/2013JB010906.
J. Allen and C. Beaumont. “Continental Margin Syn-Rift Salt Tectonics at Intermediate Width Margins”. In: Basin Research (2014). doi: 10.1111/bre.12123.
J. Allen and C. Beaumont. “Continental margin syn-rift salt tectonics at intermediate width margins”. In: Basin Research 28.5 (2016), pp. 598–633. doi: 10.1111/bre.12123.
J. Allen and C. Beaumont. “Impact of inconsistent density scaling on physical analogue models of continental margin scale salt tectonics”. In: J. Geophys. Res.: Solid Earth 117.8 (2012). doi: 10.1029/2012JB009227.
V. Allken, R. Huismans, and C. Thieulot. “Factors controlling the mode of rift interaction in brittle-ductile coupled systems: a 3D numerical study”. In: Geochem. Geophys. Geosyst. 13.5 (2012), Q05010. doi: 10.1029/2012GC004077.
V. Allken, R. Huismans, and C. Thieulot. “Three dimensional numerical modelling of upper crustal extensional systems”. In: J. Geophys. Res.: Solid Earth 116 (2011), B10409. doi: 10.1029/2011JB008319.
V. Allken, R.S. Huismans, H. Fossen, and C. Thieulot. “3D numerical modelling of graben interaction and linkage: a case study of the Canyonlands grabens, Utah”. In: Basin Research 25 (2013), pp. 1–14. doi: 10.1111/bre.12010.
D. Allu Peddinti and A. K. McNamara. “Dynamical investigation of a thickening ice-shell: Implications for the icy moon Europa”. In: Icarus 329 (2019), pp. 251–269. doi: 10. 1016/j.icarus.2019.03.037.
J Almeida, N Riel, FM Rosas, JC Duarte, and B Kaus. “Self-replicating subduction zone initiation by polarity reversal”. In: Communications Earth & Environment 3 (2022). doi: 10.1038/s43247-022-00380-2.
J Almeida, N Riel, FM Rosas, JC Duarte, and WP Schellart. “Polarity-reversal subduction zone initiation triggered by buoyant plateau obstruction”. In: Earth Planet. Sci. Lett. 577 (2022), p. 117195. doi: 10.1016/j.epsl.2021.117195.
LA Alpert, TW Becker, and IW Bailey. “Global slab deformation and centroid moment tensor constraints on viscosity”. In: Geochem. Geophys. Geosyst. 11.12 (2010). doi: 10. 1029/2010GC003301.
Lisa A Alpert, Meghan S Miller, Thorsten W Becker, and Amir A Allam. “Structure beneath the Alboran from geodynamic flow models and seismic anisotropy”. In: J. Geophys. Res.: Solid Earth 118.8 (2013), pp. 4265–4277. doi: 10.1002/jgrb.50309.
Manar Alsaif, Fanny Garel, Frédéric Gueydan, and D Rhodri Davies. “Upper plate deformation and trench retreat modulated by subduction-driven shallow asthenospheric flows”. In: Earth Planet. Sci. Lett. 532 (2020), p. 116013. doi: 10.1016/j.epsl.2019. 116013.
J. Amodeo, B.S.A. Schuberth, H.-P. Bunge, P. Carrez, and P. Cordier. “On the role of thermal heterogeneities on the rheology of MgO under conditions of the Earth’s lower mantle”. In: Phys. Earth. Planet. Inter. 242 (2015), pp. 1–8. doi: 10.1016/j.pepi.2015.02.008.
C.A. Anderson and R.J. Bridwell. “A finite element method for studying the transient non-linear thermal creep of geological structures”. In: International Journal for Numerical and Analytical Methods in Geomechanics 4 (1980), pp. 255–276.
Miguel Andrés-Martnez, Marta Pérez-Gussinyé, John Armitage, and Jason P Morgan. “Thermomechanical Implications of Sediment Transport for the Architecture and Evolution of Continental Rifts and Margins”. In: Tectonics 38.2 (2019), pp. 641–665. doi: 10.1029/ 2018TC005346.
E.R. Andrews and M.I. Billen. “Rheologic controls on the dynamics of slab detachment”. In: Tectonophysics 464 (2009), pp. 60–69. doi: 10.1016/j.tecto.2007.09.004.
Nevena Andrić-Tomašević, Alexander Koptev, Giridas Maiti, Taras Gerya, and Todd A Ehlers. “Slab tearing in non-collisional settings: Insights from thermo-mechanical modelling of oblique subduction”. In: Earth Planet. Sci. Lett. 610 (2023), p. 118097. doi: 10.1016/ j.epsl.2023.118097.
A. Androvicova, H. Čížková, and A. van den Berg. “The effects of rheological decoupling on slab deformation in the Earth’s upper mantle”. In: Stud. Geophys. Geod. 57 (2013), pp. 460–481. doi: 10.1007/s11200-012-0259-7.
S. Angiboust, S. Wolf, E. Burov, P. Agard, and P. Yamato. “Effect of fluid circulation on subduction interface tectonic processes: Insights from thermo-mechanical numerical modelling”. In: Earth Planet. Sci. Lett. 357-358 (2012), pp. 238–248. doi: 10.1016/j. epsl.2012.09.012.
Samuel Angiboust, Paraskevi Io Ioannidi, and Iskander Muldashev. “Garnet fracturing reveals ancient unstable slip events hosted in plate interface metasediments”. In: Earth Planet. Sci. Lett. 640 (2024), p. 118794. doi: 10.1016/j.epsl.2024.118794.
Samuel Angiboust, Armel Menant, Taras Gerya, and Onno Oncken. “The rise and demise of deep accretionary wedges: A long-term field and numerical modeling perspective”. In: Geosphere (2021). doi: 10.1130/GES02392.1.
M. Armann and P.J. Tackley. “Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: Two-dimensional models”. In: J. Geophys. Res.: Solid Earth 117 (2012), E12003. doi: 10.1029/2012JE004231.
J.J. Armitage, T.J. Henstock, T.A. Minshull, and J.R. Hopper. “Lithospheric controls on melt production during continental breakup at slow rates of extension: Application to the North Atlantic”. In: Geochem. Geophys. Geosyst. 10.6 (2009). doi: 10.1029/2009GC002404.
D. Arndt et al. “The deal.II Library, Version 9.1”. In: Journal of Numerical Mathematics (2019). accepted. doi: 10 . 1515 / jnma - 2019 - 0064. url: https://dealii.org/deal91-preprint.pdf.
Daniel Arndt et al. “The deal. II finite element library: Design, features, and insights”. In: Computers & Mathematics with Applications (2020). doi: 10.1016/j.camwa.2020.02. 022.
Douglas N Arnold, Franco Brezzi, Bernardo Cockburn, and L Donatella Marini. “Unified analysis of discontinuous Galerkin methods for elliptic problems”. In: SIAM journal on numerical analysis 39.5 (2002), pp. 1749–1779. doi: 10.1137/S0036142901384162.
M Arnould, Nicolas Coltice, Nicolas Flament, V Seigneur, and RD Müller. “On the Scales of Dynamic Topography in Whole-Mantle Convection Models”. In: Geochem. Geophys. Geosyst. 19.9 (2018), pp. 3140–3163. doi: 10.1029/2018GC007516.
Maëlis Arnould, Nicolas Coltice, Nicolas Flament, and Claire Mallard. “Plate tectonics and mantle controls on plume dynamics”. In: Earth Planet. Sci. Lett. 547 (2020), p. 116439. doi: 10.1016/j.epsl.2020.116439.
Maëlis Arnould, Jérôme Ganne, Nicolas Coltice, and Xiaojun Feng. “Northward drift of the Azores plume in the Earth’s mantle”. In: Nature Communications 10.1 (2019), p. 3235. doi: 10.1038/s41467-019-11127-7.
Katrina M Arredondo and Magali I Billen. “Rapid weakening of subducting plates from trench-parallel estimates of flexural rigidity”. In: Phys. Earth. Planet. Inter. 196 (2012), pp. 1–13. doi: 10.1016/j.pepi.2012.02.007.
P.-A. Arrial and M.I. Billen. “Influence of geometry and eclogitization on oceanic plateau subduction”. In: Earth Planet. Sci. Lett. 363 (2013), pp. 34–43. doi: 10.1016/j.epsl. 2012.12.011.
P.A. Arrial, N. Flyer, G.B. Wright, and L.H. Kellogg. “On the sensitivity of 3-D thermal convection codes to numerical discretization: a model intercomparison”. In: Geosci. Model. Dev. 7 (2014), pp. 2065–2076. doi: 10.5194/gmd-7-2065-2014.
Irina M Artemieva, Haibin Yang, and Hans Thybo. “Incipient ocean spreading beneath the Arabian shield”. In: Earth-Science Reviews 226 (2022), p. 103955. doi: 10.1016/j. earscirev.2022.103955.
Alireza Asgari and LN Moresi. “Multiscale particle-in-cell method: from fluid to solid mechanics”. In: Advanced Methods for Practical Applications in Fluid Mechanics. InTech, Croatia (2012), pp. 185–208.
Matteo Assanelli, Pietro Luoni, Gisella Rebay, Manuel Roda, and Maria Iole Spalla. “Tectono-Metamorphic Evolution of Serpentinites from Lanzo Valleys Subduction Complex (Piemonte-Sesia-Lanzo Zone Boundary, Western Italian Alps)”. In: Minerals 10.11 (2020), p. 985. doi: 10.3390/min10110985.
Suzanne Atkins, Andrew P Valentine, Paul J Tackley, and Jeannot Trampert. “Using pattern recognition to infer parameters governing mantle convection”. In: Phys. Earth. Planet. Inter. 257 (2016), pp. 171–186. doi: 10.1016/j.pepi.2016.05.016.
J. Austermann, J. X. Mitrovica, P. Huybers, and A. Rovere. “Detection of a dynamic topography signal in last interglacial sea-level records”. In: Science Advances 3.7 (2017), p. 1700457. doi: 10.1126/sciadv.1700457.
J. Austermann et al. “The impact of dynamic topography change on Antarctic ice sheet stability during the mid-Pliocene warm period”. In: Geology 43.10 (2015), pp. 927–930. doi: 10.1130/G36988.1.
A Auzemery, E Willingshofer, Philippe Yamato, Thibault Duretz, and D Sokoutis. “Strain localization mechanisms for subduction initiation at passive margins”. In: Global and Planetary Change 195 (2020), p. 103323. doi: 10.1016/j.gloplacha.2020.103323.
Antoine Auzemery, Ernst Willingshofer, Philippe Yamato, Thibault Duretz, and Fred Beekman. “Kinematic boundary conditions favouring subduction initiation at passive margins over subduction at mid-oceanic ridges”. In: Frontiers in Earth Science (2021), p. 1131. doi: 10.3389/feart.2021.765893.
Antoine Auzemery, Philippe Yamato, Thibault Duretz, E Willingshofer, L Matenco, and K Porkoláb. “Influence of magma-poor versus magma-rich passive margins on subduction initiation”. In: Gondwana Research 103 (2022), pp. 172–186. doi: 10.1016/j.gr.2021. 11.012.
P Ayarza, JR Martnez Catalán, J Alvarez-Marrón, H Zeyen, and C Juhlin. “Geophysical constraints on the deep structure of a limited ocean-continent subduction zone at the North Iberian Margin”. In: Tectonics 23.1 (2004). doi: 10.1029/2002TC001487.
A.E. Pusok aand B.J.P. Kaus and A.A. Popov. “The effect of rheological approximations in 3-D numerical simulations of subduction and collision”. In: Tectonophysics 746 (2018), pp. 296–311. doi: 10.1016/j.tecto.2018.04.017.
A Yu Babeyko, Stephan V Sobolev, RB Trumbull, Onno Oncken, and LL Lavier. “Numerical models of crustal scale convection and partial melting beneath the Altiplano–Puna plateau”. In: Earth Planet. Sci. Lett. 199.3-4 (2002), pp. 373–388. doi: 10.1016/S0012-821X(02) 00597-6.
A. Babeyko and S. Sobolev. “High-resolution numerical modeling of stress distribution in visco-elasto-plastic subducting slabs”. In: Lithos 103 (2008), pp. 205–216. doi: 10.1016/ j.lithos.2007.09.015.
Andrey Y Babeyko, Stephan V Sobolev, Tim Vietor, Onno Oncken, and Robert B Trumbull. “Numerical study of weakening processes in the central Andean back-arc”. In: The Andes. 2006, pp. 495–512. doi: 10.1007/978-3-540-48684-8_24.
Andrey Y Babeyko and SV Sobolev. “Quantifying different modes of the late Cenozoic shortening in the central Andes”. In: Geology 33.8 (2005), pp. 621–624. doi: 10.1130/ G21126.1.
M. Baes, R. Govers, and R. Wortel. “Subduction initiation along the inherited weakness zone at the edge of a slab: Insights from numerical models”. In: Geophy. J. Int. 184 (2011), pp. 991–1008. doi: 10.1111/j.1365-246X.2010.04896.x.
M. Baes, R. Govers, and R. Wortel. “Switching between alternative responses of the lithosphere to continental collision”. In: Geophy. J. Int. 187 (2011), pp. 1151–1174. doi: 10.1111/j.1365-246X.2011.05236.x.
Marzieh Baes, Stephan Sobolev, Taras Gerya, and Sascha Brune. “Plume-induced subduction initiation: single-or multi-slab subduction?” In: Geochem. Geophys. Geosyst. 21 (2020), e2019GC008663. doi: 10.1029/2019GC008663.
Marzieh Baes, Stephan Sobolev, Taras Gerya, Robert Stern, and Sascha Brune. “Plate motion and plume-induced subduction initiation”. In: Gondwana Research 98 (2021), pp. 277–288. doi: 10.1016/j.gr.2021.06.007.
Marzieh Baes, Stephan V Sobolev, Taras Gerya, and Sascha Brune. “Subduction initiation by plume-plateau interaction: Insights from numerical models”. In: Geochem. Geophys. Geosyst. 21.8 (2020), e2020GC009119. doi: 10.1029/2020GC009119.
Marzieh Baes, Stephan V Sobolev, and Javier Quinteros. “Subduction initiation in mid-ocean induced by mantle suction flow”. In: Geophy. J. Int. 215.3 (2018), pp. 1515–1522. doi: 10.1093/gji/ggy335.
Marzieh Baes and SV Sobolev. “Mantle flow as a trigger for subduction initiation: A missing element of the Wilson Cycle concept”. In: Geochem. Geophys. Geosyst. 18.12 (2017), pp. 4469–4486. doi: 10.1002/2017GC006962.
Alireza Bahadori et al. “Coupled influence of tectonics, climate, and surface processes on landscape evolution in southwestern North America”. In: Nature Communications 13.1 (2022), pp. 1–18. doi: 10.1038/s41467-022-31903-2.
Alireza Bahadori et al. “The role of gravitational body forces in the development of metamorphic core complexes”. In: Nature Communications 13.1 (2022), pp. 1–19. doi: 10.1038/s41467-022-33361-2.
B. Baitsch-Ghirardello, Taras V. Gerya, and J.-P. Burg. “Geodynamic regimes of intra-oceanic subduction: Implications for arc extension vs. shortening processes”. In: Gondwana Research 25 (2014), pp. 546–560. doi: 10.1016/j.gr.2012.11.003.
Bettina Baitsch-Ghirardello, Andreas Stracke, James AD Connolly, Ksenia M Nikolaeva, and Taras V Gerya. “Lead transport in intra-oceanic subduction zones: 2D geochemical–thermo-mechanical modeling of isotopic signatures”. In: Lithos 208 (2014), pp. 265–280. doi: 10.1016/j.lithos.2014.09.006.
A Balázs, Claudio Faccenna, T Gerya, K Ueda, and F Funiciello. “The dynamics of forearc–back-arc basin subsidence numerical models and observations from Mediterranean subduction zones”. In: Tectonics 41 (2022), e2021TC007078. doi: 10.1029/2021TC007078.
Attila Balázs, Taras Gerya, Dave May, and Gábor Tari. “Contrasting transform and passive margin subsidence history and heat flow evolution: Insights from 3D thermo-mechanical modelling”. In: Geological Society, London, Special Publications 524.1 (2022), SP524–2021. doi: 10.1144/SP524-2021-94.
Attila Balázs et al. “Oblique subduction and mantle flow control on upper plate deformation: 3D geodynamic modeling”. In: Earth Planet. Sci. Lett. 569 (2021), p. 117056. doi: 10. 1016/j.epsl.2021.117056.
Harry A Ballantyne et al. “Investigating the feasibility of an impact-induced Martian Dichotomy”. In: Icarus 392 (2023), p. 115395. doi: 10.1016/j.icarus.2022.115395.
M. D. Ballmer, C. P. Conrad, E. I. Smith, and N. Harmon. “Non-hotspot volcano chains produced by migration of shear-driven upwelling toward the East Pacific Rise”. In: Geology 41.4 (2013), pp. 479–482. doi: 10.1130/G33804.1.
M. D. Ballmer, C. P. Conrad, E. I. Smith, and R. Johnsen. “Intraplate volcanism at the edges of the Colorado Plateau sustained by a combination of triggered edge-driven convection and shear-driven upwelling”. In: Geochem. Geophys. Geosyst. 16.2 (2015), pp. 366–379. doi: 10.1002/2014GC005641.
M.D. Ballmer, J van Hunen, G Ito, T.A. Bianco, and P.J. Tackley. “Intraplate volcanism with complex age-distance patterns: A case for small-scale sublithospheric convection”. In: Geochem. Geophys. Geosyst. 10.6 (2009). doi: 10.1029/2009GC002386.
M.D. Ballmer, J. van Hunen, G. Ito, P.J. Tackley, and T.A. Bianco. “Non-hotspot volcano chains originating from small-scale sublithospheric convection”. In: Geophys. Res. Lett. 34.L23310 (2007). doi: 10.1029/2007GL031636.
M.D. Ballmer, G. Ito, J. van Hunen, and P.J. Tackley. “Small-scale sublithospheric convection reconcilies geochemistry and geochronology of ’Superplume’ volcanism in the western and south pacific”. In: Earth Planet. Sci. Lett. 290 (2010), pp. 224–232. doi: 10.1016/j.epsl.2009.12.025.
M.D. Ballmer, G. Ito, J. van Hunen, and P.J. Tackley. “Spatial and temporal variability in Hawaiian hotspot volcanism induced by small-scale convection”. In: Nature Geoscience 4.7 (2011), p. 457. doi: 10.1038/NGEO1187.
M.D. Ballmer, N.C. Schmerr, T. Nakagawa, and J. Ritsema. “Compositional mantle layering revealed by slab stagnation at ~ 1000-km depth”. In: Science advances 1.11 (2015), e1500815. doi: 10.1126/sciadv.1500815.
Maxim D Ballmer, Christine Houser, John W Hernlund, Renata M Wentzcovitch, and Kei Hirose. “Persistence of strong silica-enriched domains in the Earth’s lower mantle”. In: Nature Geoscience 10.3 (2017), pp. 236–240. doi: 10.1038/NGEO2898.
Maxim D Ballmer, Diogo L Lourenço, Kei Hirose, Razvan Caracas, and Ryuichi Nomura. “Reconciling magma-ocean crystallization models with the present-day structure of the Earth’s mantle”. In: Geochem. Geophys. Geosyst. 18.7 (2017), pp. 2785–2806. doi: 10. 1002/2017GC006917.
W. Bangerth, R. Hartmann, and G. Kanschat. “deal.II - a general purpose object oriented finite element library”. In: ACM Transaction on mathematical software 33.4 (2007), pp. 10.1145/1268776.1268779. doi: 10.1145/1268776.1268779.
Arash Barjasteh. “Right Lateral Shear and Rotation in the Northeast of the Arabian-Iranian Collision Zone”. In: Journal of Earth Science 29.3 (2018), pp. 616–628. doi: 10.1007/ s12583-017-0682-3.
Terence D Barr and Gregory A Houseman. “Deformation fields around a fault embedded in a non-linear ductile medium”. In: Geophy. J. Int. 125.2 (1996), pp. 473–490. doi: 10.1111/j.1365-246X.1996.tb00012.x.
Terence D Barr and Gregory A Houseman. “Distribution of deformation around a fault in a non-linear ductile medium”. In: Geophys. Res. Lett. 19.11 (1992), pp. 1145–1148. doi: 10.1029/92GL00863.
Matas Barrionuevo et al. “The influence of variations in crustal composition and lithospheric strength on the evolution of deformation processes in the southern Central Andes: insights from geodynamic models”. In: International Journal of Earth Sciences (2021), pp. 1–24. doi: 10.1007/s00531-021-01982-5.
TL Barry et al. “Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry”. In: Scientific Reports 7.1 (2017), pp. 1–9. doi: 10.1038/s41598-017-01816-y.
Francesco Bassi and S. Rebay. “High-order accurate discontinuous finite element solution of the 2D Euler equations”. In: J. Comp. Phys. 138.2 (1997), pp. 251–285.
G Bassi. “Relative importance of strain rate and rheology for the mode of continental extension”. In: Geophy. J. Int. 122.1 (1995), pp. 195–210. doi: 10.1111/j.1365- 246X.1995.tb03547.x.
Gianna Bassi. “Factors controlling the style of continental rifting: insights from numerical modelling”. In: Earth Planet. Sci. Lett. 105.4 (1991), pp. 430–452. doi: 10.1016/0012- 821X(91)90183-I.
Gianna Bassi, Charlotte E Keen, and Patrick Potter. “Contrasting styles of rifting: Models and examples from the eastern Canadian margin”. In: Tectonics 12.3 (1993), pp. 639–655. doi: 10.1029/93TC00197.
Debajyoti Basu Sarkar and William B Moore. “Influence of Planetary Surface Temperature on the Tectonic Transition from Heat Pipes”. In: Geophys. Res. Lett. 49 (), e2022GL100987. doi: 10.1029/2022GL100987.
Simon Bauer et al. “TerraNeo—Mantle Convection Beyond a Trillion Degrees of Freedom”. In: Software for Exascale Computing - SPPEXA 2016-2019. Ed. by Hans-Joachim Bungartz, Severin Reiz, Benjamin Uekermann, Philipp Neumann, and Wolfgang E. Nagel. Springer International Publishing, 2020, pp. 569–610. doi: 10.1007/978-3-030-47956-5_19.
Cyrill Baumann, Taras V Gerya, and James AD Connolly. “Numerical modelling of spontaneous slab breakoff dynamics during continental collision”. In: Geological Society, London, Special Publications 332.1 (2010), pp. 99–114. doi: 10.1144/SP332.7.
T.S. Baumann. “Appraisal of geodynamic inversion results: a data mining approach”. In: Geophy. J. Int. 207.2 (2016), pp. 667–679. doi: 10.1093/gji/ggw279.
T.S. Baumann, B.J.P. Kaus, and A.A. Popov. “Constraining effective rheology through parallel joint geodynamic inversion”. In: Tectonophysics 631 (2014), pp. 197–211. doi: 10.1016/j.tecto.2014.04.037.
TS Baumann and Boris JP Kaus. “Geodynamic inversion to constrain the non-linear rheology of the lithosphere”. In: Geophy. J. Int. 202.2 (2015), pp. 1289–1316. doi: 10.1093/gji/ ggv201.
J.R. Baumgardner. “Three-Dimensional treatment of convective flow in the Earth’s mantle”. In: Journal of Statistical Physics 39.5/6 (1985), pp. 501–511. doi: 10.1007/BF01008348.
J.R. Baumgardner and P.O. Frederickson. “Isocahedral discretisation of the two-sphere”. In: SIAM J. Numer Anal. 22.6 (1985), pp. 1107–1115. doi: 10.1137/0722066.
JR Baumgardner. “A Three-Dimensional Finite Element Model for Mantle Convection”. PhD thesis. UCLA, 1983.
A. Bauville and T. S. Baumann. “geomIO: an open-source MATLAB toolbox to create the initial configuration of 2D/3D thermo-mechanical simulations from 2D vector drawings”. In: Geochem. Geophys. Geosyst. (2019). doi: 10.1029/2018GC008057.
Adam Beall, Ĺke Fagereng, J Huw Davies, Fanny Garel, and D Rhodri Davies. “Influence of Subduction Zone Dynamics on Interface Shear Stress and Potential Relationship with Seismogenic Behavior”. In: Geochem. Geophys. Geosyst. 22 (2021), e2020GC009267. doi: 10.1029/2020GC009267.
Adam P Beall, Louis Moresi, and Tim Stern. “Dripping or delamination? A range of mechanisms for removing the lower crust or lithosphere”. In: Geophy. J. Int. 210.2 (2017), pp. 671–692. doi: 10.1093/gji/ggx202.
AP Beall, Louis Moresi, and Catherine M Cooper. “Formation of cratonic lithosphere during the initiation of plate tectonics”. In: Geology 46.6 (2018), pp. 487–490. doi: 10.1130/ G39943.1.
C. Beaumont, S. Ellis, J. Hamilton, and P. Fullsack. “Mechanical model for subduction-collision tectonics of Alpine-type compressional orogens”. In: Geology 24.8 (1996), pp. 675–678. doi: 10.1130/0091-7613(1996)024<0675:MMFSCT>2.3.CO;2.
C. Beaumont, S. Ellis, and A. Pfiffner. “Dynamics of sediment subduction-accretion at convergent margins: Short-term modes, long-term deformation, and tectonic implications”. In: J. Geophys. Res.: Solid Earth 104.B8 (1999), pp. 17573–17601. doi: 10.1029/ 1999JB900136.
C. Beaumont, P. Fullsack, and J. Hamilton. “Styles of crustal deformation in compressional orogens caused by subduction of the underlying lithosphere”. In: Tectonophysics 232 (1994), pp. 119–132. doi: 10.1016/0040-1951(94)90079-5.
C. Beaumont and S.J. Ings. “Effect of depleted continental lithosphere counterflow and inherited crustal weakness on rifting of the continental lithosphere: General results”. In: J. Geophys. Res.: Solid Earth 117.8 (2012). doi: 10.1029/2012JB009203.
C. Beaumont, R.A. Jamieson, J.P. Butler, and C.J. Warren. “Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation”. In: Earth Planet. Sci. Lett. 287 (2009), pp. 116–129. doi: 10.1016/j.epsl.2009.08.001.
C. Beaumont, R.A. Jamieson, M.H. Nguyen, and B. Lee. “Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation”. In: Nature 414 (2001), pp. 738–742. doi: 10.1038/414738a.
C. Beaumont, R.A. Jamieson, M.H. Nguyen, and S. Medvedev. “Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen”. In: J. Geophys. Res.: Solid Earth 109.B06406 (2004). doi: 10.1029/2003JB002809.
C. Beaumont, P.J. Kamp, J. Hamilton, and P. Fullsack. “The continental collision zone, South Island, New Zealand: comparison of geodynamical models and observations”. In: J. Geophys. Res.: Solid Earth 101 (1996), pp. 3333–3359. doi: 10.1029/95JB02401.
C. Beaumont, J.A. Munoz, J. Hamilton, and P. Fullsack. “Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models”. In: J. Geophys. Res.: Solid Earth 105 (2000), pp. 8121–8145. doi: 10.1029/1999JB900390.
C. Beaumont, M.H. Nguyen, R.A. Jamieson, and S. Ellis. “Crustal flow modes in large hot orogens”. In: Geological Society Special Publication 268 (2006), pp. 91–145. doi: 10. 1144/GSL.SP.2006.268.01.05.
Christopher Beaumont and Garry Quinlan. “A geodynamic framework for interpreting crustal-scale seismic-reflectivity patterns in compressional orogens”. In: Geophy. J. Int. 116.3 (1994), pp. 754–783. doi: 10.1111/j.1365-246X.1994.tb03295.x.
T. W. Becker and C. Faccenna. “Subduction Zone Geodynamics”. In: 2009. Chap. A Review of the Role of Subduction Dynamics for Regional and Global Plate Motions, pp. 3–34. doi: 10.1007/978-3-540-87974-9_1.
T. W. Becker, C. Faccenna, R. J. O’Connell, and D. Giardini. “The development of slabs in the upper mantle: Insights from numerical and laboratory experiments”. In: J. Geophys. Res.: Solid Earth 104.B7 (1999), pp. 15207–15226. doi: 10.1029/1999JB900140.
T.W. Becker. “On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces”. In: Geophy. J. Int. 167 (2006), pp. 943–957.
T.W. Becker and C. Faccenna. “Mantle conveyor beneath the Tethyan collisional belt”. In: Earth Planet. Sci. Lett. 310 (2011), pp. 453–461. doi: 10.1016/j.epsl.2011.08.021.
T.W. Becker, V. Schulte-Pelkum, D.K. Blackman, J.B. Kellogg, and R.J. O’Connell. “Mantle flow under the western United States from shear wave splitting”. In: Earth Planet. Sci. Lett. 247 (2006), pp. 235–251. doi: 10.1016/j.epsl.2006.05.010.
Thorsten W Becker. “Superweak asthenosphere in light of upper mantle seismic anisotropy”. In: Geochem. Geophys. Geosyst. 18.5 (2017), pp. 1986–2003. doi: 10.1002/2017GC006886.
Thorsten W Becker, Sebastien Chevrot, Vera Schulte-Pelkum, and Donna K Blackman. “Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models”. In: J. Geophys. Res.: Solid Earth 111 (2006), B08309. doi: 10.1029/2005JB004095.
Thorsten W Becker, Clinton P Conrad, Andrew J Schaeffer, and Sergei Lebedev. “Origin of azimuthal seismic anisotropy in oceanic plates and mantle”. In: Earth Planet. Sci. Lett. 401 (2014), pp. 236–250. doi: 10.1016/j.epsl.2014.06.014.
Thorsten W Becker and Lukas Fuchs. “Generation of Evolving Plate Boundaries and Toroidal Flow From Visco-Plastic Damage-Rheology Mantle Convection and Continents”. In: Geochem. Geophys. Geosyst. 24.12 (2023), e2023GC011179. doi: 10.1029/2023GC011179.
Thorsten W Becker, Bogdan Kustowski, and Göran Ekström. “Radial seismic anisotropy as a constraint for upper mantle rheology”. In: Earth Planet. Sci. Lett. 267.1-2 (2008), pp. 213–227. doi: 10.1016/j.epsl.2007.11.038.
Thorsten W Becker, Anthony R Lowry, Claudio Faccenna, Brandon Schmandt, Adrian Borsa, and Chunquan Yu. “Western US intermountain seismicity caused by changes in upper mantle flow”. In: Nature 524.7566 (2015), pp. 458–461. doi: 10.1038/nature14867.
TW Becker. “Azimuthal seismic anisotropy constrains net rotation of the lithosphere”. In: Geophys. Res. Lett. 35.5 (2008). doi: 10.1029/2007GL032928.
TW Becker and H Kawakatsu. “On the role of anisotropic viscosity for plate-scale flow”. In: Geophys. Res. Lett. 38.17 (2011). doi: 10.1029/2011GL048584.
Whitney M Behr, Taras V Gerya, Claudio Cannizzaro, and Robert Blass. “Transient Slow Slip Characteristics of Frictional-Viscous Subduction Megathrust Shear Zones”. In: AGU Advances 2.3 (2021), e2021AV000416. doi: 10.1029/2021AV000416.
Whitney M Behr, Adam F Holt, Thorsten W Becker, and Claudio Faccenna. “The effects of plate interface rheology on subduction kinematics and dynamics”. In: Geophy. J. Int. 230.2 (2022), pp. 796–812. doi: 10.1093/gji/ggac075.
A Bellas and SJ Zhong. “Seismic strain rate and flexure at the Hawaiian Islands constrain the frictional coefficient”. In: Geochem. Geophys. Geosyst. 22.4 (2021), e2020GC009547.
A. Bellas, Sh. Zhong, D. Bercovici, and E. Mulyukova. “Dynamic weakening with grain-damage and implications for slab detachment”. In: Phys. Earth. Planet. Inter. 285 (2018), pp. 76–90. doi: 10.1016/j.pepi.2018.09.001.
Ashley Bellas and Shijie Zhong. “Effects of a weak lower crust on the flexure of continental lithosphere”. In: J. Geophys. Res.: Solid Earth 126.10 (2021), e2021JB022678. doi: 10. 1029/2021JB022678.
Ashley Bellas, Shijie Zhong, and Anthony Watts. “Constraints on the rheology of the lithosphere from flexure of the Pacific Plate at the Hawaiian Islands”. In: Geochem. Geophys. Geosyst. 21.2 (2020), e2019GC008819. doi: 10.1029/2019GC008819.
Ashley Bellas, Shijie Zhong, and Anthony B Watts. “Reconciling lithospheric rheology between laboratory experiments, field observations and different tectonic settings”. In: Geophy. J. Int. 228.2 (2022), pp. 857–875. doi: 10.1093/gji/ggab382.
A Bellas-Manley and L Royden. “Basal Mantle Flow Over LLSVPs Explains Differences in Pacific and Indo-Atlantic Hotspot Motions”. In: J. Geophys. Res.: Solid Earth 129.1 (2024), e2023JB027636. doi: 10.1029/2023JB027636.
Léa Bello, Nicolas Coltice, Tobias Rolf, and Paul J Tackley. “On the predictability limit of convection models of the Earth’s mantle”. In: Geochem. Geophys. Geosyst. 15.6 (2014), pp. 2319–2328. doi: 10.1002/2014GC005254.
Léa Bello, Nicolas Coltice, Paul J Tackley, R Dietmar Müller, and John Cannon. “Assessing the role of slab rheology in coupled plate-mantle convection models”. In: Earth Planet. Sci. Lett. 430 (2015), pp. 191–201. doi: 10.1016/j.epsl.2015.08.010.
T. Belytschko, L. Gu, and Y.Y. Lu. “Fracture and crack growth by element free Galerkin method”. In: Modelling Simul. Mater. Sci. Eng. 2 (1994), pp. 519–534.
T. Belytschko, Y. Krongauz, M. Fleming, D. Organ, and W.K.S. Liu. “Smoothing and accelerated computations in the element free Galerkin method”. In: Journal of Computational and Applied Mathematics 74 (1996), pp. 111–126.
T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. “Meshless methods: an overview and recent developments”. In: Computer Methods in Applied Mechanics and Engineering 139 (1996), pp. 3–47. doi: 10.1016/S0045-7825(96)01078-X.
T. Belytschko, P. Krysl, and Y. Krongauz. “A three-dimensional explicit element-free galerkin method”. In: Int. J. Num. Meth. Fluids 24 (1997), pp. 1253–1270. doi: 10.1002/(SICI) 1097-0363(199706)24:12<1253::AID-FLD558>3.0.CO;2-Z.
T. Belytschko, Y.Y. Lu, and L. Gu. “Crack propagation by element-free galerkin methods”. In: Engineering Fracture Mechanics 51 (1995), pp. 295–315.
T. Belytschko, Y.Y. Lu, and M. Tabbara. “Element-Free Galerkin Methods for static and dynamic fracture”. In: International Journal of Solids and Structures 32 (1995), pp. 2547–2570.
Ted Belytschko, Yong Guo, Wing Kam Liu, and Shao Ping Xiao. “A unified stability analysis of meshless particle methods”. In: Int. J. Num. Meth. Eng. 48.9 (2000), pp. 1359–1400.
A.K. Bengtson and P.E. van Keken. “Three-dimensional thermal structure of subduction zones: effects of obliquity and curvature”. In: Solid Earth 3 (2012), pp. 365–373. doi: 10.5194/se-3-365-2012.
S van Benthem and Rob Govers. “The Caribbean plate: Pulled, pushed, or dragged?” In: J. Geophys. Res.: Solid Earth 115.B10 (2010), B10409. doi: 10.1029/2009JB006950.
S van Benthem, Rob Govers, and Rinus Wortel. “What drives microplate motion and deformation in the northeastern Caribbean plate boundary region?” In: Tectonics 33 (2014), pp. 850–873. doi: 10.1002/2013TC003402.
M. Benzi. “Preconditioning Techniques for Large Linear Systems: A Survey”. In: J. Comp. Phys. 182 (2002), pp. 418–477. doi: 10.1006/jcph.2002.7176.
M. Benzi and A.J. Wathen. “Some Preconditioning Techniques for Saddle Point Problems”. In: Model Order Reduction: Theory, Research Aspects and Applications. Ed. by W.H.A. Schilders, H.A. van der Vorst, and Joost Rommes. Springer, 2008, pp. 195–211.
A.P. van den Berg, M.V. De Hoop, D.A. Yuen, A. Duchkov, R.D. van der Hilst, and M.H.G. Jacobs. “Geodynamical modeling and multiscale seismic expression of thermo-chemical heterogeneity and phase transitions in the lowermost mantle”. In: Phys. Earth. Planet. Inter. 180.3-4 (2010), pp. 244–257. doi: 10.1016/j.pepi.2010.02.008.
A.P. van den Berg, M.V. De Hoop, D.A. Yuen, A. Duchkov, R.D. van der Hilst, and M.H.G. Jacobs. “Geodynamical modeling and multiscale seismic expression of thermo-chemical heterogeneity and phase transitions in the lowermost mantle”. In: Phys. Earth. Planet. Inter. 180 (2010), pp. 244–257. doi: 10.1016/j.pepi.2010.02.008.
A.P. van den Berg, E.S.G. Rainey, and D.A. Yuen. “The combined influences of variable thermal conductivity, temperature- and pressure-dependent viscosity and core-mantle coupling on thermal evolution”. In: Phys. Earth. Planet. Inter. 149.3-4 (2005), pp. 259–278. doi: 10.1016/j.pepi.2004.10.008.
A.P. van den Berg and D.A. Yuen. “Convectively induced transition in mantle rheological behavior”. In: Geophys. Res. Lett. 22.12 (1995), pp. 1549–1552. doi: 10.1029/95GL01201.
A.P. van den Berg, D.A. Yuen, M.H.G. Jacobs, and M.V. de Hoop. “Small-scale mineralogical heterogeneity from variations in phase assemblages in the transition zone and D” layer predicted by convection modelling”. In: Journal of Earth Science 22.2 (2011), pp. 160–168. doi: 10.1007/s12583-011-0168-7.
A.P. van den Berg, D.A. Yuen, K. Umemoto, M.H.G. Jacobs, and R.M. Wentzcovitch. “Mass-dependent dynamics of terrestrial exoplanets using ab initio mineral properties”. In: Icarus 317 (2019), pp. 412–426. doi: 10.1016/j.icarus.2018.08.016.
Arie P van den Berg, Peter E van Keken, and David A Yuen. “The effects of a composite non-Newtonian and Newtonian rheology on mantle convection”. In: Geophy. J. Int. 115.1 (1993), pp. 62–78. doi: 10.1111/j.1365-246X.1993.tb05588.x.
Arie P van den Berg and David A Yuen. “Is the lower-mantle rheology Newtonian today?” In: Geophys. Res. Lett. 23.16 (1996), pp. 2033–2036. doi: 10.1029/96GL02065.
Antoine Berger, François Jouanne, Riad Hassani, and Jean Louis Mugnier. “Modelling the spatial distribution of present-day deformation in Nepal: how cylindrical is the Main Himalayan Thrust in Nepal?” In: Geophy. J. Int. 156.1 (2004), pp. 94–114. doi: 10. 1111/j.1365-246X.2004.02038.x.
A. Bessat, T. Duretz, G. Hetényi, S. Pilet, and S.M. Schmalholz. “Stress and deformation mechanisms at a subduction zone: insights from 2-D thermomechanical numerical modelling”. In: Geophy. J. Int. 221.3 (2020), pp. 1605–1625. doi: 10.1093/gji/ggaa092.
Jack D Betteridge, Patrick E Farrell, and David A Ham. “Code generation for productive, portable, and scalable finite element simulation in firedrake”. In: Computing in Science & Engineering 23.4 (2021), pp. 8–17. doi: 10.1109/MCSE.2021.3085102.
P.G. Betts, W.G. Mason, and L. Moresi. “The influence of a mantle plume head on the dynamics of a retreating subduction zone”. In: Geology 40.8 (2012), pp. 739–742. doi: 10.1130/G32909.1.
Peter G Betts, Louis Moresi, Meghan S Miller, and David Willis. “Geodynamics of oceanic plateau and plume head accretion and their role in Phanerozoic orogenic systems of China”. In: Geoscience Frontiers 6.1 (2015), pp. 49–59. doi: 10.1016/j.gsf.2014.07.002.
R Beucher and RS Huismans. “Morphotectonic Evolution of Passive Margins Undergoing Active Surface Processes: Large-Scale Experiments Using Numerical Models”. In: Geochem. Geophys. Geosyst. 21.5 (2020), e2019GC008884. doi: 10.1029/2019GC008884.
M.J. Beuchert and Y.Y. Podladchikov. “Viscoelastic mantle convection and lithospheric stresses”. In: Geophy. J. Int. 183 (2010), pp. 35–63. doi: 10.1111/j.1365-246X.2010. 04708.x.
E. Beutel, J. van Wijk, C. Ebinger, D. Keir, and A. Agostini. “Formation and stability of magmatic segments in the Main Ethiopian and Afar rifts”. In: Earth Planet. Sci. Lett. 293 (2010), pp. 225–235. doi: 10.1016/j.epsl.2010.02.006.
Robert W Bialas and W Roger Buck. “How sediment promotes narrow rifting: Application to the Gulf of California”. In: Tectonics 28.4 (2009). doi: 10.1029/2008TC002394.
T. A. Bianco, C. P. Conrad, and E. I. Smith. “Time dependence of intraplate volcanism caused by shear-driven upwelling of low-viscosity regions within the asthenosphere”. In: J. Geophys. Res.: Solid Earth 116.B11 (2011). doi: 10.1029/2011JB008270.
James Biemiller, Susan Ellis, Marcel Mizera, Timothy Little, Laura Wallace, and Luc Lavier. “Tectonic inheritance following failed continental subduction: A model for core complex formation in cold, strong lithosphere”. In: Tectonics 38.5 (2019), pp. 1742–1763. doi: 10.1029/2018TC005383.
M. I. Billen. “Slab dynamics in the transition zone”. In: Phys. Earth. Planet. Inter. 183.1-2 (2010), pp. 296–308. doi: 10.1016/j.pepi.2010.05.005.
M.I. Billen and K.M. Arredondo. “Decoupling of plate-asthenosphere motion caused by non-linear viscosity during slab folding in the transition zone”. In: Phys. Earth. Planet. Inter. 281 (2018), pp. 17–30. doi: 10.1016/j.pepi.2018.04.011.
M.I. Billen and M. Gurnis. “A low wedge in subduction zones”. In: Earth Planet. Sci. Lett. 193 (2001), pp. 227–236.
M.I. Billen and M. Gurnis. “Comparison of dynamic flow models for the Central Aleutian and Tonga-Kermadec subduction zones”. In: Geochem. Geophys. Geosyst. 4.4 (2003). doi: 10.1029/2001GC000295.
M.I. Billen and G. Hirth. “Newtonian versus non-Newtonian upper mantle viscosity: Implications for subduction initiation”. In: Geophys. Res. Lett. 32.L19304 (2005). doi: 10.1029/2005GL023457.
M.I. Billen and G. Hirth. “Rheologic controls on slab dynamics”. In: Geochem. Geophys. Geosyst. 8.8 (2007). doi: 10.1029/2007GC001597.
M.I. Billen and M. Jadamec. “Origin of localized fast mantle f low velocity in numerical models of subduction”. In: Geochem. Geophys. Geosyst. 13.1 (2012). doi: 10.1029/ 2011GC003856.
Magali I Billen. “Deep slab seismicity limited by rate of deformation in the transition zone”. In: Science Advances 6.22 (2020), eaaz7692. doi: 10.1126/sciadv.aaz7692.
Magali I Billen, Michael Gurnis, and Mark Simons. “Multiscale dynamics of the Tonga-Kermadec subduction zone”. In: Geophy. J. Int. 153.2 (2003), pp. 359–388. doi: 10.1046/j.1365-246X.2003.01915.x.
Magali I Billen et al. “A geoscience perspective on immersive 3D gridded data visualization”. In: Computers and Geosciences 34.9 (2008), pp. 1056–1072. doi: 10.1016/j.cageo. 2007.11.009.
Craig R Bina, Hana Čžková, and Po-Fei Chen. “Evolution of subduction dip angles and seismic stress patterns during arc-continent collision: Modeling Mindoro Island”. In: Earth Planet. Sci. Lett. 533 (2020), p. 116054. doi: 10.1016/j.epsl.2019.116054.
Peter Bird. “New finite element techniques for modeling deformation histories of continents with stratified temperature-dependent rheology”. In: J. Geophys. Res.: Solid Earth 94.B4 (1989), pp. 3967–3990. doi: 10.1029/JB094iB04p03967.
Peter Bird. “Thin-plate and thin-shell finite-element programs for forward dynamic modeling of plate deformation and faulting”. In: Computers & Geosciences 25.4 (1999), pp. 383–394.
Peter Bird and Xianghong Kong. “Computer simulations of California tectonics confirm very low strength of major faults”. In: Geological Society of America Bulletin 106.2 (1994), pp. 159–174. doi: 10.1130/0016-7606(1994)106<0159:CSOCTC>2.3.CO;2.
Peter Bird and Zhen Liu. “Global finite-element model makes a small contribution to intraplate seismic hazard estimation”. In: Bulletin of the Seismological Society of America 89.6 (1999), pp. 1642–1647. doi: 10.1785/BSSA0890061642.
I.F. Blanco-Quintero, T.V. Gerya, A. Garcia-Casco, and A. Castro. “Subduction of young oceanic plates: A numerical study with application to aborted thermal-chemical plumes”. In: Geochem. Geophys. Geosyst. 12.10 (2011). doi: 10.1029/2011GC003717.
B. Blankenbach et al. “A benchmark comparison for mantle convection codes”. In: Geophy. J. Int. 98 (1989), pp. 23–38. doi: 10.1111/j.1365-246X.1989.tb05511.x.
Irina Blinova, Ilya Makeev, and Igor Popov. “Benchmark solutions for stokes flows in cylindrical and spherical geometry”. In: Bulletin of the Transilvania University of Brasov. Mathematics, Informatics, Physics. Series III 9.1 (2016), p. 11. doi: xxxx.
AM Bobrov and AA Baranov. “Thermochemical Mantle Convection with Drifting Deformable Continents: Main Features of Supercontinent Cycle”. In: Pure Appl. Geophys. (2019), pp. 1–21. doi: 10.1007/s00024-019-02164-w.
AM Bobrova and AA Baranov. “The mantle convection model with non-Newtonian rheology and phase transitions: The flow structure and stress fields”. In: Izvestiya, Physics of the Solid Earth 52.1 (2016), pp. 129–143. doi: 10.1134/S1069351316010031.
M Bocher, Nicolas Coltice, Alexandre Fournier, and Paul J Tackley. “A sequential data assimilation approach for the joint reconstruction of mantle convection and surface tectonics”. In: Geophy. J. Int. 204.1 (2016), pp. 200–214.
Marie Bocher, Alexandre Fournier, and Nicolas Coltice. “Ensemble Kalman filter for the reconstruction of the Earth’s mantle circulation”. In: Nonlinear Processes in Geophysics 25.1 (2018), pp. 99–123.
Ömer Bodur et al. “Crustal flow driving twin domes exhumation and low-angle normal faulting in the Menderes Massif of western Anatolia”. In: Earth Planet. Sci. Lett. 619 (2023), p. 118309. doi: 10.1016/j.epsl.2023.118309.
Ömer F Bodur and Nicolas Flament. “Kimberlite magmatism fed by upwelling above mobile basal mantle structures”. In: Nature Geoscience (2023), pp. 1–7. doi: 10.1038/s41561- 023-01181-8.
Ömer F Bodur and Patrice F Rey. “The impact of rheological uncertainty on dynamic topography predictions”. In: Solid Earth 10.6 (2019), pp. 2167–2178. doi: 10.5194/se- 10-2167-2019.
Arcangela Bollino, Alessandro Regorda, Roberto Sabadini, and Anna Maria Marotta. “From rifting to oceanization in the Gulf of Aden: Insights from 2D numerical models”. In: Tectonophysics 838 (2022), p. 229483. doi: 10.1016/j.tecto.2022.229483.
Daniela Paz Bolrăo et al. “Timescales of chemical equilibrium between the convecting solid mantle and over-/underlying magma oceans”. In: Solid Earth Discussions (2020), pp. 1–22. doi: 10.5194/se-2020-49.
M.-A. Bonnardot, R. Hassani, and E. Tric. “Numerical modelling of lithosphere-asthenosphere interaction in a subduction zone”. In: Earth Planet. Sci. Lett. 272 (2008), pp. 698–708. doi: 10.1016/j.epsl.2008.06.009.
M.-A. Bonnardot, R. Hassani, E. Tric, E. Ruellan, and M. Regnier. “Effect of margin curvature on plate deformation in a 3-D numerical model of subduction zones”. In: Geophy. J. Int. 173 (2008), pp. 1084–1094. doi: 10.1111/j.1365-246X.2008.03752.x.
P.D. Bons, D. Koehn, and M.W. Jessell, eds. Microdynamics Simulation. Lecture Notes in Earth Sciences. Springer, 2008.
Paul D Bons, TD Barr, and CE Ten Brink. “The development of δ-clasts in non-linear viscous materials: a numerical approach”. In: Tectonophysics 270.1-2 (1997), pp. 29–41. doi: 10.1016/S0040-1951(96)00174-6.
Kittiphon Boonma, Daniel Garca-Castellanos, Ivone Jiménez-Munt, and Taras Gerya. “Thermomechanical modelling of lithospheric slab tearing and its topographic response”. In: Frontiers in Earth Science 11 (2023), p. 1095229. doi: 10.3389/feart.2023.1095229.
Xavier Borgeat and Paul J Tackley. “Hadean/Eoarchean tectonics and mantle mixing induced by impacts: a three-dimensional study”. In: Progress in Earth and Planetary Science 9.1 (2022), pp. 1–19. doi: 10.1186/s40645-022-00497-0.
F Boschetti and Louis Moresi. “Interactive inversion in geosciences”. In: Geophysics 66.4 (2001), pp. 1226–1234. doi: 10.1190/1.1487069.
Lapo Boschi, Claudio Faccenna, and TW Becker. “Mantle structure and dynamic topography in the Mediterranean Basin”. In: Geophys. Res. Lett. 37.20 (2010). doi: 10.1029/ 2010GL045001.
Andrea B Bossmann and Peter E van Keken. “Dynamics of plumes in a compressible mantle with phase changes: Implications for phase boundary topography”. In: Phys. Earth. Planet. Inter. 224 (2013), pp. 21–31. doi: 10.1016/j.pepi.2013.09.002.
A.D. Bottrill, J. van Hunen, and M.B. Allen. “Insight into collision zone dynamics from topography: numerical modelling results and observations”. In: Solid Earth 3 (2012), pp. 387–399. doi: 10.5194/se-3-387-2012.
P. Bouilhol, V. Magni, J. van Hunen, and L. Kaislaniemi. “A numerical approach to melting in warm subduction zones”. In: Earth Planet. Sci. Lett. 411 (2015), pp. 37–44.
D.J. Bower, M. Gurnis, and N. Flament. “Assimilating lithosphere and slab history in 4-D Earth models”. In: Phys. Earth. Planet. Inter. 238 (2015), pp. 8–22. doi: 10.1016/j. pepi.2014.10.013.
D.J. Bower, M. Gurnis, and M. Seton. “Lower mantle structure from paleogeographically constrained dynamic Earth models”. In: Geochem. Geophys. Geosyst. 14.1 (2012), pp. 44–63. doi: 10.1029/2012GC004267.
D.J. Bower, M. Gurnis, and D. Sun. “Dynamic origins of seismic wavespeed variation in D””. In: Phys. Earth. Planet. Inter. 214 (2013), pp. 74–86. doi: 10.1016/j.pepi.2012.10.004.
Dan J Bower, Michael Gurnis, Jennifer M Jackson, and Wolfgang Sturhahn. “Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase”. In: Geophys. Res. Lett. 36.10 (2009). doi: 10.1029/2009GL037706.
Dan J Bower, June K Wicks, Michael Gurnis, and Jennifer M Jackson. “A geodynamic and mineral physics model of a solid-state ultralow-velocity zone”. In: Earth Planet. Sci. Lett. 303.3-4 (2011), pp. 193–202. doi: 10.1016/j.epsl.2010.12.035.
Andrew M Bradley. PDE-constrained optimization and the adjoint method. Tech. rep. Technical Report. Stanford University, 2013. doi: xxxx.
J.H. Bramble, J.E. Pasciak, and A.T. Vassilev. “Analysis of the inexact Uzawa algorithm for saddle point problems”. In: SIAM J. Numer. Anal. 34 (1997), pp. 1072–1092.
J.P. Brandenburg, E.H. Hauri, P.E. van Keken, and C.J. Ballentine. “A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects”. In: Earth Planet. Sci. Lett. 276 (2008), pp. 1–13. doi: 10.1016/ j.epsl.2008.08.027.
J.P. Brandenburg and P.E. van Keken. “Deep storage of oceanic crust in a vigorously convecting mantle”. In: J. Geophys. Res.: Solid Earth 112.B06403 (2007).
J.P. Brandenburg and P.E. van Keken. “Methods for thermochemical convection in Earth’s mantle with force-balanced plates”. In: Geochem. Geophys. Geosyst. 8.11 (2007).
J.M. Branlund, K. Regenauer-Lieb, and D.A. Yuen. “Weak zone formation for initiating subduction from thermo-mechanical feedback of low-temperature plasticity”. In: Earth Planet. Sci. Lett. 190 (2001), pp. 237–250.
J. Braun, C. Thieulot, P. Fullsack, M. DeKool, and R.S. Huismans. “DOUAR: a new three-dimensional creeping flow model for the solution of geological problems”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 76–91. doi: 10.1016/j.pepi.2008.05.003.
J. Braun and P. Yamato. “Structural evolution of a three-dimensional, finite-width crustal wedge”. In: Tectonophysics 484 (2010), pp. 181–192. doi: 10.1016/j.tecto.2009.08. 032.
Jean Braun and Malcolm Sambridge. “A numerical method for solving partial differential equations on highly irregular evolving grids”. In: Nature 376.6542 (1995), p. 655. doi: 10.1038/376655a0.
Jean Braun and Malcolm Sambridge. “Dynamical Lagrangian Remeshing (DLR): a new algorithm for solving large strain deformation problems and its application to fault-propagation folding”. In: Earth Planet. Sci. Lett. 124.1-4 (1994), pp. 211–220. doi: 10.1016/0012-821X(94)00093-X.
E. Bredow and B. Steinberger. “Variable Melt Production Rate of the Kerguelen HotSpot Due To Long-Term Plume-Ridge Interaction”. In: Geophys. Res. Lett. 45.1 (2018), pp. 126–136. doi: 10.1002/2017GL075822.
E. Bredow, B. Steinberger, R. Gassmöller, and J. Dannberg. “How plume-ridge interaction shapes the crustal thickness pattern of the Réunion hotspot track”. In: Geochem. Geophys. Geosyst. (2017). doi: 10.1002/2017GC006875.
Eva Bredow and Bernhard Steinberger. “Mantle Convection and Possible Mantle Plumes beneath Antarctica - Insights from Geodynamic Models and Implications for Topography”. In: Geological Society, London, Memoirs 56 (2021). doi: 10.1144/M56-2020-2.
Franco Brezzi, Gianmarco Manzini, Donatella Marini, Paola Pietra, and Alessandro Russo. “Discontinuous Galerkin approximations for elliptic problems”. In: Numerical Methods for Partial Differential Equations: An International Journal 16.4 (2000), pp. 365–378.
Arthur Briaud, Roberto Agrusta, Claudio Faccenna, Francesca Funiciello, and Jeroen van Hunen. “Topographic fingerprint of deep mantle subduction”. In: J. Geophys. Res.: Solid Earth 125 (2020), e2019JB017962. doi: 10.1029/2019JB017962.
William L Briggs, Steve F McCormick, et al. A multigrid tutorial. Vol. 72. Siam, 2000.
S Brizzi et al. “The role of sediment accretion and buoyancy on subduction dynamics and geometry”. In: Geophys. Res. Lett. 48.20 (2021), e2021GL096266. doi: 10.1029/ 2021GL096266.
Silvia Brizzi, Iris van Zelst, Francesca Funiciello, Fabio Corbi, and Ylona van Dinther. “How sediment thickness influences subduction dynamics and seismicity”. In: J. Geophys. Res.: Solid Earth 125.8 (2020), e2019JB018964. doi: 10.1029/2019JB018964.
Hamish Brown, Lorenzo Colli, and Hans-Peter Bunge. “Asthenospheric flow through the Izanagi-Pacific slab window and its influence on dynamic topography and intraplate volcanism in East Asia”. In: Frontiers in Earth Science 10 (2022), p. 889907. doi: 10. 3389/feart.2022.889907.
S. Brune. “Evolution of stress and fault patterns in oblique rift systems: 3-D numerical lithospheric-scale experiments from rift to breakup”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 3392–3415. doi: 10.1002/2014GC005446.
S. Brune and J. Autin. “The rift to break-up evolution of the Gulf of Aden: Insights from 3D numerical lithospheric-scale modelling”. In: Tectonophysics 607 (2013), pp. 65–79. doi: 10.1016/j.tecto.2013.06.029.
S. Brune, A.A. Popov, and S. Sobolev. “Modeling suggests that oblique extension facilitates rifting and continental break-up”. In: J. Geophys. Res.: Solid Earth 117.B08402 (2012), 10.1029/2011JB008860. doi: 10.1029/2011JB008860.
S. Brune, A.A. Popov, and S. Sobolev. “Quantifying the thermo-mechanical impact of plume arrival on continental break-up”. In: Tectonophysics 604 (2013), pp. 51–59. doi: 10.1016/j.tecto.2013.02.009.
Sascha Brune, Giacomo Corti, and Giorgio Ranalli. “Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression”. In: Tectonics 36.9 (2017), pp. 1767–1786.
Sascha Brune, Christian Heine, Marta Pérez-Gussinyé, and Stephan V Sobolev. “Rift migration explains continental margin asymmetry and crustal hyper-extension”. In: Nature Communications 5.1 (2014), pp. 1–9. doi: 10.1038/ncomms5014.
H.H. Bui, R. Fukugawa, K. Sako, and S. Ohno. “Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model”. In: Int. J. Numer. Anal. Geomech. 32.12 (2008), pp. 1537–1570.
Ha H Bui, K Sako, and R Fukagawa. “Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (SPH) method”. In: Journal of Terramechanics 44.5 (2007), pp. 339–346. doi: 10.1016/j.jterra.2007.10.003.
S. Buiter et al. “The numerical sandbox: comparison of model results for a shortening and an extension experiment”. In: Analogue and Numerical Modelling of Crustal-Scale Processes. Geological Society, London. Special Publications 253 (2006), pp. 29–64.
S.J.H. Buiter. “A review of brittle compressional wedge models”. In: Tectonophysics 530 (2012), pp. 1–17. doi: 10.1016/j.tecto.2011.12.018.
S.J.H. Buiter, R. Govers, and M.J.R. Wortel. “A modelling study of vertical surface displacements at convergent plate margins”. In: Geophy. J. Int. 147 (2001), pp. 415–427. doi: 10.1046/j.1365-246X.2001.00545.x.
S.J.H. Buiter, R. Govers, and M.J.R. Wortel. “Two-dimensional simulations of surface deformation caused by slab detachment”. In: Tectonophysics 354 (2002), pp. 195–210. doi: 10.1016/S0040-1951(02)00336-0.
S.J.H. Buiter, R.S. Huismans, and C. Beaumont. “Dissipation analysis as a guide to mode selection during crustal extension and implications for the styles of sedimentary basins”. In: J. Geophys. Res.: Solid Earth 113.B06406 (2008), B06406. doi: 10.1029/2007JB005272.
S.J.H. Buiter and O.A. Pfiffner. “Numerical models of the inversion of half-graben basins”. In: Tectonics 22 (2003). doi: 10.1029/2002TC001417.
S.J.H. Buiter, O.A. Pfiffner, and C. Beaumont. “Inversion of extensional sedimentary basins: A numerical evaluation of the localisation of shortening”. In: Earth Planet. Sci. Lett. 288 (2009), pp. 492–504. doi: 10.1016/j.epsl.2009.10.011.
S.J.H. Buiter et al. “Benchmarking numerical models of brittle thrust wedges”. In: Journal of Structural Geology 92 (2016), pp. 140–177. doi: 10.1016/j.jsg.2016.03.003.
Susanne JH Buiter and Trond H Torsvik. “Horizontal movements in the eastern Barents Sea constrained by numerical models and plate reconstructions”. In: Geophy. J. Int. 171.3 (2007), pp. 1376–1389. doi: 10.1111/j.1365-246X.2007.03595.x.
A.L. Bull, M. Domeier, and T.H. Torsvik. “The effect of plate motion history on the longevity of deep mantle heterogeneities”. In: Earth Planet. Sci. Lett. 401 (2014), pp. 172–182. doi: 10.1016/j.epsl.2014.06.008.
A.L. Bull, A.K. McNamara, T.W. Becker, and J. Ritsema. “Global scale models of the mantle flow field predicted by synthetic tomography models”. In: Phys. Earth. Planet. Inter. 182 (2010), pp. 129–138. doi: 10.1016/j.pepi.2010.03.004.
Abigail L Bull, Allen K McNamara, and Jeroen Ritsema. “Synthetic tomography of plume clusters and thermochemical piles”. In: Earth Planet. Sci. Lett. 278.3-4 (2009), pp. 152–162. doi: 10.1016/j.epsl.2008.11.018.
H.-P. Bunge and J.H. Davies. “Tomographic images of a mantle circulation model”. In: Geophys. Res. Lett. 28.1 (2001), pp. 77–80. doi: 10.1029/2000GL011804.
H.-P. Bunge, Y. Ricard, and J. Matas. “Non-adiabaticity in mantle convection”. In: Geophys. Res. Lett. 28.5 (2001), pp. 879–882. doi: 10.1029/2000GL011864.
H.-P. Bunge, M. Richards, C. Lithgow-Bertelloni, J.R. Baumgardner, S.P. Grand, and B. Romanowicz. “Time scales and heterogeneous structure in geodynamic Earth models”. In: Science 280 (1998), pp. 91–95.
H.-P. Bunge, M.A. Richards, and J.R. Baumgardner. “A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode, and endothermic phase change”. In: J. Geophys. Res.: Solid Earth 102.B6 (1997), pp. 11, 991–12, 007. doi: 10.1029/96JB03806.
H.-P. Bunge, M.A. Richards, and J.R. Baumgardner. “Mantle-circulation models with sequential data assimilation: Inferring present-day mantle structure from plate-motion histories”. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 360.1800 (2002), pp. 2545–2567. doi: 10.1098/rsta.2002.1080.
Hans-Peter Bunge and John R Baumgardner. “Mantle convection modeling on parallel virtual machines”. In: Computers in physics 9.2 (1995), pp. 207–215. doi: 10.1063/1. 168525.
Hans-Peter Bunge, CR Hagelberg, and BJ Travis. “Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography”. In: Geophy. J. Int. 152.2 (2003), pp. 280–301. doi: 10.1046/j.1365-246X.2003.01823.x.
Hans-Peter Bunge and Mark A Richards. “The origin of large scale structure in mantle convection: effects of plate motions and viscosity stratification”. In: Geophys. Res. Lett. 23.21 (1996), pp. 2987–2990.
Steffi Burchardt, Hemin Koyi, and Harro Schmeling. “The influence of viscosity contrast on the strain pattern and magnitude within and around dense blocks sinking through Newtonian rock salt”. In: Journal of Structural Geology 35 (2012), pp. 102–116. doi: 10.1016/j. jsg.2011.07.007.
Steffi Burchardt, Hemin Koyi, Harro Schmeling, and Lukas Fuchs. “Sinking of anhydrite blocks within a Newtonian salt diapir: modelling the influence of block aspect ratio and salt stratification”. In: Geophy. J. Int. 188.3 (2012), pp. 763–778. doi: 10.1111/j.1365- 246X.2011.05290.x.
J.-P. Burg and T.V. Gerya. “Modelling intrusion of mafic and ultramafic magma into the continental crust: numerical methodology and results”. In: Boll. Soc. Geol. It. 127.2 (2008). doi: xxxx.
J.-P. Burg and T.V. Gerya. “The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps”. In: J. Metamorphic Geology 23 (2005), pp. 75–95. doi: 10.1111/j.1525- 1314.2005.00563.x.
J.-P. Burg et al. “Translithospheric Mantle Diapirism: Geological Evidence and Numerical Modelling of the Kondyor Zoned Ultramafic Complex (Russian Far-East)”. In: Journal of Petrology 50.2 (2009). doi: 10.1093/petrology/egn083.
Peter M Burgess, Michael Gurnis, and Louis Moresi. “Formation of sequences in the cratonic interior of North America by interaction between mantle, eustatic, and stratigraphic processes”. In: Geological Society of America Bulletin 109.12 (1997), pp. 1515–1535. doi: 10.1130/0016-7606(1997)109<1515:FOSITC>2.3.CO;2.
PM Burgess and LN Moresi. “Modelling rates and distribution of subsidence due to dynamic topography over subducting slabs: is it possible to identify dynamic topography from ancient strata?” In: Basin Research 11.4 (1999), pp. 305–314. doi: 10.1046/j.1365-2117.1999. 00102.x.
E.R. Burkett and M.I. Billen. “Dynamics and implications of slab detachment due to ridge-trench collision”. In: J. Geophys. Res.: Solid Earth 114.B12402 (2009). doi: 10. 1029/2009JB006402.
E.R. Burkett and M.I. Billen. “Three-dimensionality of slab detachment due to ridge-trench collision: Laterally simultaneous boudinage versus tear propagation”. In: Geochem. Geophys. Geosyst. 11.11 (2010). doi: 10.1029/2010GC003286.
Erin Burkett and Michael Gurnis. “Stalled slab dynamics”. In: Lithosphere 5.1 (2013), pp. 92–97. doi: 10.1130/L249.1.
E. Burov and S. Cloetingh. “Plume-like upper mantle instabilities drive subduction initiation”. In: Geophys. Res. Lett. 37.L03309 (2010). doi: 10.1029/2009GL041535.
E. Burov, T. Francois, P. Yamato, and S. Wolf. “Mechanisms of continental subduction and exhumation of HP and UHP rocks”. In: Gondwana Research 25.2 (2014), pp. 464–493. doi: 10.1016/j.gr.2012.09.010.
E. Burov and T. Gerya. “Asymmetric three-dimensional topography over mantle plumes”. In: Nature 513 (2014). doi: 10.1038/nature13703.
E. Burov and L. Guillou-Frottier. “The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere”. In: Geophy. J. Int. 161 (2005), pp. 469–490. doi: 10.1111/j.1365-246X.2005.02588.x.
E. Burov, L. Jolivet, L. Le Pourhiet, and A. Poliakov. “A thermomechanical model of exhumation of high pressure (HP) and ultra-high pressure (UHP) metamorphic rocks in Alpine-type collision belts”. In: Tectonophysics 342 (2001), pp. 113–136. doi: 10.1016/ S0040-1951(01)00158-5.
E. Burov and A. Poliakov. “Erosion and rheology controls on synrift and postrift evolution: Verifying old and new ideas using a fully coupled numerical model”. In: J. Geophys. Res.: Solid Earth 106.B8 (2001), pp. 16, 461–16, 481. doi: 10.1029/2001JB000433.
E. Burov and G. Toussaint. “Surface processes and tectonics: Forcing of continental subduction and deep processes”. In: Global and Planetary Change 58 (2007), pp. 141–164.
E. Burov and P. Yamato. “Continental plate collision, P-T-t-z conditions and unstable vs. stable plate dynamics: Insights from thermo-mechanical modelling”. In: Lithos 103.1-2 (2008), pp. 178–204. doi: 10.1016/j.lithos.2007.09.014.
E. Burov et al. “Rheological and geodynamic controls on the mechanisms of subduction and HP/UHP exhumation of crustal rocks during continental collision: Insights from numerical models”. In: Tectonophysics 25.2 (2014), pp. 464–493. doi: 10.1016/j.tecto.2014.04. 033.
EB Burov, AB Watts, et al. “The long-term strength of continental lithosphere: “jelly sandwich” or “crčme brűlée”?” In: GSA today 16.1 (2006), p. 4. doi: 10.1130/1052- 5173(2006)016<4:TLTSOC>2.0.CO;2.
Evgueni Burov and Sierd Cloetingh. “Controls of mantle plumes and lithospheric folding on modes of intraplate continental tectonics: differences and similarities”. In: Geophy. J. Int. 178.3 (2009), pp. 1691–1722. doi: 10.1111/j.1365-246X.2009.04238.x.
C. Burstedde et al. “Large-scale adaptive mantle convection simulation”. In: Geophy. J. Int. 192 (2013), pp. 889–906. doi: 10.1093/gji/ggs070.
C. Burstedde et al. “Scalable Adaptive Mantle Convection Simulation on Petascale Supercomputers”. In: ACM/IEEE SC Conference Series, 2008 (2008).
J.P. Butler and C. Beaumont. “Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases”. In: Earth Planet. Sci. Lett. 463 (2017), pp. 101–117. doi: 10.1016/j.epsl.2017.01.025.
J.P. Butler, C. Beaumont, and R.A. Jamieson. “Paradigm lost: Buoyancy thwarted by the strength of the Western Gneiss Region (ultra)high-pressure terrane, Norway”. In: Lithosphere (2015). doi: 10.1130/L426.1.
J.P. Butler, C. Beaumont, and R.A. Jamieson. “The Alps 1: A working geodynamic model for burial and exhumation of (ultra)high-pressure rocks in Alpine-type orogens”. In: Earth Planet. Sci. Lett. 337-378 (2013), pp. 114–131. doi: 10.1016/j.epsl.2013.06.039.
J.P. Butler, C. Beaumont, and R.A. Jamieson. “The Alps 2: Controls on crustal subduction and (ultra)high-pressure rock exhumation in Alpine-type orogens”. In: J. Geophys. Res.: Solid Earth 119.7 (2014), pp. 5987–6022. doi: 10.1002/2013JB010799.
J.P. Butler, C. Veaumont, and R.A. Jamieson. “Crustal emplacement of exhuming (ultra)high-pressure rocks: Will that be pro- or retro-side ?” In: Geology 39 (2011), pp. 635–638. doi: 10.1130/G32166.1.
N.P. Butterworth et al. “Geological, tomographic, kinematic and geodynamic constraints on the dynamics of sinking slabs”. In: Journal of Geodynamics 73 (2014), pp. 1–13. doi: 10.1016/j.jog.2013.10.006.
NP Butterworth, L Quevedo, G Morra, and RD Müller. “Influence of overriding plate geometry and rheology on subduction”. In: Geochem. Geophys. Geosyst. 13.6 (2012). doi: 10.1029/2011GC003968.
O Čadek and AP van den Berg. “Radial profiles of temperature and viscosity in the Earth’s mantle inferred from the geoid and lateral seismic structure”. In: Earth Planet. Sci. Lett. 164.3-4 (1998), pp. 607–615. doi: 10.1016/S0012-821X(98)00244-1.
Beatrice Cailleau and Onno Oncken. “Past forearc deformation in Nicaragua and coupling at the megathrust interface: Evidence for subduction retreat?” In: Geochem. Geophys. Geosyst. 9.3 (2008). doi: 10.1029/2007GC001754.
Fabio Cammarano, Paul Tackley, and Lapo Boschi. “Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermochemical models”. In: Geophy. J. Int. 187.3 (2011), pp. 1301–1318. doi: 10.1111/ j.1365-246X.2011.05223.x.
Lorenzo G Candioti, Thibault Duretz, Evangelos Moulas, and Stefan M Schmalholz. “Buoyancy versus shear forces in building orogenic wedges”. In: Solid Earth 12.8 (2021), pp. 1749–1775. doi: 10.5194/se-12-1749-2021.
Lorenzo G Candioti, Thibault Duretz, and Stefan M Schmalholz. “Horizontal force required for subduction initiation at passive margins with constraints from slab detachment”. In: Frontiers in Earth Science 10 (2022), p. 785418. doi: 10.3389/feart.2022.785418.
Lorenzo G Candioti, Stefan M Schmalholz, and Thibault Duretz. “Impact of upper mantle convection on lithosphere hyperextension and subsequent horizontally forced subduction initiation”. In: Solid Earth 11.6 (2020), pp. 2327–2357. doi: 10.5194/se-11-2327-2020.
Wenrong Cao, Boris JP Kaus, and Scott Paterson. “Intrusion of granitic magma into the continental crust facilitated by magma pulsing and dike-diapir interactions: Numerical simulations”. In: Tectonics 35.6 (2016), pp. 1575–1594.
Xianzhi Cao, Nicolas Flament, Ömer F Bodur, and R Dietmar Müller. “The evolution of basal mantle structure in response to supercontinent aggregation and dispersal”. In: Scientific Reports 11.1 (2021), pp. 1–16. doi: 10.1038/s41598-021-02359-z.
Xianzhi Cao, Nicolas Flament, and R Dietmar Müller. “Coupled evolution of plate tectonics and basal mantle structure”. In: Geochem. Geophys. Geosyst. 22 (2021), e2020GC009244. doi: 10.1029/2020GC009244.
W. Capella, W. Spakman, D.J.J. van Hinsbergen, M.V. Chertova, and W. Krijgsman. “Mantle resistance against Gibraltar slab dragging as a key cause of the Messinian Salinity Crisis”. In: Terra Nova (2019). doi: 10.1111/ter.12442.
F.A. Capitanio and M. Faccenda. “Complex mantle flow around heterogeneous subducting oceanic plates”. In: Earth Planet. Sci. Lett. 353-354 (2012), pp. 29–37.
F.A. Capitanio, C. Faccenna, S. Zlotnik, and D.R. Stegman. “Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline”. In: Nature 480 (2011). doi: 10.1038/nature10596.
F.A. Capitanio and A. Replumaz. “Subduction and slab breakoff controls on Asian indentation tectonics and Himalayan western syntaxis formation ”. In: Geochem. Geophys. Geosyst. 14.9 (2013). doi: 10.1002/ggge.20171.
F.A. Capitanio, D.R. Stegman, L.N. Moresi, and W. Sharples. “Upper plate controls on deep subduction, trench migrations and deformations at convergent margins”. In: Tectonophysics 483 (2010), pp. 80–92. doi: 10.1016/j.tecto.2009.08.020.
F.A. Capitanio, S. Zlotnik, and C. Faccenna. “Controls on subduction reorganization in the Hellenic margin, eastern Mediterranean”. In: Geophys. Res. Lett. 37.L14309 (2010).
FA Capitanio, G Morra, and S Goes. “Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation”. In: Earth Planet. Sci. Lett. 262.1-2 (2007), pp. 284–297. doi: 10.1016/j.epsl.2007.07.039.
FA Capitanio, G Morra, S Goes, RF Weinberg, and L Moresi. “India–Asia convergence driven by the subduction of the Greater Indian continent”. In: Nature Geoscience 3.2 (2010), p. 136. doi: 10.1038/NGEO725.
FA Capitanio, O Nebel, PA Cawood, RF Weinberg, and P Chowdhury. “Reconciling thermal regimes and tectonics of the early Earth”. In: Geology 47.10 (2019), pp. 923–927. doi: 10.1130/G46239.1.
FA Capitanio, O Nebel, PA Cawood, RF Weinberg, and F Clos. “Lithosphere differentiation in the early Earth controls Archean tectonics”. In: Earth Planet. Sci. Lett. 525 (2019), p. 115755. doi: 10.1016/j.epsl.2019.115755.
FA Capitanio, A Replumaz, and N Riel. “Reconciling subduction dynamics during T ethys closure with large-scale Asian tectonics: Insights from numerical modeling”. In: Geochem. Geophys. Geosyst. 16.3 (2015), pp. 962–982. doi: 10.1002/2014GC005660.
Fabio A Capitanio. “Current deformation in the Tibetan Plateau: A stress gauge in the India-Asia collision tectonics”. In: Geochem. Geophys. Geosyst. 21.2 (2020), e2019GC008649. doi: 10.1029/2019GC008649.
Fabio A Capitanio. “The dynamics of extrusion tectonics: Insights from numerical modeling”. In: Tectonics 33.12 (2014), pp. 2361–2381. doi: 10.1002/2014TC003688.
Fabio A Capitanio, Madeleine Kerr, Dave R Stegman, and Suzanne E Smrekar. “Ishtar Terra highlands on Venus raised by craton-like formation mechanisms”. In: Nature Geoscience (2024), pp. 1–7. doi: 10.1038/s41561-024-01485-3.
Fabio A Capitanio, Oliver Nebel, and Peter A Cawood. “Thermochemical lithosphere differentiation and the origin of cratonic mantle”. In: Nature 588.7836 (2020), pp. 89–94. doi: 10.1038/s41586-020-2976-3.
Fabio A Capitanio, Oliver Nebel, Jean-François Moyen, and Peter A Cawood. “Craton Formation in Early Earth Mantle Convection Regimes”. In: J. Geophys. Res.: Solid Earth 127.4 (2022), e2021JB023911. doi: 10.1029/2021JB023911.
Alberto Carballo, Manel Fernandez, Montserrat Torne, Ivone Jiménez-Munt, and Antonio Villaseńor. “Thermal and petrophysical characterization of the lithospheric mantle along the northeastern Iberia geo-transect”. In: Gondwana Research 27.4 (2015), pp. 1430–1445. doi: 10.1016/j.gr.2013.12.012.
Alberto Carballo et al. “From the North-Iberian Margin to the Alboran Basin: A lithosphere geo-transect across the Iberian Plate”. In: Tectonophysics 663 (2015), pp. 399–418. doi: 10.1016/j.tecto.2015.07.009.
R Carluccio, B Kaus, FA Capitanio, and LN Moresi. “The impact of a very weak and thin upper asthenosphere on subduction motions”. In: Geophys. Res. Lett. 46 (2019), pp. 11, 893–11, 905. doi: 10.1029/2019GL085212.
E Carminati, AM Negredo, JL Valera, and Carlo Doglioni. “Subduction-related intermediate-depth and deep seismicity in Italy: insights from thermal and rheological modelling”. In: Phys. Earth. Planet. Inter. 149.1-2 (2005), pp. 65–79. doi: 10.1016/j. pepi.2004.04.006.
J. Carrero, B. Cockburn, and D. Schötzau. “Hybridized globally divergence-free LDG methods. Part I: The Stokes problem”. In: Mathematics of Computation 75.254 (2005), pp. 533–563.
Teodoro Cassola. “Mechanics of forearc basins”. PhD thesis. ETH-Zich, 2013.
P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau. “An a priori error analysis of the local discontinuous Galerkin method for elliptic problems”. In: SIAM J. Numer. Anal. 38 (2000), pp. 1676–1706.
P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau. “Local discontinuous Galerkin methods for elliptic problems”. In: Commun. Numer. Meth. Engng 18 (2002), pp. 69–75.
A. Castro and T.V. Gerya. “Magmatic implications of mantle wedge plumes: Experimental study”. In: Lithos 103 (2008), pp. 138–148. doi: 10.1016/j.lithos.2007.09.012.
Antonio Castro, Katharina Vogt, and Taras Gerya. “Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: a test of Taylor’s andesite model”. In: Gondwana Research 23.4 (2013), pp. 1554–1566. doi: 10.1016/j.gr.2012.07.004.
N.G. Cerpa, R. Araya, M. Gerbault, and R. Hassani. “Relationship between slab dip and topography segmentation in an oblique subduction zone: Insights from numerical modeling”. In: Geophys. Res. Lett. 41 (2015), 10.1002/2015GL064047.
N.G. Cerpa, B. Guillaume, and J.Martinod. “The interplay between overriding plate kinematics, slab dip and tectonics”. In: Geophy. J. Int. 215 (2018), pp. 1789–1802. doi: 10.1093/gji/ggy365.
N.G. Cerpa, R. Hassani, M. Gerbault, and J.-H. Prévost. “A fictitious domain method for lithosphere-asthenosphere interaction: Application to periodic slab folding in the upper mantle”. In: Geochem. Geophys. Geosyst. 15.5 (2014), pp. 1852–1877. doi: 10.1002/ 2014GC005241.
N.G. Cerpa, I. Wada, and C.R. Wilson. “Effects of fluid influx, fluid viscosity, and fluid density on fluid migration in the mantle wedge and their implications for hydrous melting”. In: Geosphere 15.1 (2019), pp. 1–23. doi: 10.1130/GES01660.1.
N.G. Cerpa, I. Wada, and C.R. Wilson. “Fluid migration in the mantle wedge: Influence of mineral grain size and mantle compaction”. In: J. Geophys. Res.: Solid Earth 122 (2017), pp. 6247–6268. doi: 10.1002/2017JB014046.
Nestor G Cerpa and Diane Arcay. “Overriding Plate Velocity Control on Surface Topography in 2-D Models of Subduction Zones”. In: Geochem. Geophys. Geosyst. 21.4 (2020), e2019GC008900. doi: 10.1029/2019GC008900.
Nestor G Cerpa, Karin Sigloch, Fanny Garel, Arnauld Heuret, D Rhodri Davies, and Mitchell G Mihalynuk. “The effect of a weak asthenospheric layer on surface kinematics, subduction dynamics and slab morphology in the lower mantle”. In: J. Geophys. Res.: Solid Earth 127 (2022), e2022JB024494. doi: 10.1029/2022JB024494.
Nestor G Cerpa et al. “Caribbean Plate Boundaries Control on the Tectonic Duality in the Back-Arc of the Lesser Antilles Subduction Zone During the Eocene”. In: Tectonics 40.11 (2021), e2021TC006885. doi: 10.1029/2021TC006885.
NG Cerpa, D Arcay, and JA Padrón-Navarta. “Sea-level stability over geological time owing to limited deep subduction of hydrated mantle”. In: Nature Geoscience (2022), pp. 1–6. doi: 10.1038/s41561-022-00924-3.
Sung-Joon Chang, Ana MG Ferreira, and Manuele Faccenda. “Upper-and mid-mantle interaction between the Samoan plume and the Tonga–Kermadec slabs”. In: Nature Communications 7.1 (2016), pp. 1–9. doi: 10.1038/ncomms10799.
Guo Changsheng, Sun Pengchao, and Wei Dongping. “Geodynamical simulation of the effects of ridge subduction on the scale of the seismogenic zone south of Chile Triple Junction”. In: Acta Seismologica Sinica 45.3 (2023), pp. 1–17. doi: 10.11939/jass.20210192.
James B Chapman. “Diapiric relamination of the Orocopia Schist (southwestern US) during low-angle subduction”. In: Geology 49 (2021). doi: 10.1130/G48647.1.
J.-P. Chebab. “Solution of generalized Stokes problems using hierarchical methods and Incremental Unknowns”. In: Applied Numerical Mathematics 21 (1996), pp. 9–42.
A.I. Chemenda. “The formation of shear-band/fracture networks from a constitutive instability: Theory and numerical experiment”. In: J. Geophys. Res.: Solid Earth 112.B11404 (2007). doi: 10.1029/2007JB005026.
Z Chemia, H Schmeling, and H Koyi. “The effect of the salt viscosity on future evolution of the Gorleben salt diapir, Germany”. In: Tectonophysics 473.3-4 (2009), pp. 446–456. doi: 10.1016/j.tecto.2009.03.027.
Zurab Chemia, H Koyi, and H Schmeling. “Numerical modelling of rise and fall of a dense layer in salt diapirs”. In: Geophy. J. Int. 172.2 (2008), pp. 798–816. doi: 10.1111/j.1365- 246X.2007.03661.x.
Fangqin Chen, D Rhodri Davies, Saskia Goes, Lior Suchoy, and Stephan C Kramer. “How slab age and width combine to dictate the dynamics and evolution of subduction systems: A 3-D spherical study”. In: Geochem. Geophys. Geosyst. 23.11 (2022), e2022GC010597.
Fangqin Chen, D Rhodri Davies, Saskia Goes, Lior Suchoy, and Stephan C Kramer. “The role of slab remnants in modulating free subduction dynamics: A 3-D spherical numerical study”. In: Geochem. Geophys. Geosyst. 25.4 (2024), e2023GC011180. doi: 10.1029/ 2023GC011180.
Fangqin Chen, D.R. Davies, S. Goes, L. Suchoy, and S.C. Kramer. “Comparing the Dynamics of Free Subduction in Cartesian and Spherical Domains”. In: Geochem. Geophys. Geosyst. 23 (2022), e2022GC010757. doi: 10.1029/2022GC010757.
Jile Chen, Peimin Zhu, Yuefeng Yuan, and Guifan Chen. “Formation of the Tibetan Plateau during the India-Eurasia Convergence: Insight from 3-D Multi-Terrane Thermomechanical Modeling”. In: Journal of Earth Science 35.1 (2024), pp. 112–130. doi: 10.1007/s12583- 023-1931-0.
Lin Chen, Fabio A Capitanio, Lijun Liu, and Taras V Gerya. “Crustal rheology controls on the Tibetan plateau formation during India-Asia convergence”. In: Nature Communications 8.1 (2017), pp. 1–8. doi: 10.1038/ncomms15992.
Lin Chen, Taras Gerya, Zhongjie Zhang, Guizhi Zhu, Thibault Duretz, and Wolfgang R Jacoby. “Numerical modeling of eastern Tibetan-type margin: influences of surface processes, lithospheric structure and crustal rheology”. In: Gondwana Research 24.3-4 (2013), pp. 1091–1107. doi: 10.1016/j.gr.2013.01.003.
Lin Chen, Taras V Gerya, Zhong-Jie Zhang, Alan Aitken, Zhong-Hai Li, and Xiao-Feng Liang. “Formation mechanism of steep convergent intracontinental margins: Insights from numerical modeling”. In: Geophys. Res. Lett. 40.10 (2013), pp. 2000–2005. doi: 10.1002/ grl.50446.
Lin Chen, Lijun Liu, Fabio A Capitanio, Taras V Gerya, and Yang Li. “The role of pre-existing weak zones in the formation of the Himalaya and Tibetan plateau: 3-D thermomechanical modelling”. In: Geophy. J. Int. 221.3 (2020), pp. 1971–1983. doi: 10. 1093/gji/ggaa125.
Qizhi Chen et al. “Geodynamics of progressive growth of arcuate fold-and-thrust belts: Insights from numerical modeling of the NE margin of the Qinghai-Tibetan plateau”. In: Journal of Structural Geology 175 (2023), p. 104939. doi: 10.1016/j.jsg.2023.104939.
Shi Chen, Huai Zhang, David A Yuen, Shuxia Zhang, Jian Zhang, and Yaolin Shi. “Volume rendering visualization of 3D spherical mantle convection with an unstructured mesh”. In: Visual Geosciences 13.1 (2008), pp. 97–104.
Jian Cheng, Xiaodong Liu, Tiegang Liu, and Hong Luo. “A parallel, high-order direct discontinuous Galerkin method for the Navier-Stokes equations on 3D hybrid grids”. In: Communications in Computational Physics 21.5 (2017), pp. 1231–1257. doi: 10.4208/ cicp.OA-2016-0090.
Kar Wai Cheng, AB Rozel, GJ Golabek, HA Ballantyne, Martin Jutzi, and PJ Tackley. “Mars’s crustal and volcanic structure explained by southern giant impact and resulting mantle depletion”. In: Geophys. Res. Lett. 51.6 (2024), e2023GL105910. doi: 10.1029/ 2023GL105910.
Zihua Cheng, Fan Zhang, Jian Lin, Weiwei Ding, and Xubo Zhang. “Forearc spreading cessation and backarc basin evolution: Insights from Mariana subduction system and geodynamic modeling”. In: Tectonophysics 863 (2023), p. 229999. doi: 10.1016/j. tecto.2023.229999.
P. Chenin and C. Beaumont. “Influence of offset weak zones on the development of rift basins: Activation and abandonment during continental extension and breakup”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 1–23. doi: 10.1002/jgrb.50138.
P. Chenin, S.M. Schmalholz, G. Manatschal, and G.D. Karner. “Necking of the Lithosphere: A Reappraisal of Basic Concepts With Thermo-Mechanical Numerical Modeling”. In: J. Geophys. Res.: Solid Earth 123.6 (2018), pp. 5279–5299. doi: 10.1029/2017JB014155.
Pauline Chenin, Gianreto Manatschal, Alessandro Decarlis, Stefan M Schmalholz, Thibault Duretz, and Marco Beltrando. “Emersion of distal domains in advanced stages of continental rifting explained by asynchronous crust and mantle necking”. In: Geochem. Geophys. Geosyst. (2019). doi: 10.1029/2019GC008357.
Pauline Chenin, Stefan M Schmalholz, Gianreto Manatschal, and Thibault Duretz. “Impact of crust–mantle mechanical coupling on the topographic and thermal evolutions during the necking phase of ’magma-poor’ and ’sediment-starved’ rift systems: A numerical modeling study”. In: Tectonophysics (2020), p. 228472. doi: 10.1016/j.tecto.2020.228472.
Pauline Chenin et al. “Impact of mafic underplating and mantle depletion on subsequent rifting: a numerical modeling study”. In: Tectonics 38.7 (2019), pp. 2185–2207. doi: 10. 1029/2018TC005318.
M.V. Chertova, T. Geenen, A. van den Berg, and W. Spakman. “Using open sidewalls for modelling self-consistent lithosphere subduction dynamics”. In: Solid Earth 3 (2012), pp. 313–326. doi: 10.5194/se-3-313-2012.
M.V. Chertova, W. Spakman, T. Geenen, A.P. van den Berg, and D.J.J. van Hinsbergen. “Underpinning tectonic reconstructions of the western Mediterranean region with dynamic slab evolution from 3-D numerical modeling”. In: J. Geophys. Res.: Solid Earth 119 (2014), 10.1002/ 2014JB011150.
M.V. Chertova, W. Spakman, and B. Steinberger. “Mantle flow influence on subduction evolution”. In: Earth Planet. Sci. Lett. 489 (2018), pp. 258–266. doi: 10.1016/j.epsl. 2018.02.038.
MV Chertova, W Spakman, AP van den Berg, and DJJ van Hinsbergen. “Absolute plate motions and regional subduction evolution”. In: Geochem. Geophys. Geosyst. 15.10 (2014), pp. 3780–3792.
Jean Chéry, Mark D Zoback, and Riad Hassani. “An integrated mechanical model of the San Andreas fault in central and northern California”. In: J. Geophys. Res.: Solid Earth 106.B10 (2001), pp. 22051–22066. doi: 10.1029/2001JB000382.
Chikondi Chisenga, Folarin Kolawole, Tahiry Rajaonarison, Estella A Atekwana, Jianguo Yan, and Elisha M Shemang. “Localization of large intraplate earthquakes along faulted density-contrast boundaries: Insights from the 2017 Mw6. 5 Botswana earthquake”. In: Journal of African Earth Sciences 197 (2023), p. 104752. doi: 10.1016/j.jafrearsci. 2022.104752.
G. Choblet, O. Čadek, F. Couturier, and C. Dumoulin. “OEDIPUS: a new tool to study the dynamics of planetary interiors”. In: Geophy. J. Int. 170 (2007), pp. 9–30.
E. Choi and K.D. Petersen. “Making Coulomb angle-oriented shear bands in numerical tectonic models”. In: Tectonophysics 657 (2015), pp. 94–101. doi: 10.1016/j.tecto. 2015.06.026.
E. Choi, E. Tan, L.L. Lavier, and V.M. Calo. “DynEarthSol2D: An efficient unstructured finite element method to study long-term tectonic deformation”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 1–16. doi: 10.1002/jgrb.50148.
Eun-seo Choi and Michael Gurnis. “Thermally induced brittle deformation in oceanic lithosphere and the spacing of fracture zones”. In: Earth Planet. Sci. Lett. 269.1-2 (2008), pp. 259–270.
Eunseo Choi and W Roger Buck. “Constraints on the strength of faults from the geometry of rider blocks in continental and oceanic core complexes”. In: J. Geophys. Res.: Solid Earth 117.B4 (2012). doi: 10.1029/2011JB008741.
Eunseo Choi, W Roger Buck, Luc L Lavier, and Kenni Dinesen Petersen. “Using core complex geometry to constrain fault strength”. In: Geophys. Res. Lett. 40.15 (2013), pp. 3863–3867. doi: 10.1002/grl.50732.
Eunseo Choi, Luc Lavier, and Michael Gurnis. “Thermomechanics of mid-ocean ridge segmentation”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 374–386.
Eunseo Choi, Leonardo Seeber, Michael S Steckler, and Roger Buck. “One-sided transform basins and “inverted curtains”: Implications for releasing bends along strike-slip faults”. In: Tectonics 30.6 (2011).
Priyadarshi Chowdhury, Sumit Chakraborty, and Taras V Gerya. “Time can tell: Secular change in metamorphic timescales and the tectonic implications”. In: Gondwana Research 93 (2021), pp. 291–310. doi: 10.1016/j.gr.2021.02.003.
Priyadarshi Chowdhury, Sumit Chakraborty, Taras V Gerya, Peter A Cawood, and Fabio A Capitanio. “Peel-back controlled lithospheric convergence explains the secular transitions in Archean metamorphism and magmatism”. In: Earth Planet. Sci. Lett. 538 (2020), p. 116224. doi: 10.1016/j.epsl.2020.116224.
H. Ciskova, A. van den Berg, and M. Jacobs. “Impact of compressibility on heat transport characteristics of large terrestrial planets”. In: Phys. Earth. Planet. Inter. 268 (2017), pp. 65–77.
H. Ciskova, J. van Hunen, A.P. van den Berg, and N.J. Vlaar. “The influence of rheological weakening and yield stress on the interaction of slabs with the 670 km discontinuity”. In: Earth Planet. Sci. Lett. 199 (2002), pp. 447–457. doi: 10.1016/S0012-821X(02)00586-1.
R. I. Citron, M. Manga, and E. Tan. “A hybrid origin of the Martian crustal dichotomy: Degree-1 convection antipodal to a giant impact”. In: Earth Planet. Sci. Lett. 491 (2018), pp. 58–66. doi: 10.1016/j.epsl.2018.03.031.
Robert I Citron et al. “Effects of Heat-Producing Elements on the Stability of Deep Mantle Thermochemical Piles”. In: Geochem. Geophys. Geosyst. 21.4 (2020), e2019GC008895. doi: 10.1029/2019GC008895.
H. Čížková and C.R. Bina. “Effects of mantle and subduction-interface rheologies on slab stagnation and trench rollback”. In: Earth Planet. Sci. Lett. 379 (2013), pp. 95–103. doi: 10.1016/j.epsl.2013.08.011.
H. Čížková and C.R. Bina. “Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry”. In: Earth Planet. Sci. Lett. 430 (2015), pp. 408–415. doi: 10.1016/j.epsl.2015.07.004.
Hana Čžková and Craig R Bina. “Linked influences on slab stagnation: Interplay between lower mantle viscosity structure, phase transitions, and plate coupling”. In: Earth Planet. Sci. Lett. 509 (2019), pp. 88–99.
Hana Čžková, Jeroen van Hunen, and Arie van den Berg. “Stress distribution within subducting slabs and their deformation in the transition zone”. In: Phys. Earth. Planet. Inter. 161.3-4 (2007), pp. 202–214. doi: 10.1016/j.pepi.2007.02.002.
Stuart R Clark, Dave Stegman, and R Dietmar Müller. “Episodicity in back-arc tectonic regimes”. In: Phys. Earth. Planet. Inter. 171.1-4 (2008), pp. 265–279. doi: 10.1016/j. pepi.2008.04.012.
T.C. Clevenger, T. Heister, G. Kanschat, and M. Kronbichler. “A flexible, parallel, adaptive geometric multigrid method for FEM”. In: ACM Trans. Math. Softw. 47.1 (2020). doi: 10.1145/3425193.
Thomas C Clevenger and Timo Heister. “Comparison Between Algebraic and Matrix-free Geometric Multigrid for a Stokes Problem on Adaptive Meshes with Variable Viscosity”. In: Numer. Linear Algebra Appl. (2021). doi: 10.1002/nla.2375.
P.D. Clift, S. Brune, and J. Quinteros. “Climate changes control offshore crustal structure at South China Sea continental margin”. In: Earth Planet. Sci. Lett. 420 (2015), pp. 66–72. doi: 10.1016/j.epsl.2015.03.032.
S. Cloetingh et al. “Lithospheric folding in Iberia”. In: Tectonics 21.5 (2002), 10.1029/2001TC901031.
S.A.P.L. Cloetingh et al. “thermo-mechanical controls on the mode of continental collision in the SE Carpathians (Romania)”. In: Earth Planet. Sci. Lett. 218 (2004), pp. 57–76.
Sierd Cloetingh, Alexander Koptev, Alessio Lavecchia, István János Kovács, and Fred Beekman. “Fingerprinting secondary mantle plumes”. In: Earth Planet. Sci. Lett. 597 (2022), p. 117819. doi: 10.1016/j.epsl.2022.117819.
B. Cockburn and J. Gopalakrishnan. “Incompressible Finite elements via Hybridization. Part I: The Stokes System in Two Space Dimensions”. In: SIAM J. Numer. Anal. 43.4 (2005), pp. 1627–1650.
B. Cockburn and J. Gopalakrishnan. “Incompressible Finite elements via Hybridization. Part II: The Stokes System in Three Space Dimensions”. In: SIAM J. Numer. Anal. 43.4 (2005), pp. 1651–1672.
B. Cockburn and J. Gopalakrishnan. “New hybridization techniques”. In: GAMM-Mitt 28.2 (2005), pp. 154–182.
B. Cockburn and J. Gopalakrishnan. “The derivation of hybridizable discontinuous Galerkin methods for Stokes flow”. In: SIAM J. Numer. Anal. 47.2 (2009), pp. 1092–1125.
B. Cockburn, J. Gopalakrishnan, and R. Lazarov. “Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems”. In: Mathematics and Statistics Faculty Publications and Presentations (2009).
B. Cockburn, G. Kanschat, and D. Schötzau. “A locally conservative LDG method for the incompressible Navier-Stokes equations”. In: Mathematics of Computation 74.251 (2004), pp. 1067–1095.
B. Cockburn, G. Kanschat, and D. Schötzau. “A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier-Stokes Equations”. In: J. Sci. Comput. 31.112 (2007), pp. 61–73.
B. Cockburn, G. Kanschat, and D. Schötzau. “An Equal-Order DG Method for the Incompressible Navier-Stokes Equations”. In: J. Sci. Comput. 40 (2009), pp. 188–210.
B. Cockburn, G. Kanschat, and D. Schötzau. “The local discontinuous Galerkin method for linearized incompressible fluid flow: a review”. In: Computers and Fluids 34 (2005), pp. 491–506.
B. Cockburn, G. Kansschat, D. Schoetzau, and C. Schwab. “Local discontinuous Galerkin methods for the Stokes system”. In: SIAM J. Numer. Anal. 40.1 (2002), pp. 319–343.
B. Cockburn, G.E. Karniadakis, and C.W.Shu. “The Development of Discontinuous Galerkin Methods”. In: Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering 11 (2000).
B. Cockburn, N.C. Nguyen, and J. Peraire. “A Comparison of HDG Methods for Stokes Flow”. In: J. Sci. Comput. 45 (2010), pp. 215–237.
B. Cockburn and C.-W. Shu. “The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems”. In: SIAM J. Numer. Anal. 35.6 (1998), pp. 2440–2463.
Bernardo Cockburn. “Discontinuous galerkin methods”. In: ZAMM-Journal of Applied Mathematics and Mechanics 83.11 (2003), pp. 731–754. doi: 10.1002/zamm.200310088.
Bernardo Cockburn. “Static condensation, hybridization, and the devising of the HDG methods”. In: Building bridges: connections and challenges in modern approaches to numerical partial differential equations. 2016, pp. 129–177. doi: xxx.
Bernardo Cockburn, Bo Dong, and Johnny Guzmán. “A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems”. In: Mathematics of Computation 77.264 (2008), pp. 1887–1916. doi: 10.1090/S0025-5718-08-02123-6.
Bernardo Cockburn, Jayadeep Gopalakrishnan, and Francisco-Javier Sayas. “A projection-based error analysis of HDG methods”. In: Mathematics of Computation 79.271 (2010), pp. 1351–1367.
Bernardo Cockburn, Johnny Guzmán, and Haiying Wang. “Superconvergent discontinuous Galerkin methods for second-order elliptic problems”. In: Mathematics of Computation 78.265 (2009), pp. 1–24. doi: xxx.
Bernardo Cockburn and Ke Shi. “Devising HDG methods for Stokes flow: an overview”. In: Computers & Fluids 98 (2014), pp. 221–229. doi: 10.1016/j.compfluid.2013.11.017.
L Colli, H-P Bunge, and J Oeser. “Impact of Model Inconsistencies on Reconstructions of Past Mantle Flow Obtained Using the Adjoint Method”. In: Geophy. J. Int. 221.1 (2020), pp. 617–639. doi: 10.1093/gji/ggaa023.
L. Colli, H.-P. Bunge, and B.S.A. Schuberth. “On retrodictions of global mantle flow with assimilated surface velocities”. In: Geophys. Res. Lett. 42.20 (2015), pp. 8341–8348. doi: 10.1002/2015GL066001.
L. Colli, S. Ghelichkhan, H.-P. Bunge, and J. Oeser. “Retrodictions of Mid Paleogene mantle flow and dynamic topography in the Atlantic region from compressible high resolution adjoint mantle convection models: Sensitivity to deep mantle viscosity and tomographic input model”. In: Gondwana Research 53 (2018), pp. 252–272. doi: 10.1016/j.gr.2017.04. 027.
M. Collignon, N. Fernandez, and B.J.P. Kaus. “Influence of surface processes and initial topography on lateral fold growth and fold linkage mode”. In: Tectonics 34 (2015), pp. 1622–1645.
M. Collignon, B.J.P. Kaus, D.A. May, and N. fernandez. “Influences of surface processes on fold growth during 3-D detachment folding”. In: Geochem. Geophys. Geosyst. 15 (2014). doi: 10.1002/2014GC005450.
M. Collignon, P. Yamato, S. Castelltort, and B.J.P. Kaus. “Modeling of wind gap formation and development of sedimentary basins during fold growth: application to the Zagros Fold Belt, Iran”. In: Earth Surface Processes and Landforms 41.11 (2016), pp. 1521–1535. doi: 10.1002/esp.3921.
N Coltice, T Rolf, and PJ Tackley. “Seafloor spreading evolution in response to continental growth”. In: Geology 42.3 (2014), pp. 235–238. doi: 10.1130/G35062.1.
N. Coltice. “The role of convective mixing in degassing the Earth’s mantle”. In: Earth Planet. Sci. Lett. 234.1-2 (2005), pp. 15–25. doi: 10.1016/j.epsl.2005.02.041.
N. Coltice, M. Gerault, and M. Ulvrova. “A mantle convection perspective on global tectonics”. In: Earth-Science Reviews 165 (2017), pp. 120–150. doi: 10.1016/j. earscirev.2016.11.006.
N. Coltice, B. R. Phillips, H. Bertrand, Y. Ricard, and P. Rey. “Global warming of the mantle at the origin of flood basalts over supercontinents”. In: Geology 35.5 (2007), p. 391. doi: 10.1130/G23240A.1.
N. Coltice and Y. Ricard. “Geochemical observations and one layer mantle convection”. In: Earth Planet. Sci. Lett. 174.1-2 (1999), pp. 125–137. doi: 10.1016/S0012-821X(99) 00258-7.
Nicolas Coltice, Laurent Husson, Claudio Faccenna, and Maëlis Arnould. “What drives tectonic plates?” In: Science Advances 5.10 (2019). doi: 10.1126/sciadv.aax4295.
Nicolas Coltice, Gaspard Larrouturou, Eric Debayle, and Edward J Garnero. “Interactions of scales of convection in the Earth’s mantle”. In: Tectonophysics 746 (2018), pp. 669–677. doi: 10.1016/j.tecto.2017.06.028.
Nicolas Coltice and J Schmalzl. “Mixing times in the mantle of the early Earth derived from 2-D and 3-D numerical simulations of convection”. In: Geophys. Res. Lett. 33.23 (2006). doi: 10.1029/2006GL027707.
Nicolas Coltice, Maria Seton, Tobias Rolf, RD Müller, and Paul J Tackley. “Convergence of tectonic reconstructions and mantle convection models for significant fluctuations in seafloor spreading”. In: Earth Planet. Sci. Lett. 383 (2013), pp. 92–100.
Nicolas Coltice and Grace E Shephard. “Tectonic predictions with mantle convection models”. In: Geophy. J. Int. 213.1 (2018), pp. 16–29. doi: 10.1093/gji/ggx531.
Matthew J Comeau, Claudia Stein, Michael Becken, and Ulrich Hansen. “Geodynamic modeling of lithospheric removal and surface deformation: Application to intraplate uplift in central Mongolia”. In: J. Geophys. Res.: Solid Earth 126.5 (2021), e2020JB021304. doi: 10.1029/2020JB021304.
C. P. Conrad. “Convective instability of thickening mantle lithosphere”. In: Geophy. J. Int. 143.1 (2000), pp. 52–70. doi: 10.1046/j.1365-246x.2000.00214.x.
C. P. Conrad. “The solid Earth’s influence on sea level”. In: Geological Society of America Bulletin 125.7-8 (2013), pp. 1027–1052. doi: 10.1130/B30764.1.
C. P. Conrad and M. D. Behn. “Constraints on lithosphere net rotation and asthenospheric viscosity from global mantle flow models and seismic anisotropy”. In: Geochem. Geophys. Geosyst. 11.5 (2010). doi: 10.1029/2009GC002970.
C. P. Conrad and B. H. Hager. “Mantle convection with strong subduction zones”. In: Geophy. J. Int. 144.2 (2001), pp. 271–288. doi: 10.1046/j.1365-246x.2001.00321.x.
C. P. Conrad and L. Husson. “Influence of dynamic topography on sea level and its rate of change”. In: Lithosphere 1.2 (2009), pp. 110–120. doi: 10.1130/L32.1.
C. P. Conrad and P. Molnar. “Convective instability of a boundary layer with temperature-and strain-rate-dependent viscosity in terms of ’available buoyancy’”. In: Geophy. J. Int. 139.1 (1999), pp. 51–68. doi: 10.1046/j.1365-246X.1999.00896.x.
C. P. Conrad, B. Wu, E. I. Smith, T. A. Bianco, and A. Tibbetts. “Shear-driven upwelling induced by lateral viscosity variations and asthenospheric shear: A mechanism for intraplate volcanism”. In: Phys. Earth. Planet. Inter. 178.3-4 (2010), pp. 162–175. doi: 10.1016/ j.pepi.2009.10.001.
C.P. Conrad, M.D. Behn, and P.G. Silver. “Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle”. In: J. Geophys. Res.: Solid Earth 112.B07317 (2007).
C.P. Conrad and M. Gurnis. “Seismic tomography, surface uplift, and the breakup of Gondwanaland: Integrating mantle convection backwards in time”. In: Geochem. Geophys. Geosyst. 4.3 (2003).
C.P. Conrad and C. Lithgow-Bertelloni. “Influence of continental roots and asthenosphere on plate-mantle coupling”. In: Geophys. Res. Lett. 33.L05312 (2006). doi: https: //doi.org/10.1029/2005GL025621.
C.P. Conrad, B. Steinberger, and T.H. Torsvik. “Stability of active mantle upwelling revealed by net characteristics of plate tectonics”. In: Nature 498 (2013), p. 479. doi: 10.1038/ nature12203.
Ethan M Conrad, Claudio Faccenna, Adam F Holt, and Thorsten W Becker. “Tectonic reorganization of the Caribbean plate system in the Paleogene driven by Farallon slab anchoring”. In: Geochem. Geophys. Geosyst. 25.8 (2024), e2024GC011499. doi: 10.1029/ 2024GC011499.
C. M. Cooper and C. P. Conrad. “Does the mantle control the maximum thickness of cratons?” In: Lithosphere 1.2 (2009), pp. 67–72. doi: 10.1130/L40.1.
C.M. Cooper, L.-N. Moresi, and A. Lenardic. “Effects of continental configuration on mantle heat loss”. In: Geophys. Res. Lett. 40 (2013), pp. 2647–2651. doi: 10.1002/grl.50547.
Catherine M Cooper, RJ Farrington, and MS Miller. “On the destructive tendencies of cratons”. In: Geology 49.2 (2021), pp. 195–200. doi: 10.1130/G48111.1.
Catherine M Cooper, Adrian Lenardic, and L Moresi. “Effects of continental insulation and the partitioning of heat producing elements on the Earth’s heat loss”. In: Geophys. Res. Lett. 33.13 (2006). doi: 10.1029/2006GL026291.
Catherine M Cooper, Adrian Lenardic, and L Moresi. “The thermal structure of stable continental lithosphere within a dynamic mantle”. In: Earth Planet. Sci. Lett. 222.3-4 (2004), pp. 807–817. doi: 10.1016/j.epsl.2004.04.008.
Catherine M Cooper and Meghan S Miller. “Embracing craton complexity at depth”. In: Elements 20.3 (2024), pp. 187–192. doi: 10.2138/gselements.20.3.187.
CM Cooper, A Lenardic, A Levander, L Moresi, and K Benn. “Creation and preservation of cratonic lithosphere: seismic constraints and geodynamic models”. In: GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION 164 (2006), p. 75. doi: xxxx.
CM Cooper and MS Miller. “Craton formation: Internal structure inherited from closing of the early oceans”. In: Lithosphere 6.1 (2014), pp. 35–42. doi: 10.1130/L321.1.
LW Cordes and B Moran. “Treatment of material discontinuity in the element-free Galerkin method”. In: Computer Methods in Applied Mechanics and Engineering 139.1-4 (1996), pp. 75–89.
M Corradino, A Balazs, C Faccenna, and F Pepe. “Arc and forearc rifting in the Tyrrhenian subduction system”. In: Scientific Reports 12.1 (2022), pp. 1–13. doi: 10.1038/s41598- 022-08562-w.
G. Corti et al. “Aborted propagation of the Ethiopian rift caused by linkage with the Kenyan rift”. In: Nature Communications 10 (2019). doi: 10.1038/s41467-019-09335-2.
N.J. Cosentino, J.P. Morgan, and T.E. Jordan. “Modeling Trench Sediment-Controlled Flow in Subduction Channels: Implications for the Topographic Evolution of the Central Andean Fore Arc”. In: J. Geophys. Res.: Solid Earth 123.10 (2018), pp. 9121–9135. doi: 10. 1029/2018JB016109.
S. Cottaar and B. Buffett. “Convection in the Earth’s inner core”. In: Phys. Earth. Planet. Inter. 198-199 (2012), pp. 67–78. doi: 10.1016/j.pepi.2012.03.008.
F. Crameri and P.J. Tackley. “Spontaneous development of arcuate single-sided subduction in global 3-D mantle convection models with a free surface”. In: J. Geophys. Res.: Solid Earth 119 (2014). doi: 10.1002/2014JB010939.
F. Crameri and P.J. Tackley. “Subduction initiation from a stagnant lid and global overturn: new insights from numerical models with a free surface”. In: Progress in Earth and Planetary Science 3 (2016).
F. Crameri, P.J. Tackley, I. Meilick, T.V. Gerya, and B.J.P. Kaus. “A free plate surface and weak oceanic crust produce single-sided subduction on Earth”. In: Geophys. Res. Lett. 39 (2012). doi: 10.1029/2011GL050046.
F. Crameri et al. “A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the ’sticky air’ method”. In: Geophy. J. Int. 189 (2012), pp. 38–54. doi: 10.1111/j.1365-246X.2012.05388.x.
Fabio Crameri. “Geodynamic diagnostics, scientific visualisation and StagLab 3.0”. In: Geoscientific Model Development 11.6 (2018), pp. 2541–2562.
Fabio Crameri, Clinton P Conrad, Laurent Montési, and Carolina R Lithgow-Bertelloni. “The dynamic life of an oceanic plate”. In: Tectonophysics 760 (2019), pp. 107–135.
Fabio Crameri and Carolina Lithgow-Bertelloni. “Abrupt upper-plate tilting during slab-transition-zone collision”. In: Tectonophysics 746 (2018), pp. 199–211. doi: 10.1016/ j.tecto.2017.09.013.
Fabio Crameri, CR Lithgow-Bertelloni, and Paul J Tackley. “The dynamical control of subduction parameters on surface topography”. In: Geochem. Geophys. Geosyst. 18.4 (2017), pp. 1661–1687. doi: 10.1002/2017GC006821.
Fabio Crameri, Grace E. Shephard, and Philip J. Heron. “The misuse of colour in science communication”. In: Nature Communications 11 (2020), p. 5444. doi: 10.1038/s41467- 020-19160-7.
Fabio Crameri and Paul J Tackley. “Parameters controlling dynamically self-consistent plate tectonics and single-sided subduction in global models of mantle convection”. In: J. Geophys. Res.: Solid Earth 120.5 (2015), pp. 3680–3706. doi: 10.1002/2014JB011664.
Nicola Creati and Roberto Vidmar. “LARGE 0.2.0: 2D numerical modelling of geodynamic problems”. In: Geoscientific Model Development Discussions (2020), pp. 1–23. doi: 10. 5194/gmd-2020-372.
Nicola Creati, Roberto Vidmar, and Paolo Sterzai. “Geodynamic simulations in HPC with Python”. In: PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) (2015).
Steven L Crouch, Antony M Starfield, and FJ Rizzo. “Boundary element methods in solid mechanics”. In: Journal of Applied Mechanics 50 (1983), p. 704.
Alexander R Cruden, Mohammad HB Nasseri, and Russell Pysklywec. “Surface topography and internal strain variation in wide hot orogens from three-dimensional analogue and two-dimensional numerical vice models”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 79–104.
L. Cruz, J. Malinski, A. Wilson, W.A. Take, and G. Hilley. “Erosional control of kinematics and geometry of fold-and-thrust belts imaged in a physical and numerical sandbox”. In: J. Geophys. Res.: Solid Earth 115.B09404 (2010). doi: 10.1029/2010JB007472.
Qihua Cui and Zhong-Hai Li. “Trench-parallel mid-ocean ridge subduction driven by along-strike transmission of slab pull”. In: Geology (2024). doi: 10.1130/G52355.1.
Qihua Cui, Zhong-Hai Li, and Mian Liu. “Crustal thickening versus lateral extrusion during India–Asia continental collision: 3-D thermo-mechanical modeling”. In: Tectonophysics 818 (2021), p. 229081. doi: 10.1016/j.tecto.2021.229081.
N.G. Culshaw, C. Beaumont, and R.A. Jamieson. “The orogenic superstructure-infrastructure concept: Revisited, quantified, and revived”. In: Geology 34.9 (2006), pp. 733–736. doi: 10.1130/G22793.1.
P.A. Cundall and M. Board. “A Microcomputer Program for Modeling Large- Strain Plasticity Problems”. In: Numerical Methods in Geomechanics, p2101-2108. Ed. by B.A.A. Innsbruck, 1988.
Peter A Cundall. “Numerical experiments on localization in frictional materials”. In: Ingenieur-archiv 59.2 (1989), pp. 148–159.
Gilda Currenti and Charles A Williams. “Numerical modeling of deformation and stress fields around a magma chamber: Constraints on failure conditions and rheology”. In: Phys. Earth. Planet. Inter. 226 (2014), pp. 14–27. doi: 10.1016/j.pepi.2013.11.003.
C.A. Currie and C. Beaumont. “Are diamond-bearing Cretaceous kimberlites related to low-angle subduction beneath western North America”. In: Earth Planet. Sci. Lett. 303 (2011), pp. 59–70. doi: 10.1016/j.epsl.2010.12.036.
C.A. Currie, C. Beaumont, and R.S. Huismans. “The fate of subducted sediments: a case for backarc intrusion and underplating”. In: Geology 35.12 (2007), pp. 1111–1114.
C.A. Currie, M.N. Ducea, P.G. DeCelles, and C. Beaumont. “Geodynamic models of Cordilleran orogens: Gravitational instability of magmatic arc roots”. In: Memoir of the Geological Society of America 212 (2015), pp. 1–22. doi: 10.1130/2015.1212(01).
Claire A Currie, Ritske S Huismans, and Christopher Beaumont. “Thinning of continental backarc lithosphere by flow-induced gravitational instability”. In: Earth Planet. Sci. Lett. 269.3-4 (2008), pp. 436–447.
Mario D’Acquisto, Luca Dal Zilio, Irene Molinari, Edi Kissling, Taras Gerya, and Ylona van Dinther. “Tectonics and seismicity in the Northern Apennines driven by slab retreat and lithospheric delamination”. In: Tectonophysics (2020), p. 228481. doi: 10.1016/j.tecto. 2020.228481.
M. Dabrowski, M. Krotkiewski, and D.W. Schmid. “MILAMIN: Matlab based finite element solver for large problems”. In: Geochem. Geophys. Geosyst. 9.4 (2008), Q04030. doi: 10. 1029/2007GC001719.
Liming Dai et al. “Slab rollback versus delamination: contrasting fates of flat-slab subduction and implications for South China evolution in the Mesozoic”. In: J. Geophys. Res.: Solid Earth (2020), e2019JB019164. doi: 10.1029/2019JB019164.
Luca Dal Zilio, Ylona van Dinther, Taras Gerya, and Jean-Philippe Avouac. “Bimodal seismicity in the Himalaya controlled by fault friction and geometry”. In: Nature Communications 10.1 (2019), pp. 1–11. doi: 10.1038/s41467-018-07874-8.
Luca Dal Zilio, Ylona van Dinther, Taras V Gerya, and Casper C Pranger. “Seismic behaviour of mountain belts controlled by plate convergence rate”. In: Earth Planet. Sci. Lett. 482 (2018), pp. 81–92. doi: 10.1016/j.epsl.2017.10.053.
Luca Dal Zilio, Manuele Faccenda, and Fabio Capitanio. “The role of deep subduction in supercontinent breakup”. In: Tectonophysics 746 (2018), pp. 312–324. doi: 10.1016/j. tecto.2017.03.006.
Luca Dal Zilio, Jonas Ruh, and Jean-Philippe Avouac. “Structural evolution of orogenic wedges: Interplay between erosion and weak décollements”. In: Tectonics 39.10 (2020), e2020TC006210. doi: 10.1029/2020TC006210.
Megan Damon, Masanori C Kameyama, Michael Knox, David H Porter, Dave Yuen, and Erik OD Sevre. “Interactive visualization of 3d mantle convection”. In: Visual Geosciences 13 (2008), pp. 49–57. doi: 10.1007/s10069-007-0008-1.
Zhuo Dang, Nan Zhang, Zheng-Xiang Li, Chuan Huang, Christopher J Spencer, and Yebo Liu. “Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up”. In: Communications Earth & Environment 1.1 (2020), pp. 1–11. doi: 10. 1038/s43247-020-00052-z.
J. Dannberg, Z. Eilon, U. Faul, R. Gassmöller, P. Moulik, and R. Myhill. “The importance of grain size to mantle dynamics and seismological observations”. In: Geochem. Geophys. Geosyst. 18 (2017), pp. 3034–3061. doi: 10.1002/2017GC006944.
J. Dannberg and R. Gassmöller. “Chemical trends in ocean islands explained by plume-slab interaction”. In: Proceedings of the National Academy of Sciences 115.17 (2018), pp. 4351–4356.
J. Dannberg and T. Heister. “Compressible magma/mantle dynamics: 3-D, adaptive simulations in ASPECT”. In: Geophy. J. Int. 207 (2016), pp. 1343–1366. doi: 10.1093/ gji/ggw329.
J. Dannberg and S.V. Sobolev. “Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept”. In: Nature Communications 6.6960 (2015). doi: 10. 1038/ncomms7960.
Juliane Dannberg, Kiran Chotalia, and Rene Gassmöller. “How lowermost mantle viscosity controls the chemical structure of Earth’s deep interior”. In: Communications Earth & Environment 4.1 (2023), p. 493. doi: 10.1038/s43247-023-01153-1.
Juliane Dannberg, Rene Gassmöller, Ryan Grove, and Timo Heister. “A new formulation for coupled magma/mantle dynamics”. In: Geophy. J. Int. 219.1 (2019), pp. 94–107. doi: 10.1093/gji/ggz190.
Juliane Dannberg, Rene Gassmöller, Ranpeng Li, Carolina Lithgow-Bertelloni, and Lars Stixrude. “An entropy method for geodynamic modelling of phase transitions: capturing sharp and broad transitions in a multiphase assemblage”. In: Geophy. J. Int. 231.3 (2022), pp. 1833–1849. doi: 10.1093/gji/ggac293.
Juliane Dannberg, Robert Myhill, René Gassmöller, and Sanne Cottaar. “The morphology, evolution and seismic visibility of partial melt at the core–mantle boundary: implications for ULVZs”. In: Geophy. J. Int. 227.2 (2021), pp. 1028–1059. doi: 10.1093/gji/ggab242.
R Das, Y Zhang, P Schaubs, and PW Cleary. “Modelling rock fracturing caused by magma intrusion using the smoothed particle hydrodynamics method”. In: Computational Geosciences 18.6 (2014), pp. 927–947.
Rajarshi Das and PW Cleary. “Effect of rock shapes on brittle fracture using Smoothed Particle Hydrodynamics”. In: Theoretical and Applied Fracture Mechanics 53.1 (2010), pp. 47–60.
Ritabrata Dasgupta and Changyeol Lee. “Lithospheric weakening by a small-scale plume and its geodynamic implications”. In: Earth Planet. Sci. Lett. 626 (2024), p. 118514. doi: 10.1016/j.epsl.2023.118514.
Ritabrata Dasgupta, Joyjeet Sen, and Nibir Mandal. “Bending curvatures of subducting plates: old versus young slabs”. In: Geophy. J. Int. 225.3 (2021), pp. 1963–1981. doi: 10.1093/gji/ggab070.
D Rhodri Davies, Saskia Goes, JH Davies, BSA Schuberth, H-P Bunge, and J Ritsema. “Reconciling dynamic and seismic models of Earth’s lower mantle: The dominant role of thermal heterogeneity”. In: Earth Planet. Sci. Lett. 353 (2012), pp. 253–269. doi: 10. 1016/j.epsl.2012.08.016.
D Rhodri Davies, Stephan C Kramer, Sia Ghelichkhan, and Angus Gibson. “Towards automatic finite-element methods for geodynamics via Firedrake”. In: Geosci. Model. Dev. 15.13 (2022), pp. 5127–5166. doi: 10.5194/gmd-15-5127-2022.
D. R. Davies, J. H. Davies, O. Hassan, K. Morgan, and P. Nithiarasu. “Investigations into the applicability of adaptive finite element methods to two-dimensional infinite Prandtl number thermal and thermochemical convection”. In: Geochem. Geophys. Geosyst. 8.5 (2007). doi: 10.1029/2006GC001470.
D.R. Davies, J.H. Davies, P.C. Bollada, O. Hassan, K. Morgan, and P. Nithiarasu. “A hierarchical mesh refinement technique for global 3-D spherical mantle convection modelling”. In: Geosci. Model. Dev. 6 (2013), pp. 1095–1107. doi: 10.5194/gmd-6- 1095-2013.
D.R. Davies, C.R. Wilson, and S.C. Kramer. “Fluidity: A fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics”. In: Geochem. Geophys. Geosyst. 12.6 (2011). doi: 10.1029/2011GC003551.
David Rhodri Davies and John Huw Davies. “Thermally-driven mantle plumes reconcile multiple hot-spot observations”. In: Earth Planet. Sci. Lett. 278.1-2 (2009), pp. 50–54. doi: 10.1016/j.epsl.2008.11.027.
David Rhodri Davies, John Huw Davies, O Hassan, K Morgan, and P Nithiarasu. “Adaptive finite element methods in geodynamics: Convection dominated mid-ocean ridge and subduction zone simulations”. In: International Journal of Numerical Methods for Heat & Fluid Flow 18.7/8 (2008). doi: 10.1108/09615530810899079.
DR Davies, G Le Voci, Saskia Goes, Stephan C Kramer, and Cian R Wilson. “The mantle wedge’s transient 3-D flow regime and thermal structure”. In: Geochem. Geophys. Geosyst. 17.1 (2016), pp. 78–100. doi: 10.1002/2015GC006125.
J.H. Davies and H.-P. Bunge. “Are splash plumes the origin of minor hotspots?” In: Geology 34.5 (2006), pp. 349–352. doi: 10.1130/G22193.1.
J.H. Davies and H.-P. Bunge. “Seismically ”fast” geodymanic mantle models”. In: Geophys. Res. Lett. 28.1 (2001), pp. 73–76. doi: 10.1029/2000GL011805.
Paul R Dawson and Erik G Thompson. “Finite element analysis of steady-state elasto-visco-plastic flow by the initial stress-rate method”. In: Int. J. Num. Meth. Eng. 12.1 (1978), pp. 47–57. doi: 10.1002/nme.1620120105.
R De Franco, Rob Govers, and R Wortel. “Nature of the plate contact and subduction zones diversity”. In: Earth Planet. Sci. Lett. 271.1-4 (2008), pp. 245–253. doi: 10.1016/j. epsl.2008.04.019.
Roberta De Franco, Rob Govers, and Rinus Wortel. “Dynamics of continental collision: influence of the plate contact”. In: Geophy. J. Int. 174.3 (2008), pp. 1101–1120. doi: 10.1111/j.1365-246X.2008.03857.x.
Albert de Montserrat, Jason P Morgan, and Jörg Hasenclever. “LaCoDe: a Lagrangian two-dimensional thermo-mechanical code for large-strain compressible visco-elastic geodynamical modeling”. In: Tectonophysics 767 (2019), p. 228173. doi: 10.1016/j. tecto.2019.228173.
J De Smet, AP van den Berg, and NJ Vlaar. “Early formation and long-term stability of continents resulting from decompression melting in a convecting mantle”. In: Tectonophysics 322.1-2 (2000), pp. 19–33.
JH De Smet, AP van den Berg, and NJ Vlaar. “Stability and growth of continental shields in mantle convection models including recurrent melt production”. In: Tectonophysics 296.1-2 (1998), pp. 15–29.
Arie P van Den Berg, David A Yuen, and Peter E van Keken. “Rheological transition in mantle convection with a composite temperature-dependent, non-Newtonian and Newtonian rheology”. In: Earth Planet. Sci. Lett. 129.1-4 (1995), pp. 249–260. doi: 10.1016/0012- 821X(94)00246-U.
Lijun Deng, Ting Yang, Zhongxian Zhao, and Meng Zhou. “Constraining subducting slab viscosity with topography and gravity fields in free-surface mantle convection models”. In: Tectonophysics (2023), p. 230195. doi: 10.1016/j.tecto.2023.230195.
Frédéric Deschamps, Laura Cobden, and Paul J Tackley. “The primitive nature of large low shear-wave velocity provinces”. In: Earth Planet. Sci. Lett. 349 (2012), pp. 198–208.
Frédéric Deschamps, Edouard Kaminski, and Paul J Tackley. “A deep mantle origin for the primitive signature of ocean island basalt”. In: Nature Geoscience 4.12 (2011), pp. 879–882. doi: 10.1038/NGEO1295.
Frédéric Deschamps and Yang Li. “Core-mantle boundary dynamic topography: influence of post-perovskite viscosity”. In: J. Geophys. Res.: Solid Earth (2019). doi: 10.1029/ 2019JB017859.
Frédéric Deschamps, Yang Li, and Paul J Tackley. “Large-scale thermo-chemical structure of the deep mantle: observations and models”. In: The Earth’s Heterogeneous Mantle. Springer, 2015, pp. 479–515.
Frédéric Deschamps, Yves Rogister, and Paul J Tackley. “Constraints on core–mantle boundary topography from models of thermal and thermochemical convection”. In: Geophy. J. Int. 212.1 (2018), pp. 164–188. doi: 10.1093/gji/ggx402.
Frédéric Deschamps and Christophe Sotin. “Inversion of two-dimensional numerical convection experiments for a fluid with a strongly temperature-dependent viscosity”. In: Geophy. J. Int. 143.1 (2000), pp. 204–218. doi: 10.1046/j.1365-246x.2000.00228.x.
Frédéric Deschamps and Paul J Tackley. “Searching for models of thermo-chemical convection that explain probabilistic tomography: I. Principles and influence of rheological parameters”. In: Phys. Earth. Planet. Inter. 171.1-4 (2008), pp. 357–373.
Frédéric Deschamps and Paul J Tackley. “Searching for models of thermo-chemical convection that explain probabilistic tomography. II-Influence of physical and compositional parameters”. In: Phys. Earth. Planet. Inter. 176.1-2 (2009), pp. 1–18.
Frédéric Deschamps, Paul J Tackley, and Takashi Nakagawa. “Temperature and heat flux scalings for isoviscous thermal convection in spherical geometry”. In: Geophy. J. Int. 182.1 (2010), pp. 137–154. doi: 10.1111/j.1365-246X.2010.04637.x.
Frédéric Deschamps, Chloé Yao, Paul J Tackley, and C Sanchez-Valle. “High Rayleigh number thermal convection in volumetrically heated spherical shells”. In: J. Geophys. Res.: Planets 117.E9 (2012).
Matteo Desiderio and Maxim D Ballmer. “Ancient stratified thermochemical piles due to high intrinsic viscosity”. In: Geophys. Res. Lett. 51.14 (2024), e2024GL110006. doi: 10. 1029/2024GL110006.
Y Deubelbeiss, BJP Kaus, and JAD Connolly. “Direct numerical simulation of two-phase flow: Effective rheology and flow patterns of particle suspensions”. In: Earth Planet. Sci. Lett. 290.1-2 (2010), pp. 1–12. doi: 10.1016/j.epsl.2009.11.041.
Y. Deubelbeiss and B.J.P. Kaus. “Comparison of Eulerian and Lagrangian numerical techniques for the Stokes equations in the presence of strongly varying viscosity”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 92–111. doi: 10.1016/j.pepi.2008.06.023.
G Di Donato, AM Negredo, R Sabadini, and LLA Vermeersen. “Multiple processes causing sea-level rise in the central Mediterranean”. In: Geophys. Res. Lett. 26.12 (1999), pp. 1769–1772. doi: 10.1029/1999GL900258.
E Di Giuseppe, J Van Hunen, F Funiciello, C Faccenna, and D Giardini. “Slab stiffness control of trench motion: Insights from numerical models”. In: Geochem. Geophys. Geosyst. 9.2 (2008). doi: 10.1029/2007GC001776.
JF Di Leo et al. “Development of texture and seismic anisotropy during the onset of subduction”. In: Geochem. Geophys. Geosyst. 15.1 (2014), pp. 192–212. doi: 10.1002/ 2013GC005032.
A.E. Svartman Dias, L.L. Lavier, and N.W. Hayman. “Conjugate rifted margins width and asymmetry: The interplay between lithospheric strength and thermomechanical processes”. In: J. Geophys. Res.: Solid Earth 120 (2015), pp. 8672–8700.
L. DiCaprio, M. Gurnis, R. D. Muller, and E. Tan. “Mantle dynamics of continentwide Cenozoic subsidence and tilting of Australia”. In: Lithosphere 3.5 (2011), pp. 311–316. doi: 10.1130/L140.1.
L. DiCaprio, R. D. Muller, and M. Gurnis. “A dynamic process for drowning carbonate reefs on the northeastern Australian margin”. In: Geology 38.1 (2010), pp. 11–14. doi: 10.1130/G30217.1.
Armin Dielforder and A Hampel. “Force-Balance Analysis of Stress Changes During the Subduction-Collision Transition and Implications for the Rise of Mountain Belts”. In: J. Geophys. Res.: Solid Earth 126.3 (2021), e2020JB020914. doi: 10.1029/2020JB020914.
Y. van Dinther, T.V. Gerya, L.A. Dalguer, F. Corbi, F. Funiciello, and P.M. Mai. “The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 1502–1525. doi: 10.1029/2012JB009479.
Y. van Dinther, T.V. Gerya, L.A. Dalguer, P.M. Mai, G. Morra, and D. Giardini. “The seismic cycle at subduction thrusts: Insights from seismo-thermo-mechanical models”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 1–20. doi: 10.1002/2013JB010380.
Y. van Dinther, P.M. Mai, L.A. Dalguer, and T.V. Gerya. “Modeling the seismic cycle in subduction zones: The role and spatiotemporal occurrence of off-megathrust earthquakes”. In: Geophys. Res. Lett. 41 (2014), pp. 1194–1201. doi: 10.1002/2013GL058886.
Vt Dolejš. “Analysis and application of the IIPG method to quasilinear nonstationary convection–diffusion problems”. In: Journal of Computational and Applied Mathematics 222.2 (2008), pp. 251–273.
H.S. Dollar, N.I.M. Gould, W.H.A. Schilders, and A.J. Wathen. “Implicit-factorisation preconditioning and iterative solvers for regularised saddle-point systems”. In: SIAM J. Matrix Anal. Appl. 28.1 (2006), pp. 170–189.
Hao Dong et al. “Implementation of a particle-in-cell method for the energy solver in 3D spherical geodynamic modeling”. In: Earth and Planetary Physics 8.3 (2024), pp. 549–563. doi: 10.26464/epp2024021.
Hao Dong et al. “Joint Geodynamic-Geophysical Inversion Suggests Passive Subduction and Accretion of the Ontong Java Plateau”. In: Geophys. Res. Lett. 49.23 (2022), e2022GL100744. doi: 10.1029/2022GL100744.
Miao Dong et al. “Subduction without volcanic arc magma: Insights from two young subduction zones in the western Pacific”. In: Tectonophysics 874 (2024), p. 230231. doi: 10.1016/j.tecto.2024.230231.
M.R. Drury, H.L.M. Van Roermund, D.A. Carswell, J.H. De Smet, A.P. Van Den Berg, and N.J. Vlaar. “Emplacement of deep upper-mantle rocks into cratonic lithosphere by convection and diapiric upwelling”. In: Journal of Petrology 42.1 (2001), pp. 131–140.
Joăo C. Duarte, Nicolas Riel, Filipe M. Rosas, Anton Popov, Christian Schuler, and Boris J.P. Kaus. “Gibraltar subduction zone is invading the Atlantic”. In: Geology (2024). doi: 10.1130/G51654.1.
Guillaume Duclaux, Ritske S Huismans, and Dave A May. “Rotation, narrowing, and preferential reactivation of brittle structures during oblique rifting”. In: Earth Planet. Sci. Lett. 531 (2020), p. 115952. doi: 10.1016/j.epsl.2019.115952.
Erik Duesterhoeft, Javier Quinteros, Roland Oberhänsli, Romain Bousquet, and Christian de Capitani. “Relative impact of mantle densification and eclogitization of slabs on subduction dynamics: A numerical thermodynamic/thermokinematic investigation of metamorphic density evolution”. In: Tectonophysics 637 (2014), pp. 20–29. doi: 10.1016/j.tecto. 2014.09.009.
T. Duretz, Ph. Agard, Ph. Yamato, C. Ducassou, E.B. Burov, and T.V. Gerya. “Thermo-mechanical modeling of the obduction process based on the Oman Ophiolite case”. In: Gondwana Research 32 (2016), pp. 1–10. doi: 10.1016/j.gr.2015.02.002.
T. Duretz and T.V. Gerya. “Slab detachment during continental collision: Influence of crustal rheology and interaction with lithospheric delamination”. In: Tectonophysics 602 (2013), pp. 124–140. doi: 10.1016/j.tecto.2012.12.024.
T. Duretz, T.V. Gerya, B.J.P. Kaus, and T.B. Andersen. “Thermomechanical modeling of slab eduction”. In: J. Geophys. Res.: Solid Earth 117.B08411 (2012). doi: 10.1029/ 2012JB009137.
T. Duretz, T.V. Gerya, and D.A. May. “Numerical modelling of spontaneous slab breakoff and subsequent topographic response”. In: Tectonophysics 502 (2011), pp. 244–256. doi: 10.1016/j.tecto.2010.05.024.
T. Duretz, T.V. Gerya, and W. Spakman. “Slab detachment in laterally varying subduction zones: 3-D numerical modeling”. In: Geophys. Res. Lett. 41 (2014), pp. 1951–1956. doi: 10.1002/2014GL059472.
T. Duretz, D.A. May, T.V. Gerya, and P.J. Tackley. “Discretization errors and free surface stabilisation in the finite difference and marker-in-cell method for applied geodynamics: A numerical study”. In: Geochem. Geophys. Geosyst. 12.Q07004 (2011). doi: 10.1029/ 2011GC003567.
T. Duretz, A. Souche, R. de Borst, and L. Le Pourhiet. “The Benefits of Using a Consistent Tangent Operator for Viscoelastoplastic Computations in Geodynamics”. In: Geochem. Geophys. Geosyst. 19 (2018). doi: 10.1029/2018GC007877.
Thibault Duretz, Dave A May, and Philippe Yamato. “A free surface capturing discretization for the staggered grid finite difference scheme”. In: Geophy. J. Int. 204.3 (2016), pp. 1518–1530. doi: 10.1093/gji/ggv526.
Thibault Duretz, Benoit Petri, Geoffrey Mohn, SM Schmalholz, FL Schenker, and Othmar Müntener. “The importance of structural softening for the evolution and architecture of passive margins”. In: Scientific Reports 6.1 (2016), pp. 1–7. doi: 10.1038/srep38704.
Thibault Duretz, L Räss, YY Podladchikov, and SM Schmalholz. “Resolving thermomechanical coupling in two and three dimensions: spontaneous strain localization owing to shear heating”. In: Geophy. J. Int. 216.1 (2019), pp. 365–379. doi: 10.1093/ gji/ggy434.
Thibault Duretz et al. “Numerical modelling of Cretaceous Pyrenean Rifting: The interaction between mantle exhumation and syn-rift salt tectonics”. In: Basin Research (2019). doi: 10.1111/bre.12389.
Thomas Duvernay, D Rhodri Davies, Christopher R Mathews, Angus H Gibson, and Stephan C Kramer. “Linking Intraplate Volcanism to Lithospheric Structure and Asthenospheric Flow”. In: Geochem. Geophys. Geosyst. 22.8 (2021), e2021GC009953. doi: 10.1029/ 2021GC009953.
S. Dyksterhuis, P. Rey, R.D. Mueller, and L. Moresi. “Effects of initial weakness on rift architecture”. In: Geological Society, London, Special Publications 282 (2007), pp. 443–455. doi: 10.1144/SP282.18.
D Dymkova and T Gerya. “Porous fluid flow enables oceanic subduction initiation on Earth”. In: Geophys. Res. Lett. 40.21 (2013), pp. 5671–5676. doi: 10.1002/2013GL057798.
Philipp Eichheimer et al. “Combined numerical and experimental study of microstructure and permeability in porous granular media”. In: Solid Earth 11.3 (2020), pp. 1079–1095. doi: 10.5194/se-2019-199.
Philipp Eichheimer et al. “Pore-scale permeability prediction for Newtonian and non-Newtonian fluids”. In: Solid Earth 10.5 (2019), pp. 1717–1731. doi: 10.5194/se- 10-1717-2019.
Y. Elesin, T. Gerya, I.M. Artemieva, and H. Thybo. “Samovar: a thermomechanical code for modeling of geodynamic processes in the lithospshere – application to basin evolution”. In: Arabian Journal of Geosciences 3 (2010), pp. 477–497. doi: 10.1007/s12517-010- 0215-1.
L. T. Elkins-Tanton. “Continental magmatism, volatile recycling, and a heterogeneous mantle caused by lithospheric gravitational instabilities”. In: J. Geophys. Res.: Solid Earth 112.B3 (2007). doi: 10.1029/2005JB004072.
L. T. Elkins-Tanton and B. H. Hager. “Melt intrusion as a trigger for lithospheric foundering and the eruption of the Siberian flood basalts”. In: Geophys. Res. Lett. 27.23 (2000), pp. 3937–3940. doi: 10.1029/2000GL011751.
L. T. Elkins-Tanton, B. H. Hager, and T. L. Grove. “Magmatic effects of the lunar late heavy bombardment”. In: Earth Planet. Sci. Lett. 222.1 (2004), pp. 17–27. doi: 10.1016/ j.epsl.2004.02.017.
L. T. Elkins-Tanton, J. A. van Orman, B. H. Hager, and T. L. Grove. “Re-examination of the lunar magma ocean cumulate overturn hypothesis: melting or mixing is required”. In: Earth Planet. Sci. Lett. 196.3-4 (2002), pp. 239–249. doi: 10.1016/S0012-821X(01) 00613-6.
Linda T Elkins-Tanton, Sarah E Zaranek, EM Parmentier, and PC Hess. “Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn”. In: Earth Planet. Sci. Lett. 236.1-2 (2005), pp. 1–12. doi: 10.1016/j.epsl.2005.04.044.
S Ellis, C Williams, J Ristau, M Reyners, D Eberhart-Phillips, and LM Wallace. “Calculating regional stresses for northern Canterbury: the effect of the 2010 Darfield earthquake”. In: New Zealand Journal of Geology and Geophysics 59.1 (2016), pp. 202–212. doi: 10.1080/ 00288306.2015.1123740.
S. Ellis and C. Beaumont. “Models of convergent boundary tectonics: Implications for the interpretation of Lithoprobe data”. In: Canadian Journal of Earth Sciences 36.10 (1999), pp. 1711–1741. doi: 10.1139/e99-075.
S. Ellis, C. Beaumont, R.A. Jamieson, and G. Quinlan. “Continental collision including a weak zone: The vise model and its application to the Newfoundland Appalachians”. In: Canadian Journal of Earth Sciences 35.11 (1998), pp. 1323–1346. doi: 10.1139/e97-100.
S. Ellis, C. Beaumont, and O.A. Pfiffner. “Geodynamic models of crustal-scale episodic tectonic accretion and underplating in subduction zones”. In: J. Geophys. Res.: Solid Earth 104.B7 (1999), pp. 15169–15190. doi: 10.1029/1999JB900071.
S. Ellis, P. Fullsack, and C. Beaumont. “Oblique convergence of the crust driven by basal forcing: implications for length-scales of deformation and strain partitioning in orogens”. In: Geophy. J. Int. 120 (1995), pp. 24–44. doi: 10.1111/j.1365-246X.1995.tb05909.x.
S.M. Ellis, T.A. Little, L.M. Wallace, B.R. Hacker, and S.J.H. Buiter. “Feedback between rifting and diapirism can exhume ultrahigh-pressure rocks”. In: Earth Planet. Sci. Lett. 311 (2011), pp. 427–438. doi: 10.1016/j.epsl.2011.09.031.
Susan Ellis, Francesca Ghisetti, Philip M Barnes, Carolyn Boulton, Ĺke Fagereng, and Susanne Buiter. “The contemporary force balance in a wide accretionary wedge: numerical models of the southcentral Hikurangi margin of New Zealand”. In: Geophy. J. Int. 219.2 (2019), pp. 776–795. doi: 10.1093/gji/ggz317.
Susan Ellis, Guido Schreurs, and Marion Panien. “Comparisons between analogue and numerical models of thrust wedge development”. In: Journal of Structural Geology 26.9 (2004), pp. 1659–1675. doi: 10.1016/j.jsg.2004.02.012.
Kirk Ellsworth and Gerald Schubert. “Numerical models of thermally and mechanically coupled two-layer convection of highly viscous fluids”. In: Geophy. J. Int. 93.2 (1988), pp. 347–363. doi: 10.1111/j.1365-246X.1988.tb02007.x.
H.C. Elman. “Multigrid and Krylov subspace methods for the discrete Stokes equations”. In: Int. J. Num. Meth. Fluids 22 (1996), pp. 755–770.
H.C. Elman and G.H. Golub. “Inexact and preconditioned Uzawa algorithms for saddle point problems”. In: SIAM J. Numer. Anal. 31.6 (1994), pp. 1645–1661.
A. Enns, T.W. Becker, and H. Schmeling. “The dynamics of subduction and trench migration for viscosity stratification”. In: Geophy. J. Int. 160 (2005), pp. 761–775. doi: 10.1111/ j.1365-246X.2005.02519.x.
GS Epstein, CB Condit, RK Stoner, AF Holt, and VE Guevara. “Evolving subduction zone thermal structure drives extensive forearc mantle wedge hydration”. In: AGU Advances 5.4 (2024), e2023AV001121. doi: 10.1029/2023AV001121.
Z. Erdos, R.S. huismans, and P. van der Beek. “First-order control of syntectonic sedimentation on crustal-scale structure of mountain belts ”. In: J. Geophys. Res.: Solid Earth 120 (2015). doi: 10.1002/2014JB011785.
Z. Erdos, R.S. huismans, P. van der Beek, and C. Thieulot. “Extensional inheritance and surface processes as controlling factors of mountain belt structure”. In: J. Geophys. Res.: Solid Earth 119 (2014). doi: 10.1002/2014JB011408.
Zoltán Erdős, Ritske S Huismans, and Peter van der Beek. “Control of increased sedimentation on orogenic fold-and-thrust belt structure - insights into the evolution of the Western Alps”. In: Solid Earth 10 (2019), pp. 391–404. doi: 10.5194/se-10-391-2019.
Zoltán Erdős, Ritske S Huismans, and Claudio Faccenna. “Wide versus narrow back-arc rifting: Control of subduction velocity and convective back-arc thinning”. In: Tectonics (2022), e2021TC007086. doi: 10.1029/2021TC007086.
Zoltán Erdős, Ritske S Huismans, Claudio Faccenna, and Sebastian G Wolf. “The role of subduction interface and upper plate strength on back-arc extension: application to Mediterranean back-arc basins”. In: Tectonics (2021), e2021TC006795. doi: 10.1029/ 2021TC006795.
Ronald M Errico. “What is an adjoint model?” In: Bulletin of the American Meteorological Society 78.11 (1997), pp. 2577–2592. doi: 10.1175/1520-0477(1997)078<2577: WIAAM>2.0.CO;2.
Grant Thomas Euen, Shangxin Liu, Rene Gassmöller, Timo Heister, and Scott David King. “A comparison of 3-D spherical shell thermal convection results at low to moderate Rayleigh number using ASPECT (version 2.2. 0) and CitcomS (version 3.3. 1)”. In: Geosci. Model. Dev. 2022 (2023), pp. 1–34. doi: 10.5194/gmd-16-3221-2023.
Maurice S Fabien, Matthew G Knepley, and Béatrice M Rivičre. “A hybridizable discontinuous Galerkin method for two-phase flow in heterogeneous porous media”. In: Int. J. Num. Meth. Eng. 116.3 (2018), pp. 161–177. doi: 10.1002/nme.5919.
M Faccenda, G Minelli, and TV Gerya. “Coupled and decoupled regimes of continental collision: numerical modeling”. In: Earth Planet. Sci. Lett. 278.3-4 (2009), pp. 337–349. doi: 10.1016/j.epsl.2008.12.021.
M. Faccenda. “Mid mantle seismic anisotropy around subduction zones”. In: Phys. Earth. Planet. Inter. 227 (2014), pp. 1–19. doi: 10.1016/j.pepi.2013.11.015.
M. Faccenda and F.A. Capitanio. “Seismic anisotropy around subduction zones: Insights from three-dimensional modeling of upper mantle deformation and SKS splitting calculations ”. In: Geochem. Geophys. Geosyst. 14.1 (2013). doi: 10.1029/2012GC004451.
M. Faccenda, T.V. Gerya, and S. Chakraborty. “Styles of post-subduction collisional orogeny: Influence of convergence velocity, crustal rheology and radiogenic heat production”. In: Lithos 103 (2008), pp. 257–287. doi: 10.1016/j.lithos.2007.09.009.
M. Faccenda, T.V. Gerya, N.S. Mancktelow, and L. Moresi. “Fluid flow during slab unbending and dehydration: Implications for intermediate-depth seismicity, slab weakening and deep water recycling”. In: Geochem. Geophys. Geosyst. 13.1 (2012). doi: 10.1029/ 2011GC003860.
Manuele Faccenda and Fabio Antonio Capitanio. “Development of mantle seismic anisotropy during subduction-induced 3-D flow”. In: Geophys. Res. Lett. 39.11 (2012). doi: 10.1029/ 2012GL051988.
Manuele Faccenda and Brandon P VanderBeek. “On constraining 3D seismic anisotropy in subduction, mid-ocean-ridge, and plume environments with teleseismic body wave data”. In: Journal of Geodynamics 158 (2023), p. 102003. doi: 10.1016/j.jog.2023.102003.
C. Faccenna and T. W. Becker. “Shaping mobile belts by small-scale convection”. In: Nature 465.7298 (2010), pp. 602–605. doi: 10.1038/nature09064.
C. Faccenna, T. W. Becker, S. Lallemand, Y. Lagabrielle, F. Funiciello, and C. Piromallo. “Subduction-triggered magmatic pulses: A new class of plumes?” In: Earth Planet. Sci. Lett. 299.1-2 (2010), pp. 54–68. doi: 10.1016/j.epsl.2010.08.012.
Claudio Faccenna, Thorsten W Becker, Clinton P Conrad, and Laurent Husson. “Mountain building and mantle dynamics”. In: Tectonics 32.1 (2013), pp. 80–93. doi: 10.1029/ 2012TC003176.
Claudio Faccenna, Thorsten W Becker, Adam F Holt, and Jean Pierre Brun. “Mountain building, mantle convection, and supercontinents: Holmes (1931) revisited”. In: Earth Planet. Sci. Lett. 564 (2021), p. 116905. doi: 10.1016/j.epsl.2021.116905.
Claudio Faccenna, Thorsten W Becker, Laurent Jolivet, and Mehmet Keskin. “Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback”. In: Earth Planet. Sci. Lett. 375 (2013), pp. 254–269. doi: 10.1016/j. epsl.2013.05.043.
Claudio Faccenna, Adam F Holt, Thorsten W Becker, Serge Lallemand, and Leigh H Royden. “Dynamics of the Ryukyu/Izu-Bonin-Marianas double subduction system”. In: Tectonophysics 746 (2018), pp. 229–238. doi: 10.1016/j.tecto.2017.08.011.
Claudio Faccenna, Onno Oncken, Adam F Holt, and Thorsten W Becker. “Initiation of the Andean orogeny by lower mantle subduction”. In: Earth Planet. Sci. Lett. 463 (2017), pp. 189–201. doi: 10.1016/j.epsl.2017.01.041.
Ĺke Fagereng, Johann FA Diener, Susan Ellis, and Francesca Remitti. Fluid-related deformation processes at the up-and down-dip limits of the subduction thrust seismogenic zone: What do the rocks tell us. Vol. 534. Geol. Soc. Am. Spec. Pap, 2018. doi: 10.1130/ 2018.2534(12).
GP Farangitakis, PJ Heron, KJW McCaffrey, J van Hunen, and LM Kalnins. “The impact of oblique inheritance and changes in relative plate motion on the development of rift-transform systems”. In: Earth Planet. Sci. Lett. 541 (2020), p. 116277. doi: 10.1016/j.epsl. 2020.116277.
G. Farin and D. Hansford. Mathematical principles for scientific computing and visualisation. A.K. Peters, Ltd., 2008.
C. G. Farnetani and A. W. Hofmann. “Dynamics and internal structure of a lower mantle plume conduit”. In: Earth Planet. Sci. Lett. 282.1-4 (2009), pp. 314–322. doi: 10.1016/ j.epsl.2009.03.035.
C. G. Farnetani and M. A. Richards. “Numerical investigations of the mantle plume initiation model for flood basalt events”. In: J. Geophys. Res.: Solid Earth 99.B7 (1994), pp. 13813–13833. doi: 10.1029/94JB00649.
CG Farnetani and H Samuel. “Beyond the thermal plume paradigm”. In: Geophys. Res. Lett. 32.7 (2005). doi: 10.1029/2005GL022360.
Cinzia G Farnetani, Bernard Legras, and Paul J Tackley. “Mixing and deformations in mantle plumes”. In: Earth Planet. Sci. Lett. 196.1-2 (2002), pp. 1–15. doi: 10.1016/S0012- 821X(01)00597-0.
Cinzia G Farnetani and Henri Samuel. “Lagrangian structures and stirring in the Earth’s mantle”. In: Earth Planet. Sci. Lett. 206.3-4 (2003), pp. 335–348. doi: 10.1016/S0012- 821X(02)01085-3.
Dinzia G Farnetani and Mark A Richards. “Thermal entrainment and melting in mantle plumes”. In: Earth Planet. Sci. Lett. 136.3-4 (1995), pp. 251–267.
R.J. Farrington, L.-N. Moresi, and F.A. Capitanio. “The role of viscoelasticity in subducting plates”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 4291–4304. doi: 10.1002/ 2014GC005507.
R.J. Farrington, D.R. Stegman, L.N. Moresi, M. Sandiford, and D.A. May. “Interactions of 3D mantle flow and continental lithosphere near passive margins”. In: Tectonophysics 483 (2010), pp. 20–28. doi: 10.1016/j.tecto.2009.10.008.
N.P. Fay, R.A. Bennett, J.C. Spinler, and E.D. Humphreys. “Small-scale upper mantle convection and crustal dynamics in southern California”. In: Geochem. Geophys. Geosyst. 9.8 (2008).
N. Fehn, W.A. Wall, and M. Kronbichler. “On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations”. In: J. Comp. Phys. 351 (2017), pp. 392–421. doi: 10.1016/j.jcp.2017. 09.031.
Niklas Fehn, Peter Munch, Wolfgang A Wall, and Martin Kronbichler. “Hybrid multigrid methods for high-order discontinuous Galerkin discretizations”. In: J. Comp. Phys. (2020), p. 109538.
Miloslav Feistauer and V Kučera. “On a robust discontinuous Galerkin technique for the solution of compressible flow”. In: J. Comp. Phys. 224.1 (2007), pp. 208–221. doi: 10. 1016/j.jcp.2007.01.035.
Manel Fernandez, Ignacio Marzán, and Montserrat Torné. “Lithospheric transition from the Variscan Iberian Massif to the Jurassic oceanic crust of the Central Atlantic”. In: Tectonophysics 386.1-2 (2004), pp. 97–115. doi: 10.1016/j.tecto.2004.05.005.
N. Fernandez and B. Kaus. “Fold interaction and wavelength selection in 3D models of multilayer detachment folding”. In: Tectonophysics 632 (2014), pp. 199–217. doi: 10. 1016/j.tecto.2014.06.013.
N. Fernandez and B. Kaus. “ Influence of pre-existing salt diapirs on 3D folding patterns ”. In: Tectonophysics 637 (2014), pp. 354–369. doi: 10.1016/j.tecto.2014.10.021.
N. Fernandez and B. Kaus. “Pattern formation in 3-D numerical models of down-built diapirs initiated by a Rayleigh-Taylor instability”. In: Geophy. J. Int. 202 (2015), pp. 1253–1270. doi: 10.1093/gji/ggv219.
Manel Fernández, Montserrat Torné, and Hermann Zeyen. “Modelling of thermal anomalies in the NW border of the Valencia Trough by groundwater convection”. In: Geophys. Res. Lett. 17.1 (1990), pp. 105–108. doi: 10.1029/GL017i001p00105.
David Fernández-Blanco, Utsav Mannu, Giovanni Bertotti, and Sean D Willett. “Forearc high uplift by lower crustal flow during growth of the Cyprus-Anatolian margin”. In: Earth Planet. Sci. Lett. 544 (2020), p. 116314. doi: 10.1016/j.epsl.2020.116314.
David Fernández-Blanco, Utsav Mannu, Teodoro Cassola, Giovanni Bertotti, and Sean D Willett. “Sedimentation and viscosity controls on forearc high growth”. In: Basin Research 33.2 (2021), pp. 1384–1406.
Sonia Fernández-Méndez, Javier Bonet, and Antonio Huerta. “Continuous blending of SPH with finite elements”. In: Computers & structures 83.17-18 (2005), pp. 1448–1458.
Ana MG Ferreira, Manuele Faccenda, William Sturgeon, Sung-Joon Chang, and Lewis Schardong. “Ubiquitous lower-mantle anisotropy beneath subduction zones”. In: Nature Geoscience 12.4 (2019), pp. 301–306. doi: 10.1038/s41561-019-0325-7.
Eleonora Ficini, Marco Cuffaro, Carlo Doglioni, and Taras Gerya. “Variable plate kinematics promotes changes in back-arc deformation regime along the north-eastern Eurasia plate boundary”. In: Scientific Reports 14.1 (2024), p. 7220. doi: 10.1038/s41598-024- 57890-6.
Agnčs Fienga, Shijie Zhong, Anthony Mémin, and Arthur Briaud. “Tidal dissipation with 3-D finite element deformation code CitcomSVE v2.1: comparisons with the semi-analytical approach, in the context of the Lunar tidal deformations”. In: Celestial Mechanics and Dynamical Astronomy 136.5 (2024), p. 43. doi: 10.1007/s10569-024-10202-6.
C. Fillon, R.S. Huismans, and P. van der Beek. “Syntectonic sedimentation effects on the growth of fold-and-thrust belts ”. In: Geology 41.1 (2013), pp. 83–86. doi: 10.1130/ G33531.1.
C. Fillon, R.S. Huismans, P. van der Beek, and J.A. Muńoz. “Syntectonic sedimentation controls on the evolution of the southern Pyrenean fold-and-thrust belt: Inferences from coupled tectonic-surface processes models”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 5665–5680. doi: 10.1002/jgrb.50368.
R. Fischer and T. Gerya. “Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach”. In: Journal of Geodynamics 100 (2016), pp. 198–214. doi: 10. 1016/j.jog.2016.03.004.
N. Flament et al. “Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching”. In: Earth Planet. Sci. Lett. 387 (2014), pp. 107–119. doi: 10.1016/j.epsl.2013.11.017.
Nicolas Flament. “Present-day dynamic topography and lower-mantle structure from palaeogeographically constrained mantle flow models”. In: Geophy. J. Int. 216.3 (2019), pp. 2158–2182. doi: 10.1093/gji/ggy526.
Nicolas Flament, O.F. Bodur, S.E. Williams, and A.S. Merdith. “Assembly of the basal mantle structure beneath Africa”. In: Nature 603 (2022), pp. 846–851. doi: 10.1038/ s41586-022-04538-y.
Nicolas Flament, Michael Gurnis, and R Dietmar Müller. “A review of observations and models of dynamic topography”. In: Lithosphere 5.2 (2013), pp. 189–210. doi: 10.1130/ L245.1.
L. Fleitout and D.A. Yuen. “Steady state, secondary convection beneath lithospheric plates with temperature- and pressure-dependent viscosity”. In: J. Geophys. Res.: Solid Earth 89.B11 (1984), pp. 9227–9244. doi: 10.1029/JB089iB11p09227.
Luce Fleitout and David A Yuen. “Secondary convection and the growth of the oceanic lithosphere”. In: Phys. Earth. Planet. Inter. 36.3-4 (1984), pp. 181–212. doi: 10.1016/ 0031-9201(84)90046-3.
B.J. Foley and T.W. Becker. “Generation of plate-like behavior and mantle heterogeneity from a spherical, viscoplastic convection model”. In: Geochem. Geophys. Geosyst. 10.8 (2009). doi: 10.1029/2009GC002378.
Alessandro M Forte and Jerry X Mitrovica. “New inferences of mantle viscosity from joint inversion of long-wavelength mantle convection and post-glacial rebound data”. In: Geophys. Res. Lett. 23.10 (1996), pp. 1147–1150.
L. Fourel, S. Goes, and G. Morra. “The role of elasticity in slab bending”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 4507–4525. doi: 10.1002/2014GC005535.
L.P. Franca and T.J.R. Hughes. “Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations”. In: Computer Methods in Applied Mechanics and Engineering 105 (1993), pp. 285–298. doi: 10.1016/0045-7825(93)90126-I.
R. De Franco, R. Govers, and R. Wortel. “Numerical comparison of different convergent plate contacts: subduction channel and subduction fault”. In: Geophy. J. Int. (2006), 10.1111/j.1365–246X.2006.03498.x.
T. Francois, E. Burov, P. Agard, and B. Meyer. “Buildup of a dynamically supported orogenic plateau: Numerical modeling of the Zagros/Central Iran case study”. In: Geochem. Geophys. Geosyst. 15 (2014). doi: 10.1002/2013GC005223.
Thomas François, Evgueni Burov, Bertrand Meyer, and Philippe Agard. “Surface topography as key constraint on thermo-rheological structure of stable cratons”. In: Tectonophysics 602 (2013), pp. 106–123.
M. Fraters, C. Thieulot, A. van den Berg, and W. Spakman. “The Geodynamic World Builder: a solution for complex initial conditions in numerical modelling”. In: Solid Earth 10 (2019), pp. 1785–1807. doi: 10.5194/se-10-1785-2019.
M.R.T. Fraters, W. Bangerth, C. Thieulot, A.C. Glerum, and W. Spakman. “Efficient and Practical Newton Solvers for Nonlinear Stokes Systems in Geodynamic Problems”. In: Geophy. J. Int. 218 (2019), pp. 873–894. doi: 10.1093/gji/ggz183.
M.R.T. Fraters et al. “The Geodynamic World Builder: A planetary structure creator for the geosciences”. In: Journal of Open Source Software 9.101 (2014), p. 6671. doi: 10. 21105/joss.06671.
MRT Fraters and MI Billen. “On the Implementation and Usability of Crystal Preferred Orientation Evolution in Geodynamic Modeling”. In: Geochem. Geophys. Geosyst. 22.10 (2021), e2021GC009846. doi: 10.1029/2021GC009846.
R. Freeburn, P. Bouilhol, B. Maunder, V. Magni, and J. van Hunen. “Numerical models of the magmatic processes induced by slab breakoff”. In: Earth Planet. Sci. Lett. 478 (2017), pp. 203–213. doi: 10.1016/j.epsl.2017.09.008.
J Freeman, L Moresi, and DA May. “Thermal convection with a water ice I rheology: Implications for icy satellite evolution”. In: Icarus 180.1 (2006), pp. 251–264. doi: 10. 1016/j.icarus.2005.07.014.
J. Freeman, L. Moresi, and D.A. May. “Evolution into the stagnant lid convection regime with a non-Newtonian water ice rheology”. In: Geophys. Res. Lett. 31 (2004). doi: 10. 1029/2004GL019798.
EH Fritzell, AL Bull, and GE Shephard. “Closure of the Mongol–Okhotsk Ocean: Insights from seismic tomography and numerical modelling”. In: Earth Planet. Sci. Lett. 445 (2016), pp. 1–12.
Hui-Ying Fu and Zhong-Hai Li. “Roles of Continental Mid-Lithosphere Discontinuity in the Craton Instability Under Variable Tectonic Regimes”. In: J. Geophys. Res.: Solid Earth 129.1 (2024), e2023JB028022. doi: 10.1029/2023JB028022.
L. Fuchs and Th.W. Becker. “Role of strain-dependent weakening memory on the style of mantle convection and plate boundary stability”. In: Geophy. J. Int. 218 (2019), pp. 601–618. doi: 10.1093/gji/ggz167.
L. Fuchs, H. Koyi, and H. Schmeling. “Numerical modeling of the effect of composite rheology on internal deformation in down-built diapirs”. In: Tectonophysics 646 (2015), pp. 79–95. doi: 10.1016/j.tecto.2015.01.014.
L. Fuchs and H. Schmeling. “A new numerical method to calculate inhomogeneous and time-dependent large deformation of two-dimensional geodynamic flows with application to diapirism”. In: Geophy. J. Int. 194.2 (2013), pp. 623–639. doi: 10.1093/gji/ggt142.
Lukas Fuchs and Thorsten Wolfgang Becker. “On the Role of Rheological Memory for Convection-Driven Plate Reorganizations”. In: Geophys. Res. Lett. 49.18 (2022), e2022GL099574. doi: 10.1029/2022GL099574.
Lukas Fuchs, Hemin Koyi, and Harro Schmeling. “Numerical modeling on progressive internal deformation in down-built diapirs”. In: Tectonophysics 632 (2014), pp. 111–122. doi: 10. 1016/j.tecto.2014.06.005.
Yoshio Fukao et al. “Numerical Simulation of the Mantle Convection”. In: Annual Report of the Earth Simulator Center April (2005).
J. Fullea, J.C. Afonso, J.A.D. Connolly, M. Fernandez, D. Garcia-Castellanos, and H. Zeyen. “LitMod3D: An interactive 3-D software to model the thermal, compositional, density, seismological, and rheological structure of the lithosphere and sublithospheric upper mantle”. In: Geochem. Geophys. Geosyst. 10.8 (2009). doi: 10.1029/2009GC002391.
J. Fullea, M. Fernandez, J.C. Afonso, J. Verges, and H. Zeyen. “The structure and evolution of the lithosphere-asthenosphere boundary beneath the Atlantic-Mediterranean Transition Region”. In: Lithos 120.1–2 (2010), pp. 74–95. doi: 10.1016/j.lithos.2010.03.003.
Javier Fullea, Antonio G Camacho, Ana M Negredo, and José Fernández. “The Canary Islands hot spot: New insights from 3D coupled geophysical–petrological modelling of the lithosphere and uppermost mantle”. In: Earth Planet. Sci. Lett. 409 (2015), pp. 71–88. doi: 10.1016/j.epsl.2014.10.038.
Ch.W. Fuller, S.D. Willett, and M.T. Brandon. “Formation of forearc basins and their influence on subduction zone earthquakes”. In: Geology 34.2 (2006), pp. 65–68. doi: 10. 1130/G21828.1.
CW Fuller, SD Willett, D Fisher, and CY Lu. “A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry”. In: Tectonophysics 425.1-4 (2006), pp. 1–24. doi: 10.1016/j.tecto.2006.05.018.
P. Fullsack. “An arbitrary Lagrangian-Eulerian formulation for creeping flows and its application in tectonic models”. In: Geophy. J. Int. 120 (1995), pp. 1–23. doi: 10.1111/ j.1365-246X.1995.tb05908.x.
F. Funiciello, K. Regenauer-Lieb G. Morra, and D. Giardini. “Dynamics of retreating slabs: 1. Insights from two-dimensional numerical experiments”. In: J. Geophys. Res.: Solid Earth 108.B4 (2003), p. 2206. doi: 10.1029/2001JB000898.
KP Furlong and Rob Govers. “Ephemeral crustal thickening at a triple junction: The Mendocino crustal conveyor”. In: Geology 27.2 (1999), p. 127. doi: 10.1130/0091- 7613(1999)027<0127:ECTAAT>2.3.CO;2.
Severine Furst, Michel Peyret, Jean Chery, and Bijan Mohammadi. “Lithosphere rigidity by adjoint-based inversion of interseismic GPS data, application to the Western United States”. In: Tectonophysics 746 (2018), pp. 364–383. doi: 10.1016/j.tecto.2017.03.015.
Carl W Gable, Richard J O’connell, and Bryan J Travis. “Convection in three dimensions with surface plates: Generation of toroidal flow”. In: J. Geophys. Res.: Solid Earth 96.B5 (1991), pp. 8391–8405. doi: 10.1029/90JB02743.
J. B. Gaherty and B. H. Hager. “Compositional vs. thermal buoyancy and the evolution of subducted lithosphere”. In: Geophys. Res. Lett. 21.2 (1994), pp. 141–144. doi: 10.1029/ 93GL03466.
AD Gait and JP Lowman. “Effect of lower mantle viscosity on the time-dependence of plate velocities in three-dimensional mantle convection models”. In: Geophys. Res. Lett. 34.21 (2007). doi: 10.1029/2007GL031396.
AD Gait and JP Lowman. “Time-dependence in mantle convection models featuring dynamically evolving plates”. In: Geophy. J. Int. 171.1 (2007), pp. 463–477. doi: 10. 1111/j.1365-246X.2007.03509.x.
AD Gait, JP Lowman, and CW Gable. “Time dependence in 3-D mantle convection models featuring evolving plates: Effect of lower mantle viscosity”. In: J. Geophys. Res.: Solid Earth 113.B8 (2008). doi: 10.1029/2007JB005538.
Boris Galvan and Stephen Miller. “A full GPU simulation of evolving fracture networks in a heterogeneous poro-elasto-plastic medium with effective-stress-dependent permeability”. In: GPU solutions to multi-scale problems in science and engineering. 2013, pp. 305–319. doi: 10.1007/978-3-642-16405-7_20.
J. Ganne, M. Gerbault, and S. Block. “Thermo-mechanical modeling of lower crust exhumation – Constraints from the metamorphic record of the Palaeoproterozoic Eburnean orogeny, West African Craton”. In: Precambrian Research 243 (2014), pp. 88–109.
Yifan Gao, Ling Chen, Jianfeng Yang, and Kun Wang. “Rheological Heterogeneities Control the Non-Progressive Uplift of the Young Iranian Plateau”. In: Geophy. J. Int. 50.3 (2023), e2022GL101829. doi: 10.1029/2022GL101829.
Daniel Garcia-Castellanos. “Interplay between lithospheric flexure and river transport in foreland basins”. In: Basin Research 14.2 (2002), pp. 89–104. doi: 10.1046/j.1365- 2117.2002.00174.x.
Daniel Garcia-Castellanos and Ivone Jimenez-Munt. “Topographic evolution and climate aridification during continental collision: Insights from computer simulations”. In: PLOS one 10.8 (2015), e0132252. doi: 10.1371/journal.pone.0132252.
A. Gardi, M. Cocco, A.M. Negredo, R. Sabadini, and S.K. Singh. “Dynamic modelling of the subduction zone of central Mexico”. In: Geophy. J. Int. 143.3 (2000), pp. 809–820. doi: 10.1046/j.1365-246X.2000.00291.x.
F. Garel, S. Goes, D.R. Davies, J.H. Davies, S.C. Kramer, and C.R. Wilson. “Interaction of subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate”. In: Geochem. Geophys. Geosyst. 15.1739–1765 (2014). doi: 10.1002/2014GC005257.
Fanny Garel and Catherine Thoraval. “Lithosphere as a constant-velocity plate: Chasing a dynamical LAB in a homogeneous mantle material”. In: Phys. Earth. Planet. Inter. 316 (2021), p. 106710. doi: 10.1016/j.pepi.2021.106710.
Fanny Garel, Catherine Thoraval, Andréa Tommasi, Sylvie Demouchy, and D Rhodri Davies. “Using thermo-mechanical models of subduction to constrain effective mantle viscosity”. In: Earth Planet. Sci. Lett. 539 (2020), p. 116243. doi: 10.1016/j.epsl.2020.116243.
Z Garfunkel, CA Anderson, and G Schubert. “Mantle circulation and the lateral migration of subducted slabs”. In: J. Geophys. Res.: Solid Earth 91.B7 (1986), pp. 7205–7223. doi: 10.1029/JB091iB07p07205.
E.J. Garnero and A.K. McNamara. “Structure and Dynamics of Earth’s Lower Mantle”. In: Science 320 (2008), pp. 626–628. doi: 10.1126/science.1148028.
Julien Gasc et al. “Deep-focus earthquakes: From high-temperature experiments to cold slabs”. In: Geology 50 (2022), pp. 1018–1022. doi: 10.1130/G50084.1.
R. Gassmöller, J. Dannberg, E. Bredow, B. Steinberger, and T. H. Torsvik. “Major influence of plume-ridge interaction, lithosphere thickness variations, and global mantle flow on hotspot volcanism-The example of Tristan”. In: Geochem. Geophys. Geosyst. 17.4 (2016), pp. 1454–1479. doi: 10.1002/2015GC006177.
R. Gassmöller, H. Lokavarapu, E. M. Heien, E. G. Puckett, and W. Bangerth. “Flexible and scalable particle-in-cell methods with adaptive mesh refinement for geodynamic computations”. In: Geochem. Geophys. Geosyst. 19.9 (2018), pp. 3596–3604. doi: 10. 1029/2018GC007508.
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Timo Heister, and Robert Myhill. “On formulations of compressible mantle convection”. In: Geophy. J. Int. 221.2 (2020), pp. 1264–1280. doi: 10.1093/gji/ggaa078.
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Elbridge Gerry Puckett, and Cedric Thieulot. “Benchmarking the accuracy of higher order particle methods in geodynamic models of transient flow”. In: Geosci. Model. Dev. 17 (2024), pp. 4115–4134. doi: 10. 5194/gmd-17-4115-2024.
Rene Gassmöller, Harsha Lokavarapu, Wolfgang Bangerth, and Elbridge Gerry Puckett. “Evaluating the accuracy of hybrid finite element/particle-in-cell methods for modelling incompressible Stokes flow”. In: Geophy. J. Int. 219.3 (2019), pp. 1915–1938. doi: 10. 1093/gji/ggz405.
Pedro J Gea, Flor de Lis Mancilla, Ana M Negredo, and Jeroen van Hunen. “Overriding plate thickness as a controlling factor for trench retreat rates in narrow subduction zones”. In: Geochem. Geophys. Geosyst. 25 (2024), e2023GC011345. doi: 10.1029/2023GC011345.
Pedro J Gea, Ana M Negredo, and Flor de Lis Mancilla. “The Gibraltar slab dynamics and its influence on past and present-day Alboran domain deformation: Insights from thermo-mechanical numerical modelling”. In: Frontiers in Earth Science 11 (2023), p. 995041. doi: 10.3389/feart.2023.995041.
T. Geenen et al. “Scalable robust solvers for unstructured FE geodynamic modeling applications: Solving the Stokes equation for models with large localized viscosity contrasts”. In: Geochem. Geophys. Geosyst. 10.9 (2009). doi: 10.1029/2009GC002526.
L. Gemmer, C. Beaumont, and S. Ings. “Dynamic modelling of passive margin salt tectonics: effects of water loading, sediment properties and sedimentation patterns”. In: Basin Research 17 (2005), pp. 383–402. doi: 10.1111/j.1365-2117.2005.00274.x.
L. Gemmer, S.J. Ings, S. Medvedev, and C. Beaumont. “Salt tectonics driven by differential sediment loading: stability analysis and finite-element experiments”. In: Basin Research 16 (2004), pp. 199–218. doi: 10.1111/j.1365-2117.2004.00229.x.
L. Geoffroy, E.B. Burov, and P. Werner. “Volcanic passive margins: another way to break up continents”. In: Scientific Reports 5 (2015). doi: 10.1038/srep14828.
O A George, R Malservisi, Rob Govers, C B Connor, and L J Connor. “Is uplift of volcano clusters in the Tohoku Volcanic Arc, Japan, driven by magma accumulation in hot zones? A geodynamic modeling study”. In: J. Geophys. Res.: Solid Earth 121 (2016), pp. 4780–4796.
E.H. Georgoulis. “Discontinuous Galerkin Methods for Linear Problems: An Introduction”. In: Approximation algorithms for Complex Systems. Ed. by E.H. Georgoulis, A. Iske, and J. Levesley. Berlin Heidelberg: Springer-Verlag, 2011, pp. 91–126. doi: 10.1007/978-3- 642-16876-5_5.
Gianluca Gerardi, Neil M Ribe, and Paul J Tackley. “Plate bending, energetics of subduction and modeling of mantle convection: A boundary element approach”. In: Earth Planet. Sci. Lett. 515 (2019), pp. 47–57. doi: 10.1016/j.epsl.2019.03.010.
M. Gerault, T.W. Becker, B.J.P. Kaus, C. Faccenna, L. Moresi, and L. Husson. “The role of slabs and oceanic plate geometry in the net rotation of the lithosphere, trench motions, and slab return flow”. In: Geochem. Geophys. Geosyst. 13.4 (2012), Q04001. doi: 10.1029/ 2011GC003934.
M. Gérault, L. Husson, M.S. Miller, and E.D. Humphreys. “Flat-slab subduction, topography, and mantle dynamics in southwestern Mexico”. In: Tectonics 34 (2015), 10.1002/2015TC003908.
M. Gerbault. “Pressure conditions for shear and tensile failure around a circular magma chamber; insight from elasto-plastic modelling”. In: Geological Society, London, Special Publications 367 (2012), pp. 111–130.
M. Gerbault, F. Cappa, and R. Hassani. “Elasto-plastic and hydromechanical models of failure around an infinitely long magma chamber”. In: Geochem. Geophys. Geosyst. 13.3 (2012). doi: 10.1029/2011GC003917.
M. Gerbault, F. Davey, and S. Henrys. “Three-dimensional lateral crustal thickening in continental oblique collision: an example from the Southern Alps, New Zealand”. In: Geophy. J. Int. 150 (2002), pp. 770–779.
M. Gerbault, R. Hassani, C. Novoa Lizama, and A. Souche. “Three-Dimensional Failure Patterns Around an Inflating Magmatic Chamber”. In: Geochem. Geophys. Geosyst. 19 (2018), pp. 749–771. doi: 10.1002/2017GC007174.
M. Gerbault, S. Henrys, and F. Davey. “Numerical models of lithospheric deformation forming the Southern Alps of New Zealand”. In: J. Geophys. Res.: Solid Earth 108.B7 (2003). doi: 10.1029/2001JB001716.
M. Gerbault, A.N.B. Poliakov, and M. Daignieres. “Prediction of faulting from the theories of elasticity and plasticity: what are the limits?” In: Journal of Structural Geology 20 (1998), pp. 301–320.
M. Gerbault and W. Willingshofer. “Lower crust indentation or horizontal ductile flow during continental collision?” In: Tectonophysics 387 (2004), pp. 169–187. doi: 10.1016/j. tecto.2004.06.012.
Muriel Gerbault, José Cembrano, C Mpodozis, M Farias, and M Pardo. “Continental margin deformation along the Andean subduction zone: Thermo-mechanical models”. In: Phys. Earth. Planet. Inter. 177.3-4 (2009), pp. 180–205.
Muriel Gerbault, Julie Schneider, A Reverso-Peila, and Michel Corsini. “Crustal exhumation during ongoing compression in the Variscan Maures-Tanneron Massif, France - Geological and thermo-mechanical aspects”. In: Tectonophysics 746 (2018), pp. 439–458. doi: 10. 1016/j.tecto.2016.12.019.
Muriel Gerbault et al. “What causes the persistent seismicity below the eastern flank of Piton de la Fournaise (la Réunion Island)? Elasto-plastic models of magma inflation”. In: Journal of Volcanology and Geothermal Research 431 (2022), p. 107628. doi: 10.1016/ j.jvolgeores.2022.107628.
Thomas M Gernon et al. “Coevolution of craton margins and interiors during continental break-up”. In: Nature 632.8024 (2024), pp. 327–335. doi: 10.1038/s41586-024-07717-1.
A Geruo, John Wahr, and Shijie Zhong. “Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada”. In: Geophy. J. Int. 192.2 (2013), pp. 557–572. doi: 10.1093/ gji/ggs030.
T. Gerya. “Future directions in subduction modeling”. In: Journal of Geodynamics 52 (2011), pp. 344–378.
T. Gerya and B. Stöckhert. “Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins”. In: Int J Earth Sci (Geol Rundsch) 95 (2006), pp. 250–274.
T. Gerya and D.A. Yuen. “Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems”. In: Phys. Earth. Planet. Inter. 163 (2007), pp. 83–105. doi: 10.1016/j.pepi.2007.04.015.
T.V. Gerya and J.-P. Burg. “Intrusion of ultramafic magmatic bodies into the continental crust: Numerical simulation”. In: Phys. Earth. Planet. Inter. 160 (2007), pp. 124–142. doi: 10.1016/j.pepi.2006.10.004.
T.V. Gerya, J.A.D. Connolly, and D.A. Yuen. “Why is terrestrial subduction one-sided ?” In: Geology 36.1 (2008), pp. 43–46. doi: 10.1130/G24060A.1.
T.V. Gerya, J.A.D. Connolly, D.A. Yuen, W. Gorczyk, and A.M. Capel. “Seismic implications of mantle wedge plumes”. In: Phys. Earth. Planet. Inter. 156 (2006), pp. 59–74. doi: 10.1016/j.pepi.2006.02.005.
T.V. Gerya, D. Fossati, C. Cantieni, and D. Seward. “Dynamic effects of aseismic ridge subduction: numerical modelling”. In: Eur. J. Mineral 21 (2009), pp. 649–661. doi: 10. 1127/0935-1221/2009/0021-1931.
T.V. Gerya, D.A. May, and T. Duretz. “An adaptive staggered grid finite difference method for modeling geodynamic Stokes flows with strongly variable viscosity”. In: Geochem. Geophys. Geosyst. 14.4 (2013). doi: 10.1002/ggge.20078.
T.V. Gerya and F.I. Meilick. “Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts”. In: Journal of Metamorphic Geology 29 (2011), pp. 7–31. doi: 10.1111/j.1525-1314.2010.00904.x.
T.V. Gerya, L.L. Perchuk, W.V. Maresch, and A.P. Willner. “Inherent gravitational instability of hot continental crust: Implications for doming and diapirism in granulite facies terrains”. In: Geological Society of America 380 (2004), pp. 97–115. doi: xxx.
T.V. Gerya, R.J. Stern, M.Baes, S.V. Sobolev, and S.A. Whattam. “Plate tectonics on the Earth triggered by plume-induced subduction initiation”. In: Nature 527 (2015), pp. 221–225. doi: 10.1038/nature15752.
T.V. Gerya, R. Uken, J. Reinhardt, M. Watkeys, W.V. Maresch, and B.M. Clarke. “Cold fingers in a hot magma: Numerical modeling of country-rock diapirs in the Bushveld Complex, South Africa”. In: Geology 31.9 (2003), pp. 753–756. doi: 10.1130/G19566.1.
T.V. Gerya and D.A. Yuen. “Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties”. In: Phys. Earth. Planet. Inter. 140 (2003), pp. 293–318. doi: 10.1016/j. pepi.2003.09.006.
T.V. Gerya and D.A. Yuen. “Rayleigh-Taylor instabilities from hydration and melting propel ’cold plumes’ at subduction zones”. In: Earth Planet. Sci. Lett. 212 (2003), pp. 47–62.
T.V. Gerya, D.A. Yuen, and W.V. Maresch. “Thermomechanical modelling of slab detachment”. In: Earth Planet. Sci. Lett. 226 (2004), pp. 101–116. doi: 10.1016/j. epsl.2004.07.022.
T.V. Gerya, D.A. Yuen, and E.O.D. Sevre. “Dynamical causes for incipient magma chambers above slabs”. In: Geology 32.1 (2004), pp. 89–92. doi: 10.1130/G20018.1.
Taras Gerya. “Precambrian geodynamics: concepts and models”. In: Gondwana Research 25.2 (2014), pp. 442–463.
Taras Gerya and Evgueni Burov. “Nucleation and evolution of ridge-ridge-ridge triple junctions: Thermomechanical model and geometrical theory”. In: Tectonophysics 746 (2018), pp. 83–105. doi: 10.1016/j.tecto.2017.10.020.
Taras V Gerya. “Three-dimensional thermomechanical modeling of oceanic spreading initiation and evolution”. In: Phys. Earth. Planet. Inter. 214 (2013), pp. 35–52.
Taras V Gerya, David Bercovici, and Thorsten W Becker. “Dynamic slab segmentation due to brittle–ductile damage in the outer rise”. In: Nature 599.7884 (2021), pp. 245–250. doi: 10.1038/s41586-021-03937-x.
Taras V Gerya, Ronald Uken, Juergen Reinhardt, Michael K Watkeys, Walter V Maresch, and Brendan M Clarke. “”Cold” diapirs triggered by intrusion of the Bushveld Complex: Insight from two-dimensional numerical modeling”. In: Special Papers – Geological Society of America (2004), pp. 117–128.
TV Gerya. “Initiation of transform faults at rifted continental margins: 3D petrological-thermomechanical modeling and comparison to the Woodlark Basin”. In: Petrology 21.6 (2013), pp. 550–560.
TV Gerya. “Intra-oceanic subduction zones”. In: Arc-continent collision. Springer, 2011, pp. 23–51.
TV Gerya. “Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus”. In: Earth Planet. Sci. Lett. 391 (2014), pp. 183–192.
TV Gerya, LL Perchuk, and J-P Burg. “Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high-temperature crust–mantle associations in collision belts”. In: Lithos 103.1-2 (2008), pp. 236–256.
Klaus Gessner, Chris Wijns, and Louis Moresi. “Significance of strain localization in the lower crust for structural evolution and thermal history of metamorphic core complexes”. In: Tectonics 26.2 (2007).
R.K. Ghazian and S.J.H. Buiter. “A numerical investigation of continental collision styles”. In: Geophy. J. Int. 193 (2013), pp. 1133–1152. doi: 10.1093/gji/ggt068.
R.K. Ghazian and S.J.H. Buiter. “Numerical modelling of the role of salt in continental collision: An application to the southeast Zagros fold-and-thrust belt”. In: Tectonophysics 632 (2014), pp. 96–110. doi: 10.1016/j.tecto.2014.06.006.
S Ghelichkhan, HP Bunge, and J Oeser. “Global mantle flow retrodictions for the early Cenozoic using an adjoint method: evolving dynamic topographies, deep mantle structures, flow trajectories and sublithospheric stresses”. In: Geophy. J. Int. 226.2 (2021), pp. 1432–1460. doi: 10.1093/gji/ggab108.
S. Ghelichkhan and H.-P. Bunge. “The adjoint equations for thermochemical compressible mantle convection: Derivation and verification by twin experiments”. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474.2220 (2018). doi: 10.1098/rspa.2018.0329.
S. Ghelichkhan, M. Murböck, L. Colli, R. Pail, and H.-P. Bunge. “On the observability of epeirogenic movement in current and future gravity missions”. In: Gondwana Research 53 (2018), pp. 273–284. doi: 10.1016/j.gr.2017.04.016.
Sia Ghelichkhan, Angus Gibson, D Rhodri Davies, Stephan C Kramer, and David A Ham. “Automatic adjoint-based inversion schemes for geodynamics: reconstructing the evolution of Earth’s mantle in space and time”. In: Geosci. Model. Dev. 17.13 (2024), pp. 5057–5086. doi: 10.5194/gmd-17-5057-2024.
Siavash Ghelichkhan and Hans-Peter Bunge. “The compressible adjoint equations in geodynamics: derivation and numerical assessment”. In: GEM-International Journal on Geomathematics 7.1 (2016), pp. 1–30. doi: 10.1007/s13137-016-0080-5.
U. Ghia, K.N. Ghia, and C.T. Shin. “High-Re Solutions for incompressible flow using the Navier-Stokes equations and a multigrid method”. In: J. Comp. Phys. 48 (1982), pp. 387–411.
A Ghosh, TW Becker, and ED Humphreys. “Dynamics of the North American continent”. In: Geophy. J. Int. 194.2 (2013), pp. 651–669. doi: 10.1093/gji/ggt151.
A. Ghosh, T. W. Becker, and S. J. Zhong. “Effects of lateral viscosity variations on the geoid”. In: Geophys. Res. Lett. 37.L01301 (2010). doi: 10.1029/2009GL040426.
Attreyee Ghosh and Debanjan Pal. “Do lower mantle slabs contribute in generating the Indian Ocean geoid low?” In: Tectonophysics 822 (2022), p. 229176. doi: 10.1016/j. tecto.2021.229176.
Attreyee Ghosh, G Thyagarajulu, and Bernhard Steinberger. “The importance of upper mantle heterogeneity in generating the Indian Ocean geoid low”. In: Geophys. Res. Lett. 44.19 (2017), pp. 9707–9715. doi: 10.1002/2017GL075392.
Subhajit Ghosh, Santanu Bose, Nibir Mandal, and Arijit Laik. “Mid-crustal ramping of the Main Himalayan Thrust in Nepal to Bhutan Himalaya: New insights from analogue and numerical experiments”. In: Tectonophysics (2020), p. 228425. doi: 10.1016/j.tecto. 2020.228425.
Guido M Gianni, Jeremas Likerman, César R Navarrete, Conrado R Gianni, and Sergio Zlotnik. “Ghost-arc geochemical anomaly at a spreading ridge caused by supersized flat subduction”. In: Nature Communications 14.1 (2023), p. 2083. doi: 10.1038/s41467- 023-37799-w.
G. Gibert, M. Gerbault, R. Hassani, and E. Tric. “Dependency of slab geometry on absolute velocities and conditions for cyclicity: insights from numerical modelling”. In: Geophy. J. Int. 189 (2012), pp. 747–760. doi: 10.1111/j.1365-246X.2012.05426.x.
Cedric Gillmann and Paul Tackley. “Atmosphere/mantle coupling and feedbacks on Venus”. In: J. Geophys. Res.: Planets 119.6 (2014), pp. 1189–1217.
Tom Gillooly, Nicolas Coltice, and Christian Wolf. “An anticipation experiment for plate tectonics”. In: Tectonics 38.11 (2019), pp. 3916–3938. doi: 10.1029/2018TC005427.
Carlo Giunchi, Roberto Sabadini, Enzo Boschi, and Paolo Gasperini. “Dynamic models of subduction: geophysical and geological evidence in the Tyrrhenian Sea”. In: Geophy. J. Int. 126.2 (1996), pp. 555–578. doi: 10.1111/j.1365-246X.1996.tb05310.x.
G.A. Glatzmaier. “Numerical simulations of mantle convection: Time-dependent, three-dimensional, compressible, spherical shell”. In: Geophysical & Astrophysical Fluid Dynamics 43 (1988), pp. 223–264. doi: 10.1080/03091928808213626.
A. Glerum, C. Thieulot, M. Fraters, C. Blom, and W. Spakman. “Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction”. In: Solid Earth 9.2 (2018), pp. 267–294. doi: 10.5194/se-9-267-2018.
Anne Glerum, Sascha Brune, D Sarah Stamps, and Manfred R Strecker. “Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the East African Rift”. In: Nature Communications 11.1 (2020), pp. 1–15. doi: 10.1038/s41467-020- 16176-x.
Anne C Glerum, Sascha Brune, Joseph M Magnall, Philipp Weis, and Sarah A Gleeson. “Geodynamic controls on clastic-dominated base metal deposits”. In: Solid Earth 15.8 (2024), pp. 921–944. doi: 10.5194/se-15-921-2024.
Petar Glišović and Alessandro M Forte. “Reconstructing the Cenozoic evolution of the mantle: Implications for mantle plume dynamics under the Pacific and Indian plates”. In: Earth Planet. Sci. Lett. 390 (2014), pp. 146–156. doi: 10.1016/j.epsl.2014.01.010.
Bjorn Gmeiner, Ulrich Rüde, Holger Stengel, Christian Waluga, and Barbara Wohlmuth. “Performance and scalability of hierarchical hybrid multigrid solvers for Stokes systems”. In: SIAM Journal on Scientific Computing 37.2 (2015), pp. C143–C168. doi: 10.1137/ 130941353.
Björn Gmeiner and Ulrich Rüde. “Peta-scale hierarchical hybrid multigrid using hybrid parallelization”. In: International Conference on Large-Scale Scientific Computing. 2014, pp. 439–447.
Vincent Godard, R Cattin, and J Lavé. “Numerical modeling of mountain building: Interplay between erosion law and crustal rheology”. In: Geophys. Res. Lett. 31.23 (2004). doi: 10.1029/2004GL021006.
Vincent Godard, Jérome Lavé, and Rodolphe Cattin. “Numerical modelling of erosion processes in the Himalayas of Nepal: Effects of spatial variations of rock strength and precipitation”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 341–358. doi: 10.1144/GSL.SP.2006.253.01.18.
S. Goes, F. Cammarano, and U. Hansen. “Synthetic seismic signature of thermal mantle plumes”. In: Earth Planet. Sci. Lett. 218.3-4 (2004), pp. 403–419. doi: 10.1016/S0012- 821X(03)00680-0.
Oguz H. Gogus. “Rifting and subsidence following lithospheric removal in continental back arcs”. In: Geology (2014). doi: 10.1130/G36305.1.
Oğuz H Göğüş and Russell N Pysklywec. “Mantle lithosphere delamination driving plateau uplift and synconvergent extension in eastern Anatolia”. In: Geology 36.9 (2008), pp. 723–726. doi: 10.1130/G24982A.1.
GJ Golabek, TV Gerya, BJP Kaus, R Ziethe, and PJ Tackley. “Rheological controls on the terrestrial core formation mechanism”. In: Geochem. Geophys. Geosyst. 10.11 (2009).
Gregor J Golabek, Bernard Bourdon, and Taras V Gerya. “Numerical models of the thermomechanical evolution of planetesimals: Application to the acapulcoite-lodranite parent body”. In: Meteoritics & Planetary Science 49.6 (2014), pp. 1083–1099.
Gregor J Golabek, Alexandre Emsenhuber, Martin Jutzi, Erik I Asphaug, and Taras V Gerya. “Coupling SPH and thermochemical models of planets: Methodology and example of a Mars-sized body”. In: Icarus 301 (2018), pp. 235–246. doi: 10.1016/j.icarus.2017. 10.003.
Gregor J Golabek, Tobias Keller, Taras V Gerya, Guizhi Zhu, Paul J Tackley, and James AD Connolly. “Origin of the Martian dichotomy and Tharsis from a giant impact causing massive magmatism”. In: Icarus 215.1 (2011), pp. 346–357.
Samuel L Goldberg and Adam F Holt. “Characterizing the complexity of subduction zone flow with an ensemble of multiscale global convection models”. In: Geochem. Geophys. Geosyst. 25.2 (2024), e2023GC011134. doi: 10.1029/2023GC011134.
Júlia Gómez-Romeu, Suzon Jammes, Maxime Ducoux, Rodolphe Lescoutre, Sylvain Calassou, and Emmanuel Masini. “Inverted Magma-rich Versus Magma-poor Rifted Margins: Implications for Early Orogenic Systems”. In: Tektonika 1.1 (2023). doi: 10.55575/ tektonika2023.1.1.12.
Gabriel González et al. “Crack formation on top of propagating reverse faults of the Chuculay Fault System, northern Chile: Insights from field data and numerical modelling”. In: Journal of Structural Geology 30.6 (2008), pp. 791–808. doi: 10.1016/j.jsg.2008.02.008.
W Gorczyk, DR Mole, and SJ Barnes. “Plume-lithosphere interaction at craton margins throughout Earth history”. In: Tectonophysics 746 (2018), pp. 678–694. doi: 10.1016/ j.tecto.2017.04.002.
W. Gorczyk, T.V. Gerya, J.A.D. Connolly, and D.A. Yuen. “Growth and mixing dynamics of mantle wedge plumes”. In: Geology 35.7 (2007), pp. 587–590. doi: 10.1130/G23485A.1.
W. Gorczyk, T.V. Gerya, J.A.D. Connolly, D.A. Yuen, and M. Rudolph. “Large-scale rigid-body rotation in the mantle wedge and its implications for seismic tomography ”. In: Geochem. Geophys. Geosyst. 7.5 (2006), 10.1029/2005GC001075.
W. Gorczyk, H. Smithies, F. Korhonen, H. Howard, and R. Quentin De Gromard. “Ultra-hot Mesoproterozoic evolution of intracontinental central Australia”. In: Geoscience Frontiers 6.1 (2014), pp. 23–37. doi: 10.1016/j.gsf.2014.03.001.
Weronika Gorczyk, Stéphane Guillot, Taras V Gerya, and Kéiko Hattori. “Asthenospheric upwelling, oceanic slab retreat, and exhumation of UHP mantle rocks: Insights from Greater Antilles”. In: Geophys. Res. Lett. 34.21 (2007).
Weronika Gorczyk, Bruce Hobbs, and Taras Gerya. “Initiation of Rayleigh–Taylor instabilities in intra-cratonic settings”. In: Tectonophysics 514 (2012), pp. 146–155.
Weronika Gorczyk, Arne P Willner, Taras V Gerya, James AD Connolly, and Jean-Pierre Burg. “Physical controls of magmatic productivity at Pacific-type convergent margins: Numerical modelling”. In: Phys. Earth. Planet. Inter. 163.1-4 (2007), pp. 209–232.
Jean-Luc Got, Vadim Monteiller, Julien Monteux, Riad Hassani, and Paul Okubo. “Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes”. In: Nature 451.7177 (2008), pp. 453–456. doi: 10.1038/nature06481.
R. Goteti, C. Beaumont, and S.J. Ings. “Factors controlling early stage salt tectonics at rifted continental margins and their thermal consequences”. In: J. Geophys. Res.: Solid Earth 117 (2013), pp. 1–31. doi: 10.1002/jgrb.50201.
R. Goteti, S.J. Ings, and C. Beaumont. “Development of salt minibasins initiated by sedimentary topographic relief”. In: Earth Planet. Sci. Lett. 339-340 (2012), pp. 103–116. doi: 10.1016/j.epsl.2012.04.045.
K-D Gottschaldt, U Walzer, RF Hendel, David Robert Stegman, JR Baumgardner, and H-B Mühlhaus. “Stirring in 3-d spherical models of convection in the Earth’s mantle”. In: Philosophical Magazine 86.21-22 (2006), pp. 3175–3204. doi: 10.1080/ 14786430500197991.
Klaus-D Gottschaldt, Uwe Walzer, Dave R Stegman, John R Baumgardner, and Hans B Mühlhaus. “Mantle Dynamics–A Case Study”. In: Advances in Geocomputing. 2009, pp. 139–181. doi: 10.1007/978-3-540-85879-9_5.
M. Gouiza and J. Naliboff. “Rheological inheritance controls the formation of segmented rifted margins in cratonic lithosphere”. In: Nature Communications 12 (2021), p. 4653. doi: 10.1038/s41467-021-24945-5.
R Govers and MJR Wortel. “Initiation of asymmetric extension in continental lithosphere”. In: Tectonophysics 223.1-2 (1993), pp. 75–96. doi: 10.1016/0040-1951(93)90159-H.
R. Govers and M.J.R. Wortel. “Extension of stable continental lithosphere and the initiation of lithospheric scale faults”. In: Tectonics 14.4 (1995), pp. 1041–1055.
R. Govers and M.J.R. Wortel. “Lithosphere tearing at STEP faults: Response to edges of subduction zones ”. In: Earth Planet. Sci. Lett. 236 (2005), pp. 505–523.
R. Govers and M.J.R. Wortel. “Some remarks on the relation between vertical motions of the lithosphere during extension and the necking depth parameter inferred from kinematic modeling studies”. In: J. Geophys. Res.: Solid Earth 104 (1999), pp. 23, 245–23, 253.
Rob Govers, K P Furlong, L van de Wiel, M W Herman, and T Broerse. “The Geodetic Signature of the Earthquake Cycle at Subduction Zones: Model Constraints on the Deep Processes”. In: Reviews Of Geophysics 56 (2018), pp. 6–49.
Rob Govers and PT Meijer. “On the dynamics of the Juan de Fuca plate”. In: Earth Planet. Sci. Lett. 189.3-4 (2001), pp. 115–131. doi: 10.1016/S0012-821X(01)00360-0.
Shea Goyette, Masa Takatsuka, Stuart Clark, R Dietmar Müller, Patrice Rey, and Dave R Stegman. “Increasing the usability and accessibility of geodynamic modelling tools to the geoscience community: UnderworldGUI”. In: Visual Geosciences 13.1 (2008), pp. 25–36. doi: 10.1007/s10069-007-0006-3.
S. Gradmann and C. Beaumont. “Coupled fluid flow and sediment deformation in margin-scale salt-tectonic systems: 2. Layered sediment models and application to the northwestern Gulf of Mexico”. In: Tectonics 31.TC4011 (2012).
S. Gradmann and C. Beaumont. “Numerical modelling study of mechanisms of mid-basin salt canopy evolution and their potential applications to the Northwestern Gulf of Mexico”. In: Basin Research 29.4 (2017), pp. 490–520. doi: 10.1111/bre.12186.
S. Gradmann, C. Beaumont, and M. Albertz. “Factors controlling the evolution of the Perdido Fold Belt, northwestern Gulf of Mexico, determined from numerical models”. In: Tectonics 28.TC2002 (2009).
S. Gradmann, C. Beaumont, and S.J. Ings. “Coupled fluid flow and sediment deformation in margin-scale salt-tectonic systems: 1. Development and application of simple, single-lithology models”. In: Tectonics 31.4 (2012). doi: 10.1029/2011TC003033.
Jeffrey P Grana and Randall M Richardson. “Tectonic stress within the New Madrid seismic zone”. In: J. Geophys. Res.: Solid Earth 101.B3 (1996), pp. 5445–5458. doi: 10.1029/ 95JB03255.
Pablo Granado, Jonas B Ruh, Pablo Santolaria, Philipp Strauss, and Josep Anton Muńoz. “Stretching and contraction of extensional basins with pre-rift salt: A numerical modeling approach”. In: Frontiers in Earth Science 9 (2021), p. 648937. doi: 10.3389/feart. 2021.648937.
Pablo Granado and Jonas Bruno Ruh. “Numerical modelling of inversion tectonics in fold-and-thrust belts”. In: Tectonophysics 763 (2019), pp. 14–29. doi: 10.1016/j.tecto. 2019.04.033.
Glen D Granzow. “A tutorial on adjoint methods and their use for data assimilation in glaciology”. In: Journal of Glaciology 60.221 (2014), pp. 440–446. doi: 10.3189/ 2014JoG13J205.
R. Gray and R.N. Pysklywec. “Geodynamic models of Archean continental collision and the formation of mantle lithosphere keels”. In: Geophys. Res. Lett. 37.L19301 (2010). doi: 10.1029/2010GL043965.
R. Gray and R.N. Pysklywec. “Geodynamic models of mature continental collision: Evolution of an orogen from lithospheric subduction to continental retreat/delamination”. In: J. Geophys. Res.: Solid Earth 117.B03408 (2012). doi: 10.1029/2011JB008692.
R. Gray and R.N. Pysklywec. “Influence of sediment deposition on deep lithospheric tectonics”. In: Geophys. Res. Lett. 39.L11312 (2012). doi: 10.1029/2012GL051947.
R. Gray and R.N. Pysklywec. “Influence of viscosity pressure dependence on deep lithospheric tectonics during continental collision”. In: J. Geophys. Res.: Solid Earth 118 (2013). doi: 10.1002/jgrb.50220.
Ingo Grevemeyer, Lars H Rüpke, Jason P Morgan, Karthik Iyer, and Colin W Devey. “Extensional tectonics and two-stage crustal accretion at oceanic transform faults”. In: Nature 591.7850 (2021), pp. 402–407. doi: 10.1038/s41586-021-03278-9.
WL Griffin et al. “The world turns over: Hadean–Archean crust–mantle evolution”. In: Lithos 189 (2014), pp. 2–15. doi: 10.1016/j.lithos.2013.08.018.
Cécile Grigné, Stéphane Labrosse, and Paul J Tackley. “Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth”. In: J. Geophys. Res.: Solid Earth 110.B3 (2005).
Cécile Grigné, Stéphane Labrosse, and PJ Tackley. “Convection under a lid of finite conductivity in wide aspect ratio models: Effect of continents on the wavelength of mantle flow”. In: J. Geophys. Res.: Solid Earth 112.B8 (2007).
Cécile Grigné, Stéphane Labrosse, and PJ Tackley. “Convection under a lid of finite conductivity: Heat flux scaling and application to continents”. In: J. Geophys. Res.: Solid Earth 112.B8 (2007).
S.G. Grigull, S.M. Ellis, T.A. Little, M.P. Hill, and S.J.H. Buiter. “Rheological constraints on quartz derived from scaling relationships and numerical models of sheared brittle-ductile quartz veins, central Southern alps, New Zealand”. In: Journal of Structural Geology 37 (2012), pp. 200–222.
Antoniette Greta Grima and Thorsten W Becker. “The Role of Continental Heterogeneity on the Evolution of Continental Margin Topography at Subduction Zones”. In: Earth Planet. Sci. Lett. 642 (2024), p. 118856. doi: 10.1016/j.epsl.2024.118856.
Antoniette Greta Grima, Carolina Lithgow-Bertelloni, and Fabio Crameri. “Orphaning Regimes: The Missing Link Between Flattened and Penetrating Slab Morphologies”. In: Frontiers in Earth Science 8 (2020), p. 374. doi: 10.3389/feart.2020.00374.
T. Gu, M. Li, C. McCammon, and K. K. M. Lee. “Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen”. In: Nature Geoscience (2016). doi: 10.1038/ngeo2772.
JM Guerrero, JP Lowman, and PJ Tackley. “Did the cessation of convection in Mercury’s mantle allow for a dynamo supporting increase in heat loss from its core?” In: Earth Planet. Sci. Lett. 571 (2021), p. 117108. doi: 10.1016/j.epsl.2021.117108.
JM Guerrero, Julian P Lowman, Frédéric Deschamps, and PJ Tackley. “The Influence of Curvature on Convection in a Temperature-Dependent Viscosity Fluid: Implications for the 2-D and 3-D Modeling of Moons”. In: J. Geophys. Res.: Planets 123.7 (2018), pp. 1863–1880. doi: 10.1029/2017JE005497.
JM Guerrero, Julian P Lowman, and Paul J Tackley. “Spurious transitions in convective regime due to viscosity clipping: ramifications for modeling planetary secular cooling”. In: Geochem. Geophys. Geosyst. 20.7 (2019), pp. 3450–3468. doi: 10.1029/2019GC008385.
Joshua Martin Guerrero, Frédéric Deschamps, Yang Li, Wen-Pin Hsieh, and Paul James Tackley. “Influence of heterogeneous thermal conductivity on the long-term evolution of the lower-mantle thermochemical structure: implications for primordial reservoirs”. In: Solid Earth 14.2 (2023), pp. 119–135. doi: 10.5194/se-14-119-2023.
M.J. Guillot, B. Rivičre, and M.F. Wheeler. “Discontinuous Galerkin methods for mass conservation equations for environmental modelling”. In: Computational Methods in Water Resources, Developments in Water Science. Ed. by Gray W.G. Hassanizadeh S.M. Schotting R.J. and Pinder G.F. 2002, pp. 939–946.
L. Guillou-Frottier et al. “Plume-induced dynamic instabilities near cratonic blocks: Implications for P-T-t paths and metallogeny”. In: Global and Planetary Change 90-91 (2012), pp. 37–50. doi: 10.1016/j.gloplacha.2011.10.007.
A.J. Gülcher, T.V. Gerya, L.G.J. Montési, and J. Munch. “Corona structures driven by plume-lithosphere interactions and evidence for ongoing plume activity on Venus”. In: Nature Geoscience (2020). doi: 10.1038/s41561-020-0606-1.
A.J.P. Gülcher, S.J. Beaussier, and T.V. Gerya. “On the formation of oceanic detachment faults and their influence on intra-oceanic subduction initiation: 3D thermomechanical modeling”. In: Earth Planet. Sci. Lett. 506.10.1016/j.epsl.2018.10.042 (2019), pp. 195–208.
Anna Johanna Pia Gülcher, Maxim Dionys Ballmer, and Paul James Tackley. “Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth’s lower mantle”. In: Solid Earth 12.9 (2021), pp. 2087–2107. doi: 10.5194/se-12-2087-2021.
Anna JP Gülcher, David J Gebhardt, Maxim D Ballmer, and Paul J Tackley. “Variable dynamic styles of primordial heterogeneity preservation in the Earth’s lower mantle”. In: Earth Planet. Sci. Lett. 536 (2020), p. 116160. doi: 10.1016/j.epsl.2020.116160.
Anna JP Gülcher, Gregor J Golabek, Marcel Thielmann, Maxim Dionys Ballmer, and Paul James Tackley. “Narrow, Fast, and “Cool” Mantle Plumes Caused by Strain-Weakening Rheology in Earth’s Lower Mantle”. In: Geochem. Geophys. Geosyst. 23.10 (2022), e2021GC010314. doi: 10.1029/2021GC010314.
Anna JP Gülcher, Ting-Ying Yu, and Taras V Gerya. “Tectono-Magmatic Evolution of Asymmetric Coronae on Venus: Topographic Classification and 3D Thermo-Mechanical Modeling”. In: J. Geophys. Res.: Planets 128.11 (2023), e2023JE007978. doi: 10.1029/ 2023JE007978.
Erkan Gün, Russell N Pysklywec, Oğuz H Göğüş, and Gültekin Topuz. “Pre-collisional extension of microcontinental terranes by a subduction pulley”. In: Nature Geoscience (2021), pp. 1–8. doi: 10.1038/s41561-021-00746-9.
Erkan Gün, Russell N Pysklywec, Oğuz H Göğüş, and Gültekin Topuz. “Terrane geodynamics: Evolution on the subduction conveyor from pre-collision to post-collision and implications on Tethyan orogeny”. In: Gondwana Research 105 (2022), pp. 399–415. doi: 10.1016/j.gr.2021.09.018.
Prasanna M Gunawardana, Priyadarshi Chowdhury, Gabriele Morra, and Peter A Cawood. “Correlating mantle cooling with tectonic transitions on early Earth”. In: Geology XX (2024), p. XX. doi: 10.1130/G51874.1.
Prasanna M. Gunawardana, Gabriele Morra, Priyadarshi Chowdhury, and Peter A. Cawood. “Calibrating the Yield Strength of Archean Lithosphere Based on the Volume of Tonalite-Trondhjemite-Granodiorite Crust”. In: Frontiers in Earth Science 8 (2020), p. 401. doi: 10.3389/feart.2020.548724.
Changsheng Guo, Pengchao Sun, and Dongping Wei. “Formation conditions of the young flat-slab in the wedge subduction zone”. In: Tectonophysics 868 (2023), p. 230091. doi: 10.1016/j.tecto.2023.230091.
Peng Guo, Leihua Yao, and Desheng Ren. “Simulation of three-dimensional tectonic stress fields and quantitative prediction of tectonic fracture within the Damintun Depression, Liaohe Basin, northeast China”. In: Journal of Structural Geology 86 (2016), pp. 211–223. doi: 10.1016/j.jsg.2016.03.007.
M. Gurnis. “Plate-mantle coupling and continental flooding”. In: Geophys. Res. Lett. 17.5 (1990), pp. 623–626. doi: 10.1029/GL017i005p00623.
M. Gurnis, C. Hall, and L. Lavier. “Evolving force balance during incipient subduction”. In: Geochem. Geophys. Geosyst. 5.7 (2004), Q07001. doi: 10.1029/2003GC000681.
M. Gurnis, J.X. Mitrovica, J. Ritsema, and H.-J. van Heijst. “Constraining mantle density structure using geological evidence of surface uplift rates: The case of the African superplume”. In: Geochem. Geophys. Geosyst. 1 (2000). doi: 10.1029/1999GC000035.
M. Gurnis and T. H. Torsvik. “Rapid drift of large continents during the late Precambrian and Paleozoic: Paleomagnetic constraints and dynamic models”. In: Geology 22.11 (1994), p. 1023. doi: 10.1130/0091-7613(1994)022<1023:RDOLCD>2.3.CO;2.
Michael Gurnis, Christophe Eloy, and Shijie Zhong. “Free-surface formulation of mantle convection - II. Implication for subduction-zone observables”. In: Geophy. J. Int. 127.3 (1996), pp. 719–727. doi: 10.1111/j.1365-246X.1996.tb04050.x.
Michael Gurnis, Louis Moresi, and R Dietmar Müller. “Models of mantle convection incorporating plate tectonics: The Australian region since the Cretaceous”. In: The history and dynamics of global plate motion, Geophysical monograph 121 (2000).
Michael Gurnis, R Dietmar Müller, and Louis Moresi. “Cretaceous vertical motion of Australia and the Australian-Antarctic discordance”. In: Science 279.5356 (1998), pp. 1499–1504.
C.E. Hall, M. Gurnis, M. Sdrolias, L.L. Lavier, and R.D. Mueller. “Catastrophic initiation of subduction following forced convergence across fracture zones”. In: Earth Planet. Sci. Lett. 212 (2003), pp. 15–30. doi: 10.1016/S0012-821X(03)00242-5.
Lamine Hamai et al. “Towards subduction inception along the inverted North African margin of Algeria? Insights from thermo-mechanical models”. In: Earth Planet. Sci. Lett. 501 (2018), pp. 13–23. doi: 10.1016/j.epsl.2018.08.028.
I. Hamdani, E. Aharonov, J.-A. Olive, S. Parez, and Z. Gvirtzman. “Initiating Salt Tectonics by Tilting: Viscous Coupling Between a Tilted Salt Layer and Overlying Brittle Sediment”. In: J. Geophys. Res.: Solid Earth 126 (2021), e2020JB021503. doi: 10 . 1029 / 2020JB021503.
Andrea Hampel and Ralf Hetzel. “Horizontal surface velocity and strain patterns near thrust and normal faults during the earthquake cycle: The importance of viscoelastic relaxation in the lower crust and implications for interpreting geodetic data”. In: Tectonics 34.4 (2015), pp. 731–752. doi: 10.1002/2014TC003605.
Andrea Hampel, Jens Lüke, Thomas Krause, and Ralf Hetzel. “Finite-element modelling of glacial isostatic adjustment (GIA): Use of elastic foundations at material boundaries versus the geometrically non-linear formulation”. In: Computers and Geosciences 122 (2019), pp. 1–14. doi: 10.1016/j.cageo.2018.08.002.
Andrea Hampel and Adrian Pfiffner. “Relative importance of trenchward upper plate motion and friction along the plate interface for the topographic evolution of subduction-related mountain belts”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 105–115. doi: 10.1144/GSL.SP.2006.253.01.05.
L. Han and M. Gurnis. “How valid are dynamic models of subduction and convection when plate motions are prescribed?” In: Phys. Earth. Planet. Inter. 110.3-4 (1999), pp. 235–246. doi: 10.1016/S0031-9201(98)00156-3.
L. Han and A. P. Showman. “Coupled convection and tidal dissipation in Europa’s ice shell”. In: Icarus 207.2 (2010), pp. 834–844. doi: 10.1016/j.icarus.2009.12.028.
L. Han and A. P. Showman. “Coupled convection and tidal dissipation in Europa’s ice shell using non-Newtonian grain-size-sensitive (GSS) creep rheology”. In: Icarus 212.1 (2011), pp. 262–267. doi: 10.1016/j.icarus.2010.11.034.
L. Han and A. P. Showman. “Implications of shear heating and fracture zones for ridge formation on Europa”. In: Geophys. Res. Lett. 35.3 (2008). doi: 10.1029/2007GL031957.
L. Han, G. Tobie, and A. P. Showman. “The impact of a weak south pole on thermal convection in Enceladus’ ice shell”. In: Icarus 218.1 (2012), pp. 320–330. doi: 10.1016/ j.icarus.2011.12.006.
Peter Hansbo, Mats Larson, and Mats G Larson. “A simple nonconforming bilinear element for the elasticity problem”. In: Trends in Computational Structural Mechanics. 2001.
Peter Hansbo and Mats G Larson. “Discontinuous Galerkin and the Crouzeix–Raviart element: application to elasticity”. In: ESAIM: Mathematical Modelling and Numerical Analysis 37.1 (2003), pp. 63–72. doi: 10.1051/m2an:2003020.
D.L. Hansen. “A meshless formulation for geodynamic modeling”. In: J. Geophys. Res.: Solid Earth 108 (2003). doi: 10.1029/2003JB002460.
Samantha E Hansen, Edward J Garnero, Mingming Li, Sang-Heon Shim, and Sebastian Rost. “Globally distributed subducted materials along the Earth’s core-mantle boundary: Implications for ultralow velocity zones”. In: Science Advances 9.14 (2023), eadd4838. doi: 10.1126/sciadv.add4838.
C. Harig, S. Zhong, and F. J. Simons. “Constraints on upper mantle viscosity from the flow-induced pressure gradient across the Australian continental keel: CONTINENTAL KEEL MOTION AND THE GEOID”. In: Geochem. Geophys. Geosyst. 11.6 (2010). doi: 10.1029/2010GC003038.
V. Haroutunian, M.S. Engelman, and I. Hasbani. “Segregated Finite Element algorithms for the numerical solution of large-scale incompressible flow problems”. In: Int. J. Num. Meth. Fluids 17 (1993), pp. 323–348. doi: 10.1002/fld.1650170405.
R. Hassan, N. Flament, M. Gurnis, D.J. Bower, and D. Múller. “Provenance of plumes in global convection models”. In: Geochem. Geophys. Geosyst. 16 (2015), pp. 1465–1489. doi: 10.1002/2015GC005751.
R. Hassani and J. Chéry. “Anelasticity explains topography associated with Basin and Range normal faulting”. In: Geology 24.12 (1996), pp. 1095–1098. doi: 10.1130/0091- 7613(1996)024<1095:AETAWB>2.3.CO;2.
R. Hassani, D. Jongmans, and Jean Chéry. “Study of plate deformation and stress in subduction processes using two-dimensional numerical models”. In: J. Geophys. Res.: Solid Earth 102.B8 (1997), pp. 17, 951–17, 96. doi: 10.1029/97JB01354.
K.L. Haynie and M.A. Jadamec. “Tectonic drivers of the Wrangell block: Insights on fore-arc sliver processes from 3-D geodynamic models of Alaska”. In: Tectonics 36 (2017). doi: 10.1002/2016TC004410.
John JY He and Paul Kapp. “Basin record of a Miocene lithosphere drip beneath the Colorado Plateau”. In: Nature Communications 14.1 (2023), p. 4433. doi: 10.1038/ s41467-023-40147-7.
Lijuan He. “Influence of lithosphere-asthenosphere interaction on the overriding lithosphere in a subduction zone: Numerical modeling”. In: Geochem. Geophys. Geosyst. 13.2 (2012). doi: 10.1029/2011GC003909.
Y. He, E.G. Puckett, and M.I. Billen. “A discontinuous Galerkin method with a bound preserving limiter for the advection of non-diffusive fields in solid Earth geodynamics”. In: Phys. Earth. Planet. Inter. 263 (2017), pp. 23–37.
L. B. Hebert, P. Antoshechkina, P. Asimow, and M. Gurnis. “Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics”. In: Earth Planet. Sci. Lett. 278.3-4 (2009), pp. 243–256. doi: 10.1016/j.epsl.2008.12.013.
Esther L Heckenbach, Sascha Brune, Anne C Glerum, and Judith Bott. “Is there a Speed Limit for the Thermal Steady-State Assumption in Continental Rifts?” In: Geochem. Geophys. Geosyst. 22.3 (2021), e2020GC009577. doi: 10.1029/2020GC009577.
Esther L Heckenbach et al. 3D interaction of tectonics with surface processes explains fault network evolution of the Dead Sea Fault. Tech. rep. 2024, pp. 33–51. doi: 10.55575/ tektonika2024.2.2.75.
Navid Hedjazian, Fanny Garel, D Rhodri Davies, and Edouard Kaminski. “Age-independent seismic anisotropy under oceanic plates explained by strain history in the asthenosphere”. In: Earth Planet. Sci. Lett. 460 (2017), pp. 135–142. doi: 10.1016/j.epsl.2016.12.004.
D. Kurfend O. Heidbach. “CASQUS: a new simulation tool for coupled 3D finite element modeling of tectonic and surface processes based on ABAQUS and CASCADE”. In: Computers and Geosciences 35 (2009), pp. 1959–1967. doi: 10.1016/j.cageo.2008. 10.019.
O. Heidbach, G. Iaffaldano, and H.-P. Bunge. “Topography growth drives stress rotations in the central Andes: Observations and models”. In: Geophys. Res. Lett. 35.8 (2008). doi: 10.1029/2007GL032782.
Erin Heilman and Thorsten W Becker. “Plume-Slab Interactions Can Shut Off Subduction”. In: Geophys. Res. Lett. 49.13 (2022), e2022GL099286. doi: 10.1029/2022GL099286.
C. Heine and S. Brune. “Oblique rifting of the Equatorial Atlantic: Why there is no Saharan Atlantic Ocean”. In: Geology 42.3 (2014), pp. 211–214.
T. Heister, J. Dannberg, R. Gassmöller, and W. Bangerth. “High Accuracy Mantle Convection Simulation through Modern Numerical Methods. II: Realistic Models and Problems”. In: Geophy. J. Int. 210.2 (2017), pp. 833–851. doi: 10.1093/gji/ggx195.
Matthew W Herman, Kevin P Furlong, and Rob Govers. “The Accumulation of Slip Deficit in Subduction Zones in the Absence of Mechanical Coupling: Implications for the Behavior of Megathrust Earthquakes”. In: J. Geophys. Res.: Solid Earth 123.9 (2018), pp. 8260–8278. doi: 10.1029/2018JB016336.
Matthew W Herman and Rob Govers. “Stress evolution during the megathrust earthquake cycle and its role in triggering extensional deformation in subduction zones”. In: Earth Planet. Sci. Lett. 544 (2020), p. 116379. doi: 10.1016/j.epsl.2020.116379.
John W Hernlund and Paul J Tackley. “Modeling mantle convection in the spherical annulus”. In: Phys. Earth. Planet. Inter. 171.1-4 (2008), pp. 48–54. doi: 10.1016/j. pepi.2008.07.037.
John W Hernlund and Paul J Tackley. “Some dynamical consequences of partial melting in Earth’s deep mantle”. In: Phys. Earth. Planet. Inter. 162.1-2 (2007), pp. 149–163. doi: 10.1016/j.pepi.2007.04.005.
John W Hernlund, Paul J Tackley, and David J Stevenson. “Buoyant melting instabilities beneath extending lithosphere: 1. Numerical models”. In: J. Geophys. Res.: Solid Earth 113.B4 (2008). doi: 10.1029/2006JB004862.
P.J. Heron, R.N. Pysklywec, and R. Stephenson. “Intraplate orogenesis within accreted and scarred lithosphere: Example of the Eurekan Orogeny, Ellesmere Island”. In: Tectonophysics 664 (2015), pp. 202–213. doi: 10.1016/j.tecto.2015.09.011.
Philip J Heron and Julian P Lowman. “The effects of supercontinent size and thermal insulation on the formation of mantle plumes”. In: Tectonophysics 510.1-2 (2011), pp. 28–38. doi: 10.1016/j.tecto.2011.07.002.
Philip J Heron, Julian P Lowman, and Claudia Stein. “Influences on the positioning of mantle plumes following supercontinent formation”. In: J. Geophys. Res.: Solid Earth 120.5 (2015), pp. 3628–3648. doi: 10.1002/2014JB011727.
Philip J Heron, J Brendan Murphy, R Damian Nance, and RN Pysklywec. “Pannotia’s mantle signature: the quest for supercontinent identification”. In: Geological Society, London, Special Publications 503.1 (2020), pp. 41–61. doi: 10.1144/SP503-2020-7.
Philip J Heron, AL Peace, KJW McCaffrey, A Sharif, AJ Yu, and RN Pysklywec. “Stranding continental crustal fragments during continent breakup: Mantle suture reactivation in the Nain Province of Eastern Canada”. In: Geology (2023). doi: 10.1130/G50734.1.
Philip J Heron and Russell N Pysklywec. “Inherited structure and coupled crust-mantle lithosphere evolution: Numerical models of Central Australia”. In: Geophys. Res. Lett. 43.10 (2016), pp. 4962–4970. doi: 10.1002/2016GL068562.
Philip J Heron, Russell N Pysklywec, and Randell Stephenson. “Exploring the theory of plate tectonics: the role of mantle lithosphere structure”. In: Geological Society, London, Special Publications 470.1 (2019), pp. 137–155. doi: 10.1144/SP470.7.
Philip J Heron, Russell N Pysklywec, and Randell Stephenson. “Identifying mantle lithosphere inheritance in controlling intraplate orogenesis”. In: J. Geophys. Res.: Solid Earth 121.9 (2016), pp. 6966–6987. doi: 10.1002/2016JB013460.
Philip J Heron, Russell N Pysklywec, and Randell Stephenson. “Lasting mantle scars lead to perennial plate tectonics”. In: Nature Communications 7.1 (2016), pp. 1–7. doi: 10. 1038/ncomms11834.
Philip J Heron et al. “Segmentation of rifts through structural inheritance: Creation of the Davis Strait”. In: Tectonics 38.7 (2019), pp. 2411–2430. doi: 10.1029/2019TC005578.
Philip J Heron et al. “The role of subduction in the formation of Pangean oceanic large igneous provinces”. In: Geological Society, London, Special Publications 542.1 (2024), SP542–2023. doi: 10.1144/SP542-2023-12.
PJ Heron and JP Lowman. “Thermal response of the mantle following the formation of a “super-plate””. In: Geophys. Res. Lett. 37.22 (2010). doi: 10.1029/2010GL045136.
PJ Heron, RN Pysklywec, R Stephenson, and J van Hunen. “Deformation driven by deep and distant structures: Influence of a mantle lithosphere suture in the Ouachita orogeny, southeastern United States”. In: Geology 47.2 (2019), pp. 147–150. doi: 10.1130/G45690. 1.
M.A. Heroux and J.M. Willenbring. “A new overview of the Trilinos project”. In: Scientific Programming 20 (2012), pp. 83–88. doi: 10.3233/SPR-2012-0355.
Robert Herrendörfer, Ylona van Dinther, Taras Gerya, and Luis Angel Dalguer. “Earthquake supercycle in subduction zones controlled by the width of the seismogenic zone”. In: Nature Geoscience 8.6 (2015), p. 471. doi: 10.1038/NGEO2427.
Robert Herrendörfer, Taras Gerya, and Ylona van Dinther. “An Invariant Rate-and State-Dependent Friction Formulation for Viscoeastoplastic Earthquake Cycle Simulations”. In: J. Geophys. Res.: Solid Earth 123.6 (2018), pp. 5018–5051. doi: 10 . 1029 / 2017JB015225.
Solenn Hertgen, Philippe Yamato, Benjamin Guillaume, Valentina Magni, Nicholas Schliffke, and Jeroen van Hunen. “Influence of the thickness of the overriding plate on convergence zone dynamics”. In: Geochem. Geophys. Geosyst. 21.2 (2020), e2019GC008678. doi: 10. 1029/2019GC008678.
G. Hetényi, V. Godard, R. Cattin, and J.A.D. Connolly. “Incorporating metamorphism in geodynamic models: the mass conservation problem”. In: Geophy. J. Int. 186 (2011), pp. 6–10. doi: 10.1111/j.1365-246X.2011.05052.x.
Ralf Hetzel and Andrea Hampel. “Slip rate variations on normal faults during glacial–interglacial changes in surface loads”. In: Nature 435.7038 (2005), pp. 81–84. doi: 10.1038/nature03562.
Kobra Heydarzadeh, Jonas Bruno Ruh, Jaume Vergés, Hossein Hajialibeigi, and Gholamreza Gharabeigli. “Evolution of a structural basin: numerical modelling applied to the Dehdasht Basin, Central Zagros, Iran”. In: Journal of Asian Earth Sciences 187 (2020), p. 104088. doi: 10.1016/j.jseaes.2019.104088.
B.H. Heyn, C.P. Conrad, and R.G. Tronnes. “Stabilizing Effect of Compositional Viscosity Contrasts on Thermochemical Piles”. In: Geophys. Res. Lett. 45 (2018), pp. 7523–7532. doi: 10.1029/2018GL078799.
Björn H Heyn and Clinton P Conrad. “On the relation between basal erosion of the lithosphere and surface heat flux for continental plume tracks”. In: Geophys. Res. Lett. 49.7 (2022), e2022GL098003. doi: 10.1029/2022GL098003.
Björn H Heyn, Clinton P Conrad, and Reidar G Trřnnes. “Core-mantle boundary topography and its relation to the viscosity structure of the lowermost mantle”. In: Earth Planet. Sci. Lett. 543 (2020), p. 116358. doi: 10.1016/j.epsl.2020.116358.
Björn H Heyn, Clinton P Conrad, and Reidar G Trřnnes. “How thermochemical piles can (periodically) generate plumes at their edges”. In: J. Geophys. Res.: Solid Earth 125.6 (2020), e2019JB018726. doi: 10.1029/2019JB018726.
Björn H Heyn, Grace E Shephard, and Clinton P Conrad. “Prolonged multi-phase magmatism due to plume-lithosphere interaction as applied to the High Arctic Large Igneous Province”. In: Geochem. Geophys. Geosyst. 25.6 (2024), e2023GC011380. doi: 10.1029/ 2023GC011380.
J.M. Hines and M.I. Billen. “Sensitivity of the short- to intermediate-wavelength geoid to rheologic structure in subduction zones”. In: J. Geophys. Res.: Solid Earth 117.B05410 (2012). doi: 10.1029/2011JB008978.
D. J. J. van Hinsbergen, B. Steinberger, P. V. Doubrovine, and R. Gassmöller. “Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision”. In: J. Geophys. Res.: Solid Earth 116.B6 (2011). doi: 10.1029/2010JB008051.
C.W. Hirt, A. Amsden, and J.L. Cook. “An Arbitrary Lagrangian-Eulerian computing method for all flow speeds”. In: J. Comp. Phys. 14 (1974), pp. 227–253. doi: 10.1016/ 0021-9991(74)90051-5.
N. Ho, S.D. Olson, and H.F. Walker. “Accelerating the Uzawa algorithm”. In: SIAM J. Sci. Comput. 39.5 (2017), S461–S476. doi: 10.1137/16M1076770.
BE Hobbs and A Ord. “Numerical simulation of shear band formation in a frictional-dilational material”. In: Ingenieur-Archiv 59.3 (1989), pp. 209–220. doi: 10. 1007/BF00532251.
T. Höink and A. Lenardic. “Three-dimensional mantle convection simulations with a low-viscosity asthenosphere and the relationship between heat flow and the horizontal length scale of convection”. In: Geophys. Res. Lett. 35.L10304 (2008).
T. Höink, A. Lenardic, and M. Richards. “Depth-dependent viscosity and mantle stress amplification: implications for the role of the asthenosphere in maintaining plate tectonics: Asthenosphere and mantle stress amplification”. In: Geophy. J. Int. 191.1 (2012), pp. 30–41. doi: 10.1111/j.1365-246X.2012.05621.x.
Tobias Höink and Adrian Lenardic. “Long wavelength convection, Poiseuille-Couette flow in the low-viscosity asthenosphere and the strength of plate margins”. In: Geophy. J. Int. 180.1 (2010), pp. 23–33. doi: 10.1111/j.1365-246X.2009.04404.x.
Lukas Holbach, Michael Gurnis, and Georg Stadler. “A Bayesian level set method for identifying subsurface geometries and rheological properties in Stokes flow”. In: Geophy. J. Int. 235.1 (2023), pp. 260–272. doi: 10.1093/gji/ggad220.
Andrew Hollyday, Jacqueline Austermann, Andrew Lloyd, Mark Hoggard, Fred Richards, and Alessio Rovere. “A revised estimate of early Pliocene global mean sea level using geodynamic models of the Patagonian slab window”. In: Geochem. Geophys. Geosyst. 24 (2023), e2022GC010648. doi: 10.1029/2022GC010648.
David W Holmes, John R Williams, and Peter Tilke. “A framework for parallel computational physics algorithms on multi-core: SPH in parallel”. In: Advances in Engineering Software 42.11 (2011), pp. 999–1008. doi: 10.1016/j.advengsoft.2011.05.017.
A.F. Holt, T.W. Becker, and B.A. Buffett. “Trench migration and overriding plate stress in dynamic subduction models”. In: Geophy. J. Int. 201 (2015), pp. 172–192. doi: 10.1093/ gji/ggv011.
Adam F Holt. “The topographic signature of mantle pressure build-up beneath subducting plates: A numerical modeling study”. In: Geophys. Res. Lett. 49 (2022), e2022GL100330. doi: 10.1029/2022GL100330.
Adam F Holt and Thorsten W Becker. “The effect of a power-law mantle viscosity on trench retreat rate”. In: Geophy. J. Int. 208 (2017), pp. 491–507. doi: 10.1093/gji/ggw392.
Adam F Holt, Bruce A Buffett, and Thorsten W Becker. “Overriding plate thickness control on subducting plate curvature”. In: Geophys. Res. Lett. 42.10 (2015), pp. 3802–3810. doi: 10.1002/2015GL063834.
Adam F Holt and Cailey Brown Condit. “Slab temperature evolution over the lifetime of a subduction zone”. In: Geochem. Geophys. Geosyst. (2021), e2020GC009476. doi: 10. 1029/2020GC009476.
Satoru Honda, Manabu Morishige, and Yuji Orihashi. “Sinking hot anomaly trapped at the 410 km discontinuity near the Honshu subduction zone, Japan”. In: Earth Planet. Sci. Lett. 261.3-4 (2007), pp. 565–577. doi: 10.1016/j.epsl.2007.07.028.
André Horbach, Hans-Peter Bunge, and Jens Oeser. “The adjoint method in geodynamics: derivation from a general operator formulation and application to the initial condition problem in a high resolution mantle circulation model”. In: GEM-International Journal on Geomathematics 5.2 (2014), pp. 163–194.
André Horbach, Marcus Mohr, and Hans-Peter Bunge. “A semi-analytic accuracy benchmark for Stokes flow in 3-D spherical mantle convection codes”. In: GEM-International Journal on Geomathematics 11.1 (2020), pp. 1–35. doi: 10.1007/s13137-019-0137-3.
G Houseman and PH England. “A lithospheric-thickening model for the Indo-Asian collision”. In: World and Regional Geology 1.8 (1996), pp. 1–17. doi: xxxx.
G.A. Houseman and P. Molnar. “Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere”. In: Geophys. J. Int. 128 (1997), pp. 125–150.
GA Houseman. “Boundary conditions and efficient solution algorithms for the potential function formulation of the 3-D viscous flow equations”. In: Geophy. J. Int. 100.1 (1990), pp. 33–38. doi: 10.1111/j.1365-246X.1990.tb04565.x.
GA Houseman. “The thermal structure of mantle plumes: axisymmetric or triple-junction?” In: Geophy. J. Int. 102.1 (1990), pp. 15–24. doi: 10.1111/j.1365-246X.1990.tb00527.x.
Gregory A Houseman. “TDPOIS, a vector-processor routine for the solution of the three-dimensional Poisson and biharmonic equations in a rectangular prism”. In: Computer physics communications 43.2 (1987), pp. 257–267. doi: 10.1016/0010-4655(87)90210-4.
Gregory A Houseman and David Gubbins. “Deformation of subducted oceanic lithosphere”. In: Geophy. J. Int. 131.3 (1997), pp. 535–551. doi: 10.1111/j.1365-246X.1997. tb06598.x.
Gregory A Houseman, Emily A Neil, and Monica D Kohler. “Lithospheric instability beneath the Transverse Ranges of California”. In: J. Geophys. Res.: Solid Earth 105.B7 (2000), pp. 16237–16250. doi: 10.1029/2000JB900118.
S.M. Howell, J.-A. Olive, G. Ito, M.D. Behn, J. Escartin, and B. Kaus. “Seafloor expression of oceanic detachment faulting reflects gradients in mid-ocean ridge magma supply”. In: Earth Planet. Sci. Lett. 516 (2019), pp. 176–189. doi: 10.1016/j.epsl.2019.04.001.
Jiashun Hu, Lijun Liu, and Michael Gurnis. “Southward expanding plate coupling due to variation in sediment subduction as a cause of Andean growth”. In: Nature Communications 12.1 (2021), pp. 1–9. doi: 10.1038/s41467-021-27518-8.
Jiashun Hu, Lijun Liu, Armando Hermosillo, and Quan Zhou. “Simulation of late Cenozoic South American flat-slab subduction using geodynamic models with data assimilation”. In: Earth Planet. Sci. Lett. 438 (2016), pp. 1–13. doi: 10.1016/j.epsl.2016.01.011.
JiaShun Hu, LiJun Liu, and Quan Zhou. “Reproducing past subduction and mantle flow using high-resolution global convection models”. In: Earth and Planetary Physics 2.3 (2018), pp. 189–207. doi: 10.26464/epp2018019.
Jiashun Hu, Johann Rudi, Michael Gurnis, and Georg Stadler. “Constraining Earth’s nonlinear mantle viscosity using plate-boundary resolving global inversions”. In: Proceedings of the National Academy of Sciences 121.28 (2024), e2318706121. doi: 10.1073/pnas. 2318706121.
Chuan Huang et al. “Modeling the Inception of Supercontinent Breakup: Stress State and the Importance of Orogens”. In: Geochem. Geophys. Geosyst. 20.11 (2019), pp. 4830–4848. doi: 10.1029/2019GC008538.
J. Huang and G. F. Davies. “Geochemical processing in a three-dimensional regional spherical shell model of mantle convection”. In: Geochem. Geophys. Geosyst. 8.11 (2007). doi: 10.1029/2007GC001625.
J. Huang, A. Yang, and S. Zhong. “Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics”. In: Earth Planet. Sci. Lett. 362 (2013), pp. 207–214. doi: 10.1016/j.epsl.2012.11.051.
Jinshui Huang and Geoffrey F Davies. “Stirring in three-dimensional mantle convection models and implications for geochemistry: Passive tracers”. In: Geochem. Geophys. Geosyst. 8.3 (2007). doi: 10.1029/2006GC001312.
Min Huang, Yang Li, and Liang Zhao. “Effects of thermal, compositional and rheological properties on the long-term evolution of large thermochemical piles of primordial material in the deep mantle”. In: Science China Earth Sciences 65 (2022), pp. 1–12. doi: 10.1007/ s11430-021-9950-7.
Pengpeng Huangfu, Zhong-Hai Li, Weiming Fan, and Yaolin Shi. “Dynamics of crustal overthrust versus underthrust in the continental collision zones: Numerical modelling”. In: Terra Nova 31.4 (2019), pp. 332–342. doi: 10.1111/ter.12384.
Pengpeng Huangfu, Yuejun Wang, Peter A Cawood, Zhong-Hai Li, Weiming Fan, and Taras V Gerya. “Thermo-mechanical controls of flat subduction: Insights from numerical modeling”. In: Gondwana Research 40 (2016), pp. 170–183. doi: 10.1016/j.gr.2016. 08.012.
PengPeng Huangfu, YueJun Wang, WeiMing Fan, ZhongHai Li, and YongZhi Zhou. “Dynamics of unstable continental subduction: Insights from numerical modeling”. In: Science China Earth Sciences 60 (2017), pp. 218–234. doi: 10.1007/s11430-016-5014-6.
Pengpeng Huangfu, Yuejun Wang, Zhonghai Li, Weiming Fan, and Yan Zhang. “Effects of crustal eclogitization on plate subduction/collision dynamics: Implications for India-Asia collision”. In: Journal of Earth Science 27 (2016), pp. 727–739. doi: 10.1007/s12583- 016-0701-9.
Ch. Huber, A. Parmigiani, B. Chopard, M. Manga, and O. Bachmann. “Lattice Boltzmann model for melting with natural convection”. In: International Journal of Heat and Fluid Flow 29 (200), pp. 1469–1480. doi: 10.1016/j.ijheatfluidflow.2008.05.002.
Mireille Huc, Riad Hassani, and Jean Chéry. “Large earthquake nucleation associated with stress exchange between middle and upper crust”. In: Geophys. Res. Lett. 25.4 (1998), pp. 551–554. doi: 10.1029/98GL00091.
Antonio Huerta, Sonia Fernández-Méndez, and Wing Kam Liu. “A comparison of two formulations to blend finite elements and mesh-free methods”. In: Computer Methods in Applied Mechanics and Engineering 193.12-14 (2004), pp. 1105–1117. doi: 10.1016/j. cma.2003.12.009.
Antonio Huerta, Yolanda Vidal, and Pierre Villon. “Pseudo-divergence-free element free Galerkin method for incompressible fluid flow”. In: Computer Methods in Applied Mechanics and Engineering 193.12-14 (2004), pp. 1119–1136. doi: 10.1016/j.cma.2003.12.010.
R. Huismans and C. Beaumont. “Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins”. In: Nature 473 (2011), pp. 74–79. doi: 10.1038/ nature09988.
R. S. Huismans and C. Beaumont. “Symmetric and asymmetric lithospheric extension: Relative effects of frictional-plastic and viscous strain softening”. In: J. Geophys. Res.: Solid Earth 108 (B10).2496 (2003). doi: 10.1029/2002JB002026.
R.S. Huismans and C. Beaumont. “Complex rifted continental margins explained by dynamical models of depth-dependent lithospheric extension”. In: Geology 30.3 (2002), pp. 211–214. doi: 10.1130/0091-7613(2002)030<0211:ALETRO>2.0.CO;2.
R.S. Huismans and C. Beaumont. “Complex rifted continental margins explained by dynamical models of depth-dependent lithospheric extension”. In: Geology 36.2 (2008), pp. 163–166. doi: 10.1130/G24231A.1.
R.S. Huismans and C. Beaumont. “Roles of lithospheric strain softening and heterogeneity in determining the geometry of rifts and continental margins”. In: Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup. Vol. 282. Geological Society, London, Special Publications, 2007, pp. 111–138. doi: 10.1144/SP282.6.
R.S. Huismans, S.J.H. Buiter, and C. Beaumont. “Effect of plastic-viscous layering and strain softening on mode selection during lithospheric extension”. In: J. Geophys. Res.: Solid Earth 110 (2005), B02406. doi: 10.1029/2004JB003114.
Ritske S Huismans and Christopher Beaumont. “Rifted continental margins: The case for depth-dependent extension”. In: Earth Planet. Sci. Lett. 407 (2014), pp. 148–162. doi: 10.1016/j.epsl.2014.09.032.
Florian Humair, Arthur Bauville, Jean-Luc Epard, and Stefan M Schmalholz. “Interaction of folding and thrusting during fold-and-thrust-belt evolution: Insights from numerical simulations and application to the Swiss Jura and Canadian Foothills”. In: Tectonophysics (2020), p. 228474. doi: 10.1016/j.tecto.2020.228474.
Natalie Hummel, Susanne Buiter, and Zoltán Erdős. “The influence of viscous slab rheology on numerical models of subduction”. In: Solid Earth 15.5 (2024), pp. 567–587. doi: 10. 5194/se-15-567-2024.
E. D. Humphreys and B. H. Hager. “A kinematic model for the Late Cenozoic development of southern California crust and upper mantle”. In: J. Geophys. Res.: Solid Earth 95.B12 (1990), p. 19747. doi: 10.1029/JB095iB12p19747.
J. van Hunen, A.P. van den Berg, and N.J. Vlaar. “On the role of subducting oceanic plateaus in the development of shallow flat subduction”. In: Tectonophysics 352.3-4 (2002), pp. 317–333. doi: 10.1016/S0040-1951(02)00263-9.
J. van Hunen, A.P. van den Berg, and N.J. Vlaar. “The impact of the South-American plate motion and the Nazca Ridge subduction on the flat subduction below South Peru”. In: Geophys. Res. Lett. 29.14 (2002), pp. 35–1. doi: 10.1029/2001GL014004.
J. van Hunen and M.S. Miller. “Collisional processes and links to episodic changes in subduction zones”. In: Elements 11 (2015), pp. 119–124. doi: 10.2113/gselements.11. 2.119.
J. van Hunen and S. Zhong. “New insight in the Hawaiian plume swell dynamics from scaling laws”. In: Geophys. Res. Lett. 30.15 (2003). doi: 10.1029/2003GL017646,.
Jeroen van Hunen and Arie P van den Berg. “Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere”. In: Lithos 103.1-2 (2008), pp. 217–235. doi: 10.1016/j.lithos.2007.09.016.
Jeroen van Hunen, Shijie Zhong, Nikolai M Shapiro, and Michael H Ritzwoller. “New evidence for dislocation creep from 3-D geodynamic modeling of the Pacific upper mantle structure”. In: Earth Planet. Sci. Lett. 238.1-2 (2005), pp. 146–155. doi: 10.1016/j.epsl.2005. 07.006.
D. L. Hunt and L. H. Kellogg. “Quantifying mixing and age variations of heterogeneities in models of mantle convection: Role of depth-dependent viscosity”. In: J. Geophys. Res.: Solid Earth 106.B4 (2001), pp. 6747–6759. doi: 10.1029/2000JB900261.
L. Husson and C. P. Conrad. “On the location of hotspots in the framework of mantle convection”. In: Geophys. Res. Lett. 39.17 (2012). doi: 10.1029/2012GL052866.
L. Husson, C.P. Conrad, and C. Faccenna. “Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell”. In: Earth Planet. Sci. Lett. 317-318 (2012), pp. 126–135. doi: 10.1016/j.epsl.2011.11.040.
Laurent Husson et al. “Slow geodynamics and fast morphotectonics in the far East Tethys”. In: Geochem. Geophys. Geosyst. 23.1 (2022), e2021GC010167. doi: 10.1029/ 2021GC010167.
C. Hüttig, N. Tosi, and W.B. Moore. “An improved formulation of the incompressible Navier-Stokes equations with variable viscosity”. In: Phys. Earth. Planet. Inter. 220 (2013), pp. 11–18.
Christian Hüttig and Kai Stemmer. “Finite volume discretization for dynamic viscosities on Voronoi grids”. In: Phys. Earth. Planet. Inter. 171.1-4 (2008), pp. 137–146. doi: 10. 1016/j.pepi.2008.07.007.
G. Iaffaldano and H.-P. Bunge. “Relating rapid plate-motion variations to plate-boundary forces in global coupled models of the mantle/lithosphere system: Effects of topography and friction”. In: Tectonophysics 474.1-2 (2009), pp. 393–404. doi: 10.1016/j.tecto.2008. 10.035.
Giampiero Iaffaldano, Laurent Husson, and Hans-Peter Bunge. “Monsoon speeds up Indian plate motion”. In: Earth Planet. Sci. Lett. 304.3-4 (2011), pp. 503–510. doi: 10.1016/ j.epsl.2011.02.026.
Sergio Rodolfo Idelsohn, Mario Alberto Storti, and Eugenio Ońate. “Lagrangian formulations to solve free surface incompressible inviscid fluid flows”. In: Computer Methods in Applied Mechanics and Engineering 191.6-7 (2001), pp. 583–593. doi: 10.1016/S0045-7825(01) 00303-6.
I. Igreja and A.F.D. Loula. “Stabilized velocity and pressure mixed hybrid DGFEM for the stokes problem”. In: Int. J. Num. Meth. Eng. 112 (2017), pp. 603–628. doi: 10.1002/ nme.5527.
S.J. Ings and C. Beaumont. “Continental margin shale tectonics: Preliminary results from coupled fluid-mechanical models of large-scale delta instability”. In: Journal of the Geological Society 167.3 (2010), pp. 571–582. doi: 10.1144/0016-76492009-052.
Steven J Ings and Christopher Beaumont. “Shortening viscous pressure ridges, a solution to the enigma of initiating salt ’withdrawal’ minibasins”. In: Geology 38.4 (2010), pp. 339–342. doi: 10.1130/G30520.1.
P Io Ioannidi, Shae McLafferty, Jacqueline E Reber, Gabriele Morra, and Dion Weatherley. “Deformation and frictional failure of granular media in 3D analog and numerical experiments”. In: Pure Appl. Geophys. 181 (2024), pp. 2083–2105. doi: 10.1007/s00024- 024-03464-6.
Paraskevi Io Ioannidi, Kyle Bogatz, and Jacqueline E. Reber. “The Impact of Matrix Rheology on Stress Concentration in Embedded Brittle Clasts”. In: Geochem. Geophys. Geosyst. 23 (2022), e2021GC010127. doi: 10.1029/2021GC010127.
Paraskevi Io Ioannidi, Laetitia Le Pourhiet, Philippe Agard, Samuel Angiboust, and Onno Oncken. “Effective rheology of a two-phase subduction shear zone: Insights from numerical simple shear experiments and implications for subduction zone interfaces”. In: Earth Planet. Sci. Lett. 566 (2021), p. 116913. doi: 10.1016/j.epsl.2021.116913.
Kazuhiko Ishii and Simon R Wallis. “High-and low-stress subduction zones recognized in the rock record”. In: Earth Planet. Sci. Lett. 531 (2020), p. 115935. doi: 10.1016/j.epsl. 2019.115935.
A Ismail-Zadeh, A Korotkii, G Schubert, and I Tsepelev. “Quasi-reversibility method for data assimilation in models of mantle dynamics”. In: Geophy. J. Int. 170.3 (2007), pp. 1381–1398. doi: 10.1111/j.1365-246X.2007.03496.x.
Alik Ismail-Zadeh, Gerald Schubert, Igor Tsepelev, and Alexander Korotkii. “Inverse problem of thermal convection: numerical approach and application to mantle plume restoration”. In: Phys. Earth. Planet. Inter. 145.1-4 (2004), pp. 99–114. doi: 10.1016/j.pepi.2004.03. 006.
AT Ismail-Zadeh, AI Korotkii, and IA Tsepelev. “Three-dimensional numerical simulation of the inverse problem of thermal convection using the quasi-reversibility method”. In: Computational Mathematics and Mathematical Physics 46.12 (2006), pp. 2176–2186. doi: 10.1134/S0965542506120153.
J. Ita and S.D. King. “Sensitivity of convection with an endothermic phase change to the form of governing equations, initial conditions, boundary conditions, and equation of state”. In: J. Geophys. Res.: Solid Earth 99.B8 (1994), pp. 15, 919–15, 938. doi: 10.1029/94JB00852.
J. Ita and S.D. King. “The influence of thermodynamic formulation on simulations of subduction zone geometry and history”. In: Geophys. Res. Lett. 25.9 (1998), pp. 1463–1466. doi: 10.1029/98GL51033.
Miki Izumi, Ken-ichi Hirauchi, and Masaki Yoshida. “Mantle-wedge alteration facilitates intra-oceanic subduction initiation along a pre-existing fault zone”. In: Tectonophysics 861 (2023), p. 229908. doi: 10.1016/j.tecto.2023.229908.
M.H.G. Jacobs and A.P. van den Berg. “Complex phase distribution and seismic velocity structure of the transition zone: Convection model predictions for a magnesium-endmember olivine-pyroxene mantle”. In: Phys. Earth. Planet. Inter. 186 (2011), pp. 36–48. doi: 10. 1016/j.pepi.2011.02.008.
Antoine B Jacquey and Mauro Cacace. “Multiphysics Modeling of a Brittle-Ductile Lithosphere: 1. Explicit Visco-Elasto-Plastic Formulation and Its Numerical Implementation”. In: J. Geophys. Res.: Solid Earth 125.1 (2020), e2019JB018474. doi: 10.1029/2019JB018474.
Antoine B Jacquey and Mauro Cacace. “Multiphysics Modeling of a Brittle-Ductile Lithosphere: 2. Semi-brittle, Semi-ductile Deformation and Damage Rheology”. In: J. Geophys. Res.: Solid Earth 125.1 (2020), e2019JB018475. doi: 10.1029/2019JB018475.
M. A. Jadamec. “Insights on Slab-driven Mantle Flow from Advances in Three-dimensional modelling”. In: Journal of Geodynamics (2016). issn: 0264-3707. doi: 10.1016/j.jog. 2016.07.004.
M.A. Jadamec and M.I. Billen. “The role of rheology and slab shape on rapid mantle flow: Three-dimensional numerical models of the Alaska slab edge”. In: J. Geophys. Res.: Solid Earth 117.B2 (2012). doi: 10.1029/2011JB008563.
M.A. Jadamec, M.I. Billen, and S.M. Roeske. “Three-dimensional numerical models of flat slab subduction and the Denali fault driving deformation in south-central Alaska”. In: Earth Planet. Sci. Lett. 376 (2013), pp. 29–42. doi: 10.1016/j.epsl.2013.06.009.
MA Jadamec. “Slab-driven Mantle Weakening and Rapid Mantle Flow”. In: Subduction Dynamics: From Mantle Flow to Mega Disasters, Geophys. Monogr. Ser (2016), pp. 135–155. doi: 10.1002/9781118888865.ch7.
Margarete A Jadamec and Magali I Billen. “Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge”. In: Nature 465.7296 (2010), p. 338. doi: 10.1038/nature09053.
Margarete A Jadamec, Magali I Billen, and Oliver Kreylos. “Three-dimensional simulations of geometrically complex subduction with large viscosity variations”. In: Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond. ACM. 2012, p. 31. doi: 10.1145/2335755. 2335827.
Charitra Jain, AB Rozel, and PJ Tackley. “Quantifying the correlation between mobile continents and elevated temperatures in the subcontinental mantle”. In: Geochem. Geophys. Geosyst. 20.3 (2019), pp. 1358–1386.
Charitra Jain, Antoine B Rozel, Paul J Tackley, Patrick Sanan, and Taras V Gerya. “Growing primordial continental crust self-consistently in global mantle convection models”. In: Gondwana Research 73 (2019), pp. 96–122. doi: 10.1016/j.gr.2019.03.015.
R. A. Jamieson and C. Beaumont. “Coeval thrusting and extension during lower crustal ductile flow - implications for exhumation of high-grade metamorphic rocks”. In: Journal of Metamorphic Geology 29.1 (2011), pp. 33–51. doi: 10.1111/j.1525-1314.2010.00908.x.
R.A. Jamieson, C. Beaumont, P. Fullsack, and B. Lee. “Barrovian regional metamorphism: where’s the heat?” In: Geological Society Special Publication 138 (1998), pp. 23–51. doi: 10.1144/GSL.SP.1996.138.01.03.
R.A. Jamieson, C. Beaumont, S. Medvedev, and M.H. Nguyen. “Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen”. In: J. Geophys. Res.: Solid Earth 109.6 (2004), B06407. doi: 10.1029/2003JB002811.
R.A. Jamieson, C. Beaumont, M.H. Nguyen, and N.G. Culshaw. “Synconvergent ductile flow in variable-strength continental crust: Numerical models with application to the western Grenville orogen”. In: Tectonics 26.5 (2007). doi: 10.1029/2006TC002036.
R.A. Jamieson, C. Beaumont, M.H. Nguyen, and D. Grujic. “Provenance of the Greater Himalayan Sequence and associated rocks: Predictions of channel flow models”. In: Geological Society Special Publication 268 (2006), pp. 165–182. doi: 10.1144/GSL.SP.2006.268. 01.07.
R.A. Jamieson, C. Beaumont, C.J. Warren, and M.H. Nguyen. “The Grenville Orogen explained? Applications and limitations of integrating numerical models with geological and geophysical data”. In: Canadian Journal of Earth Sciences 47.4 (2010), pp. 517–539. doi: 10.1139/E09-070.
S. Jammes and R.S. Huismans. “Structural styles of mountain building: Controls of lithospheric rheologic stratification and extensional inheritance”. In: J. Geophys. Res.: Solid Earth 117.B10 (2012). doi: 10.1029/2012JB009376.
S. Jammes, R.S. Huismans, and J.A. Muńoz. “Lateral variation in structural style of mountain building: controls of rheological and rift inheritance”. In: Terra Nova 26 (2014), pp. 201–207. doi: 10.1111/ter.12087.
S. Jammes and L.L. Lavier. “Effect of contrasting strength from inherited crustal fabrics on the development of rifting margins”. In: Geosphere 15.2 (2019), pp. 407–422. doi: 10.1130/GES01686.1.
Suzon Jammes and Luc L Lavier. “The effect of bimineralic composition on extensional processes at lithospheric scale”. In: Geochem. Geophys. Geosyst. 17.8 (2016), pp. 3375–3392. doi: 10.1002/2016GC006399.
Suzon Jammes, Luc L Lavier, and Jacqueline E Reber. “Localization and delocalization of deformation in a bimineralic material”. In: J. Geophys. Res.: Solid Earth 120.5 (2015), pp. 3649–3663. doi: 10.1002/2015JB011890.
Y. Jaquet, T. Duretz, D. Grujic, H. Masson, and S.M. Schmalholz. “Formation of orogenic wedges and crustal shear zones by thermal softening, associated topographic evolution and application to natural orogens”. In: Tectonophysics 746 (2018), pp. 512–529. doi: 10. 1016/j.tecto.2017.07.021.
Y. Jaquet, Th. Duretz, and S.M. Schmalholz. “Dramatic effect of elasticity on thermal softening and strain localization during lithospheric shortening”. In: Geophy. J. Int. 204 (2016), pp. 780–784. doi: 10.1093/gji/ggv464.
Y. Jaquet and S.M. Schmalholz. “Spontaneous ductile crustal shear zone formation by thermal softening and related stress, temperature and strain rate evolution”. In: Tectonophysics 746 (2018), pp. 384–397. doi: 10.1016/j.tecto.2017.01.012.
Gary T Jarvis and Julian P Lowman. “Survival times of subducted slab remnants in numerical models of mantle flow”. In: Earth Planet. Sci. Lett. 260.1-2 (2007), pp. 23–36. doi: 10.1016/j.epsl.2007.05.009.
Pejvak Javaheri, Julian P Lowman, and Paul J Tackley. “Spherical geometry convection in a fluid with an Arrhenius thermal viscosity dependence: The impact of core size and surface temperature on the scaling of stagnant-lid thickness and internal temperature”. In: Phys. Earth. Planet. Inter. 349 (2024), p. 107157. doi: 10.1016/j.pepi.2024.107157.
K.E. Jensen. “Topology optimization of stokes flow on dynamic meshes using simple optimizers”. In: Computers and Fluids 174 (2018), pp. 66–77. doi: 10.1016/j. compfluid.2018.07.011.
Mark Jessell, Paul Bons, Lynn Evans, Terence Barr, and Kurt Stüwe. “Elle: the numerical simulation of metamorphic and deformation microstructures”. In: Computers and Geosciences 27 (2001), pp. 17–30.
Jiawei Jiang, Yadan Mao, and Xiangyun Hu. “Factors on the Mesozoic transition from flat to steep subduction of the Paleo-Pacific Plate beneath South China: Thickened oceanic crust and subduction rate”. In: Geochem. Geophys. Geosyst. 23 (2022), e2022GC010523. doi: 10.1029/2022GC010523.
Stephen Jiménez, Ravindra Duddu, and Jeremy Bassis. “An updated-Lagrangian damage mechanics formulation for modeling the creeping flow and fracture of ice sheets”. In: Computer Methods in Applied Mechanics and Engineering 313 (2017), pp. 406–432. doi: 10.1016/j.cma.2016.09.034.
Ivone Jiménez-Munt, Peter Bird, and Manel Fernŕndez. “Thin-shell modeling of neotectonics in the Azores-Gibraltar region”. In: Geophys. Res. Lett. 28.6 (2001), pp. 1083–1086. doi: 10.1029/2000GL012319.
Ivone Jiménez-Munt, Manel Fernandez, Jaume Vergés, Juan Carlos Afonso, Daniel Garcia-Castellanos, and J Fullea. “Lithospheric structure of the Gorringe Bank: Insights into its origin and tectonic evolution”. In: Tectonics 29.5 (2010). doi: 10.1029/2009TC002458.
Ivone Jiménez-Munt, Manel Fernŕndez, Montse Torne, and Peter Bird. “The transition from linear to diffuse plate boundary in the Azores–Gibraltar region: results from a thin-sheet model”. In: Earth Planet. Sci. Lett. 192.2 (2001), pp. 175–189. doi: 10.1016/S0012- 821X(01)00442-3.
Ivone Jiménez-Munt, Daniel Garcia-Castellanos, and Manel Fernandez. “Thin-sheet modelling of lithospheric deformation and surface mass transport”. In: Tectonophysics 407.3-4 (2005), pp. 239–255. doi: 10.1016/j.tecto.2005.08.015.
Ivone Jiménez-Munt and Ana M Negredo. “Neotectonic modelling of the western part of the Africa–Eurasia plate boundary: from the Mid-Atlantic ridge to Algeria”. In: Earth Planet. Sci. Lett. 205.3-4 (2003), pp. 257–271. doi: 10.1016/S0012-821X(02)01045-2.
Ivone Jiménez-Munt et al. “Deep seated density anomalies across the Iberia-Africa plate boundary and its topographic response”. In: J. Geophys. Res.: Solid Earth 124 (2019). doi: 10.1029/2019JB018445.
Volker John. “Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier–Stokes equations”. In: Int. J. Num. Meth. Fluids 40.6 (2002), pp. 775–798. doi: 10.1002/d.377.
T.E. Johnson, M. Brown, B.J.P. Kaus, and J.A. VanTongeren. “Delamination and recycling of Archaean crust caused by gravitational instabilities”. In: Nature Geoscience 7 (2014), pp. 47–52. doi: 10.1038/NGEO2019.
TD Jones, DR Davies, IH Campbell, CR Wilson, and SC Kramer. “Do mantle plumes preserve the heterogeneous structure of their deep-mantle source?” In: Earth Planet. Sci. Lett. 434 (2016), pp. 10–17. doi: 10.1016/j.epsl.2015.11.016.
Timothy D Jones, Ross R Maguire, Peter E van Keken, Jeroen Ritsema, and Paula Koelemeijer. “Subducted oceanic crust as the origin of seismically slow lower-mantle structures”. In: Progress in Earth and Planetary Science 7 (2020), pp. 1–16. doi: 10. 1186/s40645-020-00327-1.
Timothy David Jones, Nathan Sime, and PE van Keken. “Burying Earth’s primitive mantle in the slab graveyard”. In: Geochem. Geophys. Geosyst. 22.3 (2021), e2020GC009396. doi: 10.1029/2020GC009396.
A. Jourdon, L. Le Pourhiet, Mouthereau F, and E. Masini. “Role of rift maturity on the architecture and shortening distribution in mountain belts”. In: Earth Planet. Sci. Lett. 512 (2019), pp. 89–99. doi: 10.1016/j.epsl.2019.01.057.
A. Jourdon, L. Le Pourhiet, C. Petit, and Y. Rolland. “Impact of range-parallel sediment transport on 2D thermo-mechanical models of mountain belts: Application to the Kyrgyz Tien Shan”. In: Terra Nova 30 (2018), pp. 279–288. doi: 10.1111/ter.12337.
Anthony Jourdon, Charlie Kergaravat, Guillaume Duclaux, and Caroline Huguen. “Looking beyond kinematics: 3D thermo-mechanical modelling reveals the dynamics of transform margins”. In: Solid Earth 12.5 (2021), pp. 1211–1232. doi: 10.5194/se-12-1211-2021.
Anthony Jourdon, Laetitia Le Pourhiet, Frédéric Mouthereau, and Dave May. “Modes of propagation of continental break-up and associated oblique rift structures”. In: J. Geophys. Res.: Solid Earth 125 (2020), e2020JB019906. doi: 10.1029/2020JB019906.
Anthony Jourdon, Laetitia Le Pourhiet, Carole Petit, and Yann Rolland. “The deep structure and reactivation of the Kyrgyz Tien Shan: Modelling the past to better constrain the present”. In: Tectonophysics 746 (2018), pp. 530–548. doi: 10.1016/j.tecto.2017.07. 019.
S. Jun and S. Im. “Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation”. In: Computational Mechanics 15 (2000), p. 257. doi: 10.1007/ s004660050474.
Mikhail K Kaban and Peter Schwintzer. “Oceanic upper mantle structure from experimental scaling of Vs and density at different depths”. In: Geophy. J. Int. 147.1 (2001), pp. 199–214. doi: 10.1046/j.0956-540x.2001.01520.x.
H. Kabaria, A.J. Lew, and B. Cockburn. “A hybridizable discontinuous Galerkin formulation for non-linear elasticity”. In: Computer Methods in Applied Mechanics and Engineering 283 (2015), pp. 303–329.
L.P. Kadanoff, G.R. McNamara, and G. Zanetti. “A Poiseuille Viscometer for Lattice Gas Automata”. In: Complex Systems 1 (1987), pp. 791–803. doi: XXX.
B.J. Kadlec, G.A. Dorn, H.M. Tufo, and D.A. Yuen. “Interactive 3-D computation of fault surfaces using level sets”. In: Visual Geosciences 13.1 (2008), pp. 133–138. doi: 10.1007/ s10069-008-0016-9.
A. Kageyama and T. Sato. ““Yin-Yang grid”: An overset grid in spherical geometry”. In: Geochem. Geophys. Geosyst. 5.9 (2004), 10.1029/2004GC000734.
L. Kaislaniemi and J. van Hunen. “Dynamics of lithospheric thinning and mantle melting by edge-driven convection: Application to Moroccan Atlas mountains”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 3175–3189. doi: 10.1002/2014GC005414.
L. Kaislaniemi, J. van Hunen, and P. Bouilhol. “Lithosphere destabilization by melt weakening and crust-mantle interactions: implications for generation of granite-migmatite belts”. In: Tectonics 37 (2018), pp. 3102–3116. doi: 10.1029/2018TC005014.
M. Kameyama, A. Kageyamab, and T. Sato. “Multigrid-based simulation code for mantle convection in spherical shell using Yin-Yang grid”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 19–32.
Masanori Kameyama. “ACuTEMan: A multigrid-based mantle convection simulation code and its optimization to the Earth Simulator”. In: J. Earth Simulator 4 (2005), pp. 2–10. doi: xxxx.
Masanori Kameyama, Akira Kageyama, and Tetsuya Sato. “Multigrid iterative algorithm using pseudo-compressibility for three-dimensional mantle convection with strongly variable viscosity”. In: J. Comp. Phys. 206.1 (2005), pp. 162–181. doi: 10.1016/j.jcp.2004. 11.030.
Masanori Kameyama, Takehiro Miyagoshi, and Masaki Ogawa. “Linear analysis on the onset of thermal convection of highly compressible fluids: implications for the mantle convection of super-Earths”. In: Geophy. J. Int. 200.2 (2015), pp. 1066–1077. doi: 10.1093/gji/ ggu457.
Kaixuan Kang, Shijie Zhong, Geruo A, and Wei Mao. “The effects of non-Newtonian rheology in the upper mantle on relative sea level change and geodetic observables induced by glacial isostatic adjustment process”. In: Geophy. J. Int. 228.3 (2022), pp. 1887–1906. doi: 10. 1093/gji/ggab428.
Duminda GJ Kankanamge and William B Moore. “Heat transport in the Hadean mantle: From heat pipes to plates”. In: Geophys. Res. Lett. 43.7 (2016), pp. 3208–3214. doi: 10.1002/2015GL067411.
G. Kanschat. “Divergence-free discontinuous Galerkin schemes for the Stokes equations and the MAC scheme”. In: Int. J. Num. Meth. Fluids 56 (2008), pp. 941–950. doi: 10.1002/ fld.1566.
G. Kanschat and B. Rivičre. “A strongly conservative finite element method for the coupling of Stokes and Darcy flow”. In: J. Comp. Phys. 229 (2010), pp. 5933–5943.
Shivakumar Karekal, Raj Das, Luke Mosse, and Paul W Cleary. “Application of a mesh-free continuum method for simulation of rock caving processes”. In: International Journal of Rock Mechanics and Mining Sciences 48.5 (2011), pp. 703–711. doi: 10.1016/j.ijrmms. 2011.04.011.
MH Kargarnovin, HE Toussi, and SJ Fariborz. “Elasto-plastic element-free Galerkin method”. In: Computational Mechanics 33.3 (2004), pp. 206–214. doi: 10.1007/s00466- 003-0521-5.
RVMK Karlsson, KW Cheng, F Crameri, T Rolf, S Uppalapati, and SC Werner. “Implications of anomalous crustal provinces for Venus’ resurfacing history”. In: J. Geophys. Res.: Planets 125 (2020), e2019JE006340. doi: 10.1029/2019JE006340.
Richard F Katz, Matthew G Knepley, Barry Smith, Marc Spiegelman, and Ethan T Coon. “Numerical simulation of geodynamic processes with the Portable Extensible Toolkit for Scientific Computation”. In: Phys. Earth. Planet. Inter. 163.1-4 (2007), pp. 52–68. doi: 10.1016/j.pepi.2007.04.016.
Rafael Katzman, Uri S ten Brink, and Jian Lin. “Three-dimensional modeling of pull-apart basins: Implications for the tectonics of the Dead Sea Basin”. In: J. Geophys. Res.: Solid Earth 100.B4 (1995), pp. 6295–6312. doi: 10.1029/94JB03101.
Peter Kaufmann. “Discontinuous Galerkin FEM in Computer Graphics”. PhD thesis. ETH Zurich, 2012.
B. Kaus. “Modelling approaches to geodynamic processes”. PhD thesis. ETH Zurich, 2005.
B.J.P. Kaus. “Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation”. In: Tectonophysics 484 (2010), pp. 36–47. doi: 10.1016/j. tecto.2009.08.042.
B.J.P. Kaus and T.W. Becker. “Effects of elasticity on the Rayleigh-Taylor instability: implications for large-scale geodynamics”. In: Geophy. J. Int. 168.843–862 (2007). doi: 10.1111/j.1365-246X.2006.03201.x.
B.J.P. Kaus, H. Mühlhaus, and D.A. May. “A stabilization algorithm for geodynamic numerical simulations with a free surface”. In: Phys. Earth. Planet. Inter. 181 (2010), pp. 12–20. doi: 10.1016/j.pepi.2010.04.007.
B.J.P. Kaus and Y.Y. Podlachikov. “Forward and Reverse Modeling of the Three-Dimensional Viscous Rayleigh-Taylor Instability”. In: Geophys. Res. Lett. 28.6 (2001), pp. 1095–1098.
B.J.P. Kaus and Y.Y. Podlachikov. “Initiation of localized shear zones in viscoelastoplastic rocks”. In: J. Geophys. Res.: Solid Earth 111.B04412 (2006). doi: 10.1029/2005JB003652.
B.J.P. Kaus, Y.Yu. Podladchikov, and D.W. Schmid. “Eulerian Spectral/Finite Difference Method for Large Deformation Modelling of Visco-Elasto-Plastic Geomaterials.” In: Bolletino di Geofisica 45 (2004), pp. 346–349. doi: xxxx.
B.J.P. Kaus, C. Steedman, and T.W. Becker. “From passive continental margin to mountain belt: insights from analytical and numerical models and application to Taiwan”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 235–251. doi: 10.1016/j.pepi.2008.06.015.
B.J.P. Kaus et al. “Forward and Inverse Modelling of Lithospheric Deformation on Geological Timescales”. In: NIC Symposium 2016 (2016), pp. 299–307.
Boris JP Kaus, Yingchun Liu, TW Becker, David A Yuen, and Yaolin Shi. “Lithospheric stress-states predicted from long-term tectonic models: Influence of rheology and possible application to Taiwan”. In: Journal of Asian Earth Sciences 36.1 (2009), pp. 119–134. doi: 10.1016/j.jseaes.2009.04.004.
Y. Ke and V. S. Solomatov. “Coupled core-mantle thermal evolution of early Mars”. In: J. Geophys. Res.: Solid Earth 114.E7 (2009). doi: 10.1029/2008JE003291.
Y. Ke and V. S. Solomatov. “Early transient superplumes and the origin of the Martian crustal dichotomy”. In: J. Geophys. Res.: Solid Earth 111.E10 (2006). doi: 10.1029/ 2005JE002631.
Y. Ke and V.S. Solomatov. “Plume formation in strongly temperature-dependent viscosity fluids over a very hot surface”. In: Physics of Fluids 16.4 (2004), pp. 1059–1063. doi: 10.1063/1.1648638.
P. van Keken. “Cylindrical scaling for dynamical cooling models of the Earth”. In: Phys. Earth. Planet. Inter. 124 (2001), pp. 119–130. doi: 10.1016/S0031-9201(01)00195-9.
P.E. van Keken. “Evolution of starting mantle plumes: a comparison between numerical and laboratory models”. In: Earth Planet. Sci. Lett. 148 (1997), pp. 1–11. doi: 10.1016/ S0012-821X(97)00042-3.
P.E. van Keken, I. Wada, N. Sime, and G.A. Abers. “Thermal structure of the forearc in subduction zones: a comparison of methodologies”. In: Geochem. Geophys. Geosyst. 20 (2019), pp. 3268–3288. doi: 10.1029/2019GC008334.
Peter E van Keken, David A Yuen, and Arie P van den Berg. “Implications for mantle dynamics from the high melting temperature of perovskite”. In: Science 264.5164 (1994), pp. 1437–1439. doi: 10.1126/science.264.5164.1437.
T. Keller, D.A. May, and B.J.P. Kaus. “Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust”. In: Geophy. J. Int. 195.3 (2013), pp. 1406–1442. doi: 10.1093/gji/ggt306.
Tobias Keller and Paul J Tackley. “Towards self-consistent modeling of the martian dichotomy: The influence of one-ridge convection on crustal thickness distribution”. In: Icarus 202.2 (2009), pp. 429–443. doi: 10.1016/j.icarus.2009.03.029.
L. H. Kellogg. “Growing the Earth’s D‘‘ layer: Effect of density variations at the core-mantle boundary”. In: Geophys. Res. Lett. 24.22 (1997), pp. 2749–2752. doi: 10.1029/97GL02952.
L. H. Kellogg. “Interaction of plumes with a compositional boundary at 670 km”. In: Geophys. Res. Lett. 18.5 (1991), pp. 865–868. doi: 10.1029/91GL01066.
L. H. Kellogg and S. D. King. “Effect of mantle plumes on the growth of D” by reaction between the core and mantle”. In: Geophys. Res. Lett. 20.5 (1993), pp. 379–382. doi: 10.1029/93GL00045.
L. H. Kellogg and S. D. King. “The effect of temperature dependent viscosity on the structure of new plumes in the mantle: Results of a finite element model in a spherical, axisymmetric shell”. In: Earth Planet. Sci. Lett. 148.1-2 (1997), pp. 13–26. doi: 10.1016/ S0012-821X(97)00025-3.
S. Kelly, J.P. Butler, and C. Beaumont. “Continental collision with a sandwiched accreted terrane: Insights into Himalayan-Tibetan lithospheric mantle tectonics?” In: Earth Planet. Sci. Lett. 455 (2016), pp. 176–195. doi: 10.1016/j.epsl.2016.08.039.
Sean Kelly, Christopher Beaumont, and Jared P Butler. “Inherited terrane properties explain enigmatic post-collisional Himalayan-Tibetan evolution”. In: Geology 48.1 (2020), pp. 8–14. doi: 10.1130/G46701.1.
Sean Kelly, Christopher Beaumont, and Rebecca A Jamieson. “Eohimalayan metamorphism and subsequent tectonic quiescence explained”. In: Earth Planet. Sci. Lett. 584 (2022), p. 117350. doi: 10.1016/j.epsl.2021.117350.
D.F. Keppie, C.A. Currie, and C. Warren. “Subduction erosion modes: comparing finite element numerical models with the geological record”. In: Earth Planet. Sci. Lett. 287 (2009), pp. 241–254. doi: 10.1016/j.epsl.2009.08.009.
Buchanan C Kerswell, Matthew J Kohn, and Taras V Gerya. “Backarc lithospheric thickness and serpentine stability control slab-mantle coupling depths in subduction zones”. In: Geochem. Geophys. Geosyst. (2021), e2020GC009304. doi: 10.1029/2020GC009304.
Buchanan C Kerswell, Matthew J Kohn, and Taras V Gerya. “Computing rates and distributions of rock recovery in subduction zones”. In: Geochem. Geophys. Geosyst. 24.5 (2023), e2022GC010834. doi: 10.1029/2022GC010834.
Jae-Yoon Keum and Byung-Dal So. “Sediment buoyancy controls the effective slab pull force and deviatoric stress along trenches: Insights from a 3D free-subduction model”. In: Tectonophysics 862 (2023), p. 229970. doi: 10.1016/j.tecto.2023.229970.
K. Key, S. Constable, L. Liu, and A. Pommier. “Electrical image of passive mantle upwelling beneath the northern East Pacific Rise”. In: Nature 495.7442 (2013), pp. 499–502. doi: 10.1038/nature11932.
Tania S Khaleque, Andrew C Fowler, PD Howell, and Michael Vynnycky. “Numerical studies of thermal convection with temperature-and pressure-dependent viscosity at extreme viscosity contrasts”. In: Physics of Fluids 27.7 (2015), p. 076603. doi: 10.1063/1. 4923061.
Tania S Khaleque and Sayeed SA Motaleb. “Effects of temperature-and pressure-dependent viscosity and internal heating on mantle convection”. In: GEM-International Journal on Geomathematics 12.1 (2021), pp. 1–22. doi: 10.1007/s13137-021-00190-2.
Amir Khan et al. “A geophysical perspective on the bulk composition of Mars”. In: J. Geophys. Res.: Planets 123.2 (2018), pp. 575–611. doi: 10.1002/2017JE005371.
W. S. Kiefer. “Mantle viscosity stratification and flow geometry: Implications for surface motions on Earth and Venus”. In: Geophys. Res. Lett. 20.4 (1993), pp. 265–268. doi: 10.1029/93GL00129.
W.S. Kiefer and B. Hager. “Geoid anomalies and dynamic topography from convection in cylindrical geometry: applications to mantle plumes on Earth and Venus”. In: Geophy. J. Int. 108 (1992), pp. 198–214. doi: 10.1111/j.1365-246X.1992.tb00850.x.
Walter S Kiefer. “Melting in the Martian mantle: Shergottite formation and implications for present-day mantle convection on Mars”. In: Meteoritics & Planetary Science 38.12 (2003), pp. 1815–1832. doi: 10.1111/j.1945-5100.2003.tb00017.x.
Walter S Kiefer and Louise H Kellogg. “Geoid anomalies and dynamic topography from time-dependent, spherical axisymmetric mantle convection”. In: Phys. Earth. Planet. Inter. 106.3-4 (1998), pp. 237–256. doi: 10.1016/S0031-9201(98)00078-8.
Walter S Kiefer and Qingsong Li. “Water undersaturated mantle plume volcanism on present-day Mars”. In: Meteoritics & Planetary Science 51.11 (2016), pp. 1993–2010. doi: 10.1111/maps.12720.
Y-M Kim and C. Lee. “Effect of time-evolving age and convergence rate of the subducting plate on the Cenozoic adakites and boninites”. In: Journal of Asian Earth Sciences 95 (2014), pp. 300–312. doi: 10.1016/j.jseaes.2014.06.029.
Y. H. Kim, C. Lee, and S-S Kim. “Tectonics and volcanism in East Asia: Insights from geophysical observations”. In: Journal of Asian Earth Sciences 113 (2015), pp. 842–856. doi: 10.1016/j.jseaes.2015.07.032.
S. King et al. “A community benchmark for 2D Cartesian compressible convection in the Earth’s mantle”. In: Geophy. J. Int. 180 (2010), pp. 73–87.
S. D. King. “On topography and geoid from 2-D stagnant lid convection calculations”. In: Geochem. Geophys. Geosyst. 10.3 (2009), n/a–n/a. doi: 10.1029/2008GC002250.
S. D. King. “Pattern of lobate scarps on Mercury’s surface reproduced by a model of mantle convection”. In: Nature Geoscience 1.4 (2008), pp. 229–232. doi: 10.1038/ ngeo152.
S. D. King and B. H. Hager. “Subducted slabs and the geoid: 1. Numerical experiments with temperature-dependent viscosity”. In: J. Geophys. Res.: Solid Earth 99.B10 (1994), pp. 19843–19852. doi: 10.1029/94JB01552.
S. D. King and B. H. Hager. “The relationship between plate velocity and trench viscosity in Newtonian and power-law subduction calculations”. In: Geophys. Res. Lett. 17.13 (1990), pp. 2409–2412. doi: 10.1029/GL017i013p02409.
S.D. King. “Venus Resurfacing Constrained by Geoid and Topography”. In: J. Geophys. Res.: Planets 123 (2018), pp. 1041–1060. doi: 10.1002/2017JE005475.
S.D. King and D.L. Anderson. “An alternative mechanism of flood basalt formation”. In: Earth Planet. Sci. Lett. 136 (1995), pp. 269–279.
S.D. King and D.L. Anderson. “Edge-driven convection”. In: Earth Planet. Sci. Lett. 160 (1998), pp. 289–296.
S.D. King, D.J. Frost, and D.C. Rubie. “Why cold slabs stagnate in the transition zone”. In: Geology 43.3 (2015), pp. 231–234. doi: 10.1130/G36320.1.
S.D. King, A. Raefsky, and B.H. Hager. “ConMan: Vectorizing a finite element code for incompressible two-dimensional convection in the Earth’s mantle”. In: Phys. Earth. Planet. Inter. 59 (1990), pp. 195–208. doi: 10.1016/0031-9201(90)90225-M.
Scott D King. “Geoid and topographic swells over temperature-dependent thermal plumes in spherical-axisymmetric geometry”. In: Geophys. Res. Lett. 24.23 (1997), pp. 3093–3096. doi: 10.1029/97GL53154.
Scott D King. “Mantle convection, the asthenosphere, and Earth’s thermal history”. In: Geological Society of America Special Papers 514 (2015), SPE514–07. doi: 10.1130/ 2015.2514(07).
Scott D King and Joel Ita. “Effect of slab rheology on mass transport across a phase transition boundary”. In: J. Geophys. Res.: Solid Earth 100.B10 (1995), pp. 20211–20222. doi: 10.1029/95JB01964.
Scott D King and Jeroen Ritsema. “African hot spot volcanism: small-scale convection in the upper mantle beneath cratons”. In: Science 290.5494 (2000), pp. 1137–1140. doi: 10.1126/science.290.5494.1137.
Scott D King et al. “Ceres’ Broad-Scale Surface Geomorphology Largely Due To Asymmetric Internal Convection”. In: AGU Advances 3.3 (2022), e2021AV000571. doi: 10.1029/ 2021AV000571.
A. Kiraly, F.A. Capitanio, F. Funiciello, and C. Faccenna. “Subduction zone interaction: Controls on arcuate belts”. In: Geology 44.9 (2016), pp. 715–718. doi: 10.1130/G37912.1.
A. Király, F.A. Capitanio, F. Funiciello, and C. Faccenna. “Subduction induced mantle flow: Length-scales and orientation of the toroidal cell”. In: Earth Planet. Sci. Lett. 479 (2017), pp. 284–297. doi: 10.1016/j.epsl.2017.09.017.
Ágnes Király, Adam F Holt, Francesca Funiciello, Claudio Faccenna, and Fabio A Capitanio. “Modeling slab-slab interactions: Dynamics of outward dipping double-sided subduction systems”. In: Geochem. Geophys. Geosyst. 19.3 (2018), pp. 693–714. doi: 10.1002/ 2017GC007199.
Andreas Klöckner, Timothy Warburton, and Jan S Hesthaven. “High-order discontinuous Galerkin methods by GPU metaprogramming”. In: GPU Solutions to Multi-scale Problems in Science and Engineering. 2013, pp. 353–374. doi: 10.1007/978-3-642-16405-7_23.
EA Kneller, PE van Keken, I Katayama, and S-i Karato. “Stress, strain, and B-type olivine fabric in the fore-arc mantle: Sensitivity tests using high-resolution steady-state subduction zone models”. In: J. Geophys. Res.: Solid Earth 112.B4 (2007). doi: 10.1029/ 2006JB004544.
Erik A Kneller and Peter E van Keken. “Effect of three-dimensional slab geometry on deformation in the mantle wedge: Implications for shear wave anisotropy”. In: Geochem. Geophys. Geosyst. 9.1 (2008).
Erik A. Kneller, Markus Albertz, Garry D. Karner, and Christopher A. Johnson. “Testing inverse kinematic models of paleocrustal thickness in extensional systems with high-resolution forward thermo-mechanical models”. In: Geochem. Geophys. Geosyst. (2013).
Matthew G Knepley and David A Yuen. “Why Do Scientists and Engineers Need GPU’s Today?” In: GPU Solutions to Multi-scale Problems in Science and Engineering. 2013, pp. 3–11. doi: 10.1007/978-3-642-16405-7_1.
Ben S Knight, Fabio A Capitanio, and Roberto F Weinberg. “Convergence velocity controls on the structural evolution of orogens”. In: Tectonics 40.9 (2021), e2020TC006570. doi: 10.1029/2020TC006570.
BS Knight, JH Davies, and FA Capitanio. “Timescales of successful and failed subduction: insights from numerical modelling”. In: Geophy. J. Int. 225 (2021), pp. 261–276. doi: 10.1093/gji/ggaa410.
D. E. Koglin Jr., S. R. Ghias, S. D. King, G. T. Jarvis, and J. P. Lowman. “Mantle convection with reversing mobile plates: A benchmark study”. In: Geochem. Geophys. Geosyst. 6.9 (2005). doi: 10.1029/2005GC000924.
Andrea Komoróczi, Steffen Abe, and Janos L Urai. “Meshless numerical modeling of brittle–viscous deformation: first results on boudinage and hydrofracturing using a coupling of discrete element method (DEM) and smoothed particle hydrodynamics (SPH)”. In: Computational Geosciences 17.2 (2013), pp. 373–390. doi: 10.1007/s10596-012-9335-x.
T. Komut, R. Gray, R. Pysklywec, and O. Gogus. “Mantle flow uplift of western Anatolia and the Aegean: Interpretation from geophysical analyses and geodynamic modeling”. In: J. Geophys. Res.: Solid Earth 117.B11412 (2012). doi: 10.1029/2012JB009306.
Xianghong Kong and Peter Bird. Neotectonics of Asia: thin-shell finite-element models with faults. Tech. rep. 1994.
Xianghong Kong and Peter Bird. “SHELLS: A thin-shell program for modeling neotectonics of regional or global lithosphere with faults”. In: J. Geophys. Res.: Solid Earth 100.B11 (1995), pp. 22129–22131. doi: 10.1029/95JB02435.
P.O. Koons, P.K. Zeitler, C.P. Chamberlain, D. Craw, and A.S. Meltzer. “Mechanical links between erosion and metamorphism in Nanga Parbat, Pakistan Himalaya”. In: American Journal of Science 302 (2002), pp. 749–733.
H. Koopmann, S. Brune, D. Franke, and S. Breuer. “Linking rift propagation barriers to excess magmatism at volcanic rifted margins”. In: Geology (2014). doi: 10.1130/G36085. 1.
A. Koptev, A. Beniest, L. Jolivet, and S. Leroy. “Plume-Induced Breakup of a Subducting Plate: Microcontinent Formation Without Cessation of the Subduction Process”. In: Geophys. Res. Lett. 46 (2019), pp. 3663–3675. doi: 10.1029/2018GL081295.
A. Koptev, E. Calais, E. Burov, S. Leroy, and T. Gerya. “Dual continental rift systems generated by plume-lithosphere interaction”. In: Nature Geoscience (2015), 10.1038/NGEO2401.
A. Koptev, S. Cloetingh, E. Burov, T. Francois, and T. Gerya. “Long-distance impact of Iceland plume on Norway’s rifted margin”. In: Scientific Reports 7.10408 (2017).
A. Koptev et al. “Contrasted continental rifting via plume-craton interaction: Applications to Central East African Rift”. In: Geoscience Frontiers 7 (2016), pp. 221–236.
Alexander Koptev, Todd A Ehlers, Matthias Nettesheim, and David Whipp. “Response of a rheologically stratified lithosphere to subduction of an indenter-shaped plate: Insights into localized exhumation at orogen syntaxes”. In: Tectonics (2019).
Alexander Koptev, Matthias Nettesheim, and Todd A Ehlers. “Plate corner subduction and rapid localized exhumation: Insights from 3D coupled geodynamic and geomorphological modelling”. In: Terra Nova 34.3 (2022), pp. 210–223. doi: 10.1111/ter.12581.
Alexander Koptev, Matthias Nettesheim, Sarah Falkowski, and Todd A Ehlers. “3D geodynamic-geomorphologic modelling of deformation and exhumation at curved plate boundaries: Implications for the southern Alaskan plate corner”. In: Scientific Reports 12.1 (2022), pp. 1–14. doi: 10.1038/s41598-022-17644-8.
Megan Korchinski, Christian Teyssier, Patrice F Rey, Donna L Whitney, and Luke Mondy. “Single-phase vs two-phase rifting: Numerical perspectives on the accommodation of extension during continental break-up”. In: Marine and Petroleum Geology 123 (2021), p. 104715. doi: 10.1016/j.marpetgeo.2020.104715.
Ivan Koulakov, Vera Schlindwein, Mingqi Liu, Taras Gerya, Andrey Jakovlev, and Aleksey Ivanov. “Low-degree mantle melting controls the deep seismicity and explosive volcanism of the Gakkel Ridge”. In: Nature Communications 13.1 (2022), pp. 1–10. doi: 10.1038/ s41467-022-30797-4.
Hemin A Koyi. “Modeling the influence of sinking anhydrite blocks on salt diapirs targeted for hazardous waste disposal”. In: Geology 29.5 (2001), pp. 387–390. doi: 10.1130/0091- 7613(2001)029<0387:MTIOSA>2.0.CO;2.
Stephan C Kramer, Cian R Wilson, and D Rhodri Davies. “An implicit free surface algorithm for geodynamical simulations”. In: Phys. Earth. Planet. Inter. 194 (2012), pp. 25–37.
O. Kreylos and L. H. Kellogg. “Immersive Visualization of the Solid Earth”. In: AGU Fall Meeting Abstracts. 2017, T44D–03. doi: xxxx.
Abdelkader Krimi, Mehdi Rezoug, Sofiane Khelladi, Xesús Nogueira, Michael Deligant, and Luis Ramrez. “Smoothed particle hydrodynamics: a consistent model for interfacial multiphase fluid flow simulations”. In: J. Comp. Phys. 358 (2018), pp. 53–87. doi: 10. 1016/j.jcp.2017.12.006.
M. Kronbichler, T. Heister, and W. Bangerth. “High accuracy mantle convection simulation through modern numerical methods”. In: Geophy. J. Int. 191 (2012), pp. 12–29. doi: 10.1111/j.1365-246X.2012.05609.x.
M Krotkiewski, M Dabrowski, and YY Podladchikov. “Fractional Steps methods for transient problems on commodity computer architectures”. In: Phys. Earth. Planet. Inter. 171.1-4 (2008), pp. 122–136.
Marcin Krotkiewski and Marcin Dabrowski. “Parallel symmetric sparse matrix–vector product on scalar multi-core CPUs”. In: Parallel Computing 36.4 (2010), pp. 181–198. doi: 10.1016/j.parco.2010.02.003.
Neil J Krystopowicz and Claire A Currie. “Crustal eclogitization and lithosphere delamination in orogens”. In: Earth Planet. Sci. Lett. 361 (2013), pp. 195–207.
Kristina Kublik, Claire A Currie, and D Graham Pearson. “Evaluating the rheological controls on topography development during craton stabilization: Objective approaches to comparing geodynamic models”. In: J. Geophys. Res.: Solid Earth 129.4 (2024), e2023JB028226.
S Kulasegaram, Bhushan Lal Karihaloo, and A Ghanbari. “Modelling the flow of self-compacting concrete”. In: International Journal for Numerical and Analytical Methods in Geomechanics 35.6 (2011), pp. 713–723. doi: 10.1002/nag.924.
Ajay Kumar, Manel Fernŕndez, Ivone Jiménez-Munt, Montserrat Torne, Jaume Vergés, and Juan Carlos Afonso. “LitMod2D_2. 0: An improved integrated geophysical-petrological modeling tool for the physical interpretation of upper mantle anomalies”. In: Geochem. Geophys. Geosyst. 21.3 (2020), e2019GC008777. doi: 10.1029/2019GC008777.
Ajay Kumar, Manel Fernŕndez, Jaume Vergés, Montserrat Torne, and Ivone Jiménez-Munt. “Opposite symmetry in the lithospheric structure of the Alboran and Algerian basins and their margins (Western Mediterranean): Geodynamic implications”. In: J. Geophys. Res.: Solid Earth 126.7 (2021), e2020JB021388. doi: 10.1029/2020JB021388.
Peter Lafemina et al. “Fore-arc motion and Cocos Ridge collision in Central America”. In: Geochem. Geophys. Geosyst. 10.5 (2009). doi: 10.1029/2008GC002181.
Arijit Laik, Wouter P Schellart, and Vincent Strak. “Sustained indentation in 2-D models of continental collision involving whole mantle subduction”. In: Geophy. J. Int. 232.1 (2023), pp. 343–365. doi: 10.1093/gji/ggac339.
R Lanari et al. “The Atlas of Morocco: A Plume-Assisted Orogeny”. In: Geochem. Geophys. Geosyst. 24.6 (2023), e2022GC010843. doi: 10.1029/2022GC010843.
Sean M Langemeyer, Julian P Lowman, and Paul J Tackley. “Global mantle convection models produce transform offsets along divergent plate boundaries”. In: Communications Earth & Environment 2.1 (2021), pp. 1–10. doi: 10.1038/s43247-021-00139-1.
Sean M Langemeyer, Julian P Lowman, and Paul J Tackley. “The dynamics and impact of compositionally originating provinces in a mantle convection model featuring rheologically obtained plates”. In: Geophy. J. Int. 220.3 (2020), pp. 1700–1716. doi: 10.1093/gji/ ggz497.
Sean M Langemeyer, Julian P Lowman, and Paul J Tackley. “The Sensitivity of Core Heat Flux to the Modeling of Plate-Like Surface Motion”. In: Geochem. Geophys. Geosyst. 19.4 (2018), pp. 1282–1308. doi: 10.1002/2017GC007266.
SM Langemeyer, JP Lowman, and PJ Tackley. “Contrasts in 2-D and 3-D system behaviour in the modelling of compositionally originating LLSVPs and a mantle featuring dynamically obtained plates”. In: Geophy. J. Int. 230.3 (2022), pp. 1751–1774. doi: 10.1093/gji/ ggac143.
U. Langer and W. Queck. “On the convergence factor of Uzawa’s algorithm”. In: Journal of Computational and Applied Mathematics 15 (1986), pp. 191–202. doi: 10.1016/0377- 0427(86)90026-9.
R. L. Larson and C. Kincaid. “Onset of mid-Cretaceous volcanism by elevation of the 670 km thermal boundary layer”. In: Geology 24.6 (1996), p. 551. doi: 10.1130/0091- 7613(1996)024<0551:OOMCVB>2.3.CO;2.
Tiphaine Larvet, Laetitia Le Pourhiet, and Philippe Agard. “Cimmerian block detachment from Gondwana: A slab pull origin?” In: Earth Planet. Sci. Lett. 596 (2022), p. 117790. doi: 10.1016/j.epsl.2022.117790.
T. M. Lassak, A. K. McNamara, E. J. Garnero, and S. Zhong. “Core-mantle boundary topography as a possible constraint on lower mantle chemistry and dynamics”. In: Earth Planet. Sci. Lett. 289.1-2 (2010), pp. 232–241. doi: 10.1016/j.epsl.2009.11.012.
A. Lavecchia, C. Thieulot, F. Beekman, S. Cloetingh, and S. Clark. “Lithosphere erosion and continental breakup: Interaction of extension, plume upwelling and melting”. In: Earth Planet. Sci. Lett. 467 (2017), pp. 89–98. doi: 10.1016/j.epsl.2017.03.028.
Luc L Lavier, W Roger Buck, and Alexei NB Poliakov. “Factors controlling normal fault offset in an ideal brittle layer”. In: J. Geophys. Res.: Solid Earth 105.B10 (2000), pp. 23431–23442. doi: 10.1029/2000JB900108.
Luc L Lavier, W Roger Buck, and Alexei NB Poliakov. “Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults”. In: Geology 27.12 (1999), pp. 1127–1130. doi: 10.1130/0091-7613(1999)027<1127:SCRHMF>2.3.CO;2.
L. Le Pourhiet, B. Huet, D.A. May, L. Labrousse, and L. Jolivet. “Kinematic interpretation of the 3D shapes of metamorphic core complexes”. In: Geochem. Geophys. Geosyst. 13.Q09002 (2012). doi: 10.1029/2012GC004271.
Laetitia Le Pourhiet, Nicolas Chamot-Rooke, Matthias Delescluse, Dave A May, Louise Watremez, and Manuel Pubellier. “Continental break-up of the South China Sea stalled by far-field compression”. In: Nature Geoscience 11.8 (2018), pp. 605–609. doi: 10.1038/ s41561-018-0178-5.
Laetitia Le Pourhiet, Michael Gurnis, and Jason Saleeby. “Mantle instability beneath the Sierra Nevada mountains in California and Death Valley extension”. In: Earth Planet. Sci. Lett. 251.1-2 (2006), pp. 104–119. doi: 10.1016/j.epsl.2006.08.028.
Laetitia Le Pourhiet, L Mattioni, and I Moretti. “3D modelling of rifting through a pre-existing stack of nappes in the Gulf of Corinth (Greece): a mixed analogue/numerical approach”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 233–252. doi: 10.1144/GSL.SP.2006.253.01.12.
Laetitia Le Pourhiet, Dave A May, Lucas Huille, Louise Watremez, and Sylvie Leroy. “A genetic link between transform and hyper-extended margins”. In: Earth Planet. Sci. Lett. 465 (2017), pp. 184–192.
Laëtitia Lebec, Stéphane Labrosse, Adrien Morison, and Paul J Tackley. “Scaling of convection in high-pressure ice layers of large icy moons and implications for habitability”. In: Icarus 396 (2023), p. 115494. doi: 10.1016/j.icarus.2023.115494.
S.M. Lechmann, D.A. May, B.J.P. Kaus, and S.M. Schmalholz. “Comparing thin-sheet models with 3-D multilayer models for continental collision”. In: Geophy. J. Int. 187 (2011), pp. 10–33.
SM Lechmann, SM Schmalholz, G Hetényi, DA May, and BJP Kaus. “Quantifying the impact of mechanical layering and underthrusting on the dynamics of the modern India-Asia collisional system with 3-D numerical models”. In: J. Geophys. Res.: Solid Earth 119.1 (2014), pp. 616–644. doi: 10.1002/2012JB009748.
C. Lee and S. D. King. “Dynamic buckling of subducting slabs reconciles geological and geophysical observations”. In: Earth Planet. Sci. Lett. 312.3-4 (2011), pp. 360–370. doi: 10.1016/j.epsl.2011.10.033.
C. Lee and S. D. King. “Effect of mantle compressibility on the thermal and flow structures of the subduction zones”. In: Geochem. Geophys. Geosyst. 10.1 (2009), n/a–n/a. doi: 10.1029/2008GC002151.
C. Lee and S. D. King. “Why are high-Mg# andesites widespread in the western Aleutians? A numerical model approach”. In: Geology 38.7 (2010), pp. 583–586. doi: 10.1130/ G30714.1.
C. Lee and C. Lim. “Short-term and localized plume-slab interaction explains the genesis of Abukuma adakite in Northeastern Japan”. In: Earth Planet. Sci. Lett. 396 (2014), pp. 116–124. doi: 10.1016/j.epsl.2014.04.009.
Changyeol Lee, Donghoon Seoung, and Nestor G Cerpa. “Effect of water solubilities on dehydration and hydration in subduction zones and water transport to the deep mantle: Implications for natural subduction zones”. In: Gondwana Research 89 (2021), pp. 287–305. doi: 10.1016/j.gr.2020.10.012.
E-S Lee, Charles Moulinec, Rui Xu, Damien Violeau, Dominique Laurence, and Peter Stansby. “Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method”. In: J. Comp. Phys. 227.18 (2008), pp. 8417–8436. doi: 10.1016/j.jcp.2008.06.005.
Sungho Lee, Arushi Saxena, Jung-Hun Song, Junkee Rhie, and Eunseo Choi. “Contributions from lithospheric and upper-mantle heterogeneities to upper crustal seismicity in the Korean Peninsula”. In: Geophy. J. Int. 229.2 (2022), pp. 1175–1192. doi: 10.1093/gji/ggab527.
Sungho Lee et al. “Crustal and uppermost mantle structures imaged by teleseismic P-wave traveltime tomography beneath the Southeastern Korean Peninsula: implications for a hydrothermal system controlled by the thermally modified lithosphere”. In: Geophy. J. Int. 235.2 (2023), pp. 1639–1657.
Matthew E Lees, John F Rudge, and Dan McKenzie. “Gravity, Topography, and Melt Generation Rates From Simple 3-D Models of Mantle Convection”. In: Geochem. Geophys. Geosyst. 21.4 (2020), e2019GC008809. doi: 10.1029/2019GC008809.
R.S. Lehmann, M. Lukacova-Medvidova, B.J.P. Kaus, and A.A. Popov. “Comparison of continuous and discontinuous Galerkin approaches for variable-viscosity Stokes flow”. In: Z. Angew. Math. Mech. 96.6 (2015), pp. 733–746. doi: 10.1002/zamm.201400274.
Tian Lei, Zhong-Hai Li, and Mian Liu. “Removing mantle lithosphere under orogens: delamination versus convective thinning”. In: Geophy. J. Int. 219.2 (2019), pp. 877–896. doi: 10.1093/gji/ggz329.
V. Lemiale, H.-B. Mühlhaus, L. Moresi, and J. Stafford. “Shear banding analysis of plastic models formulated for incompressible viscous flows”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 177–186. doi: 10.1016/j.pepi.2008.07.038.
Vincent Lemiale, Laura Karantgis, and Philip Broadbrige. “Smoothed Particle Hydrodynamics applied to the modelling of landslides”. In: Applied Mechanics and Materials. Vol. 553. 2014, pp. 519–524. doi: 10.4028/www.scientific.net/AMM.553.519.
Vincent Lemiale, H-B Mühlhaus, Catherine Meriaux, L Moresi, and L Hodkinson. “Rate effects in dense granular materials: Linear stability analysis and the fall of granular columns”. In: International Journal for Numerical and Analytical Methods in Geomechanics 35.2 (2011), pp. 293–308. doi: 10.1002/nag.895.
A Lenardic and L Moresi. “Thermal convection below a conducting lid of variable extent: heat flow scalings and two-dimensional, infinite Prandtl number numerical simulations”. In: Physics of Fluids 15.2 (2003), pp. 455–466. doi: 10.1063/1.1533755.
A Lenardic, L Moresi, and H Mühlhaus. “The role of mobile belts for the longevity of deep cratonic lithosphere: the crumple zone model”. In: Geophys. Res. Lett. 27.8 (2000), pp. 1235–1238. doi: 10.1029/1999GL008410.
A Lenardic and L-N Moresi. “Some thoughts on the stability of cratonic lithosphere: Effects of buoyancy and viscosity”. In: J. Geophys. Res.: Solid Earth 104.B6 (1999), pp. 12747–12758. doi: 10.1029/1999JB900035.
A Lenardic, M Weller, T Höink, and J Seales. “Toward a Boot Strap Hypothesis of Plate Tectonics: Feedbacks Between Plates, The Asthenosphere, and The Wavelength of Mantle Convection”. In: Phys. Earth. Planet. Inter. 296 (2019), p. 106299. doi: 10.1016/j. pepi.2019.106299.
A. Lenardic. “On the partitioning of mantle heat loss below oceans and continents over time and its relationship to the Archaean paradox: Mantle heat partitioning and the Archaean paradox”. In: Geophy. J. Int. 134.3 (1998), pp. 706–720. doi: 10.1046/j.1365- 246x.1998.00604.x.
A. Lenardic and W. M. Kaula. “A numerical treatment of geodynamic viscous flow problems involving the advection of material interfaces”. In: J. Geophys. Res.: Solid Earth 98.B5 (1993), pp. 8243–8260. doi: 10.1029/92JB02858.
A. Lenardic and W. M. Kaula. “More thoughts on convergent crustal plateau formation and mantle dynamics with regard to Tibet”. In: J. Geophys. Res.: Solid Earth 100.B8 (1995), pp. 15193–15203. doi: 10.1029/95JB01289.
A. Lenardic and W. M. Kaula. “Near-surface thermal/chemical boundary layer convection at infinite Prandtl number: two-dimensional numerical experiments”. In: Geophy. J. Int. 126.3 (1996), pp. 689–711. doi: 10.1111/j.1365-246X.1996.tb04698.x.
A. Lenardic and W. M. Kaula. “Self-lubricated mantle convection: Two-dimensional models”. In: Geophys. Res. Lett. 21.16 (1994), pp. 1707–1710. doi: 10.1029/94GL01464.
A. Lenardic and W. M. Kaula. “Tectonic plates, D” thermal structure, and the nature of mantle plumes”. In: J. Geophys. Res.: Solid Earth 99.B8 (1994), p. 15697. doi: 10.1029/ 94JB00466.
A. Lenardic, W. M. Kaula, and D. L. Bindschadler. “A mechanism for crustal recycling on Venus”. In: J. Geophys. Res.: Solid Earth 98.E10 (1993), p. 18697. doi: 10.1029/ 93JE01799.
A. Lenardic, W. M. Kaula, and D. L. Bindschadler. “Some effects of a dry crustal flow law on numerical simulations of coupled crustal deformation and mantle convection on Venus”. In: J. Geophys. Res.: Solid Earth 100.E8 (1995), p. 16949. doi: 10.1029/95JE01895.
A. Lenardic, W. M. Kaula, and D. L. Bindschadler. “The tectonic evolution of Western Ishtar Terra, Venus”. In: Geophys. Res. Lett. 18.12 (1991), pp. 2209–2212. doi: 10.1029/ 91GL02734.
A. Lenardic and L. Moresi. “A new class of equilibrium geotherms in the deep thermal lithosphere of continents”. In: Earth Planet. Sci. Lett. 176.3-4 (2000), pp. 331–338. doi: 10.1016/S0012-821X(00)00025-X.
A. Lenardic, L. Moresi, A.M. Jellinek, C.J. O’Neill, C.M. Cooper, and C.T. Lee. “Continents, supercontinents, mantle thermal mixing, and mantle thermal isolation: Theory, numerical simulations, and laboratory experiments”. In: Geochem. Geophys. Geosyst. 12.10 (2011).
Adrian Lenardic, AM Jellinek, and L-N Moresi. “A climate induced transition in the tectonic style of a terrestrial planet”. In: Earth Planet. Sci. Lett. 271.1-4 (2008), pp. 34–42. doi: 10.1016/j.epsl.2008.03.031.
Adrian Lenardic and L Moresi. “Heat flow scaling for mantle convection below a conducting lid: Resolving seemingly inconsistent modeling results regarding continental heat flow”. In: Geophys. Res. Lett. 28.7 (2001), pp. 1311–1314. doi: 10.1029/2000GL008484.
Adrian Lenardic, L-N Moresi, AM Jellinek, and M Manga. “Continental insulation, mantle cooling, and the surface area of oceans and continents”. In: Earth Planet. Sci. Lett. 234.3-4 (2005), pp. 317–333. doi: 10.1016/j.epsl.2005.01.038.
Adrian Lenardic, L-N Moresi, and H Mühlhaus. “Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics”. In: J. Geophys. Res.: Solid Earth 108.B6 (2003). doi: 10.1029/2002JB001859.
Adrian Lenardic, Francis Nimmo, and L Moresi. “Growth of the hemispheric dichotomy and the cessation of plate tectonics on Mars”. In: J. Geophys. Res.: Planets 109.E2 (2004). doi: 10.1029/2003JE002172.
W. Leng, M. Gurnis, and P. Asimov. “From basalts to boninites: The geodynamics of volcanic expression during induced subduction initiation”. In: Initiation and Termination of Subduction: Rock Record, Geodynamic Models, Modern Plate Boundaries (2012).
W. Leng and S. Zhong. “More constraints on internal heating rate of the Earth’s mantle from plume observations”. In: Geophys. Res. Lett. 36.2 (2009), n/a–n/a. doi: 10.1029/ 2008GL036449.
W. Leng and S. Zhong. “Viscous heating, adiabatic heating and energetic consistency in compressible mantle convection”. In: Geophy. J. Int. 173 (2008), pp. 693–702. doi: 10. 1111/j.1365-246X.2008.03745.x.
Wei Leng and Michael Gurnis. “Dynamics of subduction initiation with different evolutionary pathways”. In: Geochem. Geophys. Geosyst. 12.12 (2011), Q12018. doi: 10.1029/ 2011GC003877.
Wei Leng and Michael Gurnis. “Shape of thermal plumes in a compressible mantle with depth-dependent viscosity”. In: Geophys. Res. Lett. 39.5 (2012). doi: 10.1029/ 2012GL050959.
Wei Leng and Michael Gurnis. “Subduction initiation at relic arcs”. In: Geophys. Res. Lett. 42 (2015), pp. 7014–7021. doi: 10.1002/2015GL064985.
Wei Leng and Shijie Zhong. “Constraints on viscous dissipation of plate bending from compressible mantle convection”. In: Earth Planet. Sci. Lett. 297.1-2 (2010), pp. 154–164. doi: 10.1016/j.epsl.2010.06.016.
Wei Leng and Shijie Zhong. “Controls on plume heat flux and plume excess temperature”. In: J. Geophys. Res.: Solid Earth 113.B4 (2008). doi: 10.1029/2007JB005155.
Wei Leng and Shijie Zhong. “Surface subsidence caused by mantle plumes and volcanic loading in large igneous provinces”. In: Earth Planet. Sci. Lett. 291.1-4 (2010), pp. 207–214. doi: 10.1016/j.epsl.2010.01.015.
Tiffany Leonard and Lijun Liu. “The role of a mantle plume in the formation of Yellowstone volcanism”. In: Geophys. Res. Lett. 43.3 (2016), pp. 1132–1139. doi: 10.1002/ 2015GL067131.
Giovanni Leone, Paul J Tackley, Taras V Gerya, Dave A May, and Guizhi Zhu. “Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the Martian dichotomy”. In: Geophys. Res. Lett. 41.24 (2014), pp. 8736–8743. doi: 10.1002/2014GL062261.
Charles E Lesher et al. “Iron isotope fractionation at the core–mantle boundary by thermodiffusion”. In: Nature Geoscience 13.5 (2020), pp. 382–386. doi: 10.1038/s41561- 020-0560-y.
Olivia Lesne, Eric Calais, Jacques Deverchčre, J Chéry, and R Hassani. “Dynamics of intracontinental extension in the north Baikal rift from two-dimensional numerical deformation modeling”. In: J. Geophys. Res.: Solid Earth 105.B9 (2000), pp. 21727–21744. doi: 10.1029/2020AV000205.
Einat Lev and Bradford H Hager. “Anisotropic viscosity changes subduction zone thermal structure”. In: Geochem. Geophys. Geosyst. 12.4 (2011), Q04009. doi: 10.1029/ 2010GC003382.
R.W. Lewis, K. Ravindran, and A.S. Usmani. “Finite Element Solution of Incompressible Flows Using an Explicit Segregated Approach”. In: Archives of Computational Methods in Engineering 2.4 (1995), pp. 69–93. doi: 10.1007/BF02736197.
D. Li, M. Gurnis, and G. Stadler. “Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity”. In: Geophy. J. Int. 209 (2017), pp. 86–105. doi: 10.1093/gji/ggw493.
Fucheng Li et al. “Continental interior and edge breakup at convergent margins induced by subduction direction reversal: A numerical modeling study applied to the South China Sea margin”. In: Tectonics 39.11 (2020), e2020TC006409. doi: 10.1029/2020TC006409.
Keqing Li, Jiashun Hu, Yida Li, Hao Zhou, and Haijiang Zhang. “Slab segmentation and stacking in mantle transition zone controls disparate surface and lower mantle subducting rates and complex slab morphology”. In: Geophys. Res. Lett. 51.17 (2024), e2024GL110202. doi: 10.1029/2024GL110202.
Lin-Sen Li, Fabio A Capitanio, Peter A Cawood, Ben-Jun Wu, Ming-Guo Zhai, and Xiao-Lei Wang. “Double subduction controls on long-lived continental tectonics and subcontinental mantle temperatures”. In: Geology XX (2024), p. XX. doi: 10.1130/G52232.1.
M. Li, S. Zhong, and P. Olson. “Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation”. In: Phys. Earth. Planet. Inter. 277 (2018), pp. 10–29. doi: 10.1016/j.pepi.2018.01.010.
Mingming Li. “The influence of uncertain mantle density and viscosity structures on the calculations of deep mantle flow and lateral motion of plumes”. In: Geophy. J. Int. 233.3 (2023), pp. 1916–1937. doi: 10.1093/gji/ggad040.
Mingming Li, Benjamin Black, Shijie Zhong, Michael Manga, Maxwell L Rudolph, and Peter Olson. “Quantifying melt production and degassing rate at mid-ocean ridges from global mantle convection models with plate motion history”. In: Geochem. Geophys. Geosyst. 17.7 (2016), pp. 2884–2904. doi: 10.1002/2016GC006439.
Mingming Li and Allen K McNamara. “Evolving morphology of crustal accumulations in Earth’s lowermost mantle”. In: Earth Planet. Sci. Lett. 577 (2022), p. 117265. doi: 10. 1016/j.epsl.2021.117265.
Mingming Li, Allen K McNamara, and Edward J Garnero. “Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs”. In: Nature Geoscience 7.5 (2014), pp. 366–370. doi: 10.1038/NGEO2120.
Mingming Li, Allen K McNamara, Edward J Garnero, and Shule Yu. “Compositionally-distinct ultra-low velocity zones on Earth’s core-mantle boundary”. In: Nature Communications 8.1 (2017), p. 177. doi: 10.1038/s41467-017-00219-x.
Mingming Li and Shijie Zhong. “Lateral Motion of Mantle Plumes in 3-D Geodynamic Models”. In: Geophys. Res. Lett. 46 (2019), pp. 4685–4693. doi: 10.1029/2018GL081404.
Mingming Li and Shijie Zhong. “The source location of mantle plumes from 3D spherical models of mantle convection”. In: Earth Planet. Sci. Lett. 478 (2017), pp. 47–57. doi: 10.1016/j.epsl.2017.08.033.
Qingsong Li and Walter S Kiefer. “Mantle convection and magma production on present-day Mars: Effects of temperature-dependent rheology”. In: Geophys. Res. Lett. 34.16 (2007). doi: 10.1029/2007GL030544.
Shaofan Li, Wei Hao, and Wing Kam Liu. “Mesh-free simulations of shear banding in large deformation”. In: International Journal of solids and structures 37.48-50 (2000), pp. 7185–7206. doi: 10.1016/S0020-7683(00)00195-5.
Shaofan Li and Wing Kam Liu. “Meshfree and particle methods and their applications”. In: Applied Mechanics Reviews 55.1 (2002), pp. 1–34. doi: 10.1115/1.1431547.
Shaofan Li, Wing Kam Liu, Ares J Rosakis, Ted Belytschko, and Wei Hao. “Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition”. In: International Journal of solids and structures 39.5 (2002), pp. 1213–1240. doi: 10.1016/ S0020-7683(01)00188-3.
Tao Li and Andrea Hampel. “Effect of glacial-interglacial sea-level changes on the displacement and stress field in the forearc and along the plate interface of subduction zones”. In: Solid Earth 3.1 (2012), pp. 63–70. doi: 10.5194/se-3-63-2012.
Yang Li, Frédéric Deschamps, and Paul J Tackley. “Effects of the post-perovskite phase transition properties on the stability and structure of primordial reservoirs in the lower mantle of the Earth”. In: Earth Planet. Sci. Lett. 432 (2015), pp. 1–12. doi: 10.1016/j. epsl.2015.09.040.
Yang Li, Frédéric Deschamps, and Paul J Tackley. “The stability and structure of primordial reservoirs in the lower mantle: insights from models of thermochemical convection in three-dimensional spherical geometry”. In: Geophy. J. Int. 199.2 (2014), pp. 914–930. doi: 10.1093/gji/ggu295.
Yang Li, Zhigang Zhang, Juan Li, Zhidong Shi, and Liang Zhao. “Effects of depth-and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of large thermochemical piles of primordial material in the lower mantle of the Earth: Insights from 2-D numerical modeling”. In: Science China Earth Sciences 66 (2023), pp. 1–12. doi: 10.1007/s11430-022-1111-6.
Yang Li et al. “Influence of composition-dependent thermal conductivity on the long-term evolution of primordial reservoirs in Earth’s lower mantle”. In: Earth, Planets and Space 74.1 (2022), pp. 1–13. doi: 10.1186/s40623-022-01608-3.
Yanyou Li and Jiafu Qi. “Salt-related contractional structure and its main controlling factors of Kelasu structural zone in Kuqa depression: insights from physical and numerical experiments”. In: Procedia Engineering 31 (2012), pp. 863–867. doi: 10.1016/j.proeng. 2012.01.1113.
Yaqing Li et al. “Numerical modeling of failed rifts in the northern South China Sea margin: implications for continental rifting and breakup”. In: Journal of Asian Earth Sciences (2020), p. 104402. doi: 10.1016/j.jseaes.2020.104402.
Yida Li and Michael Gurnis. “A simple force balance model of subduction initiation”. In: Geophy. J. Int. 232.1 (2023), pp. 128–146. doi: 10.1093/gji/ggac332.
Yida Li and Michael Gurnis. “Strike slip motion and the triggering of subduction initiation”. In: Frontiers in Earth Science 11 (2023), p. 1156034. doi: 10.3389/feart.2023.1156034.
Yunyue Elita Li, Daniel O’Malley, Greg Beroza, Andrew Curtis, and Paul Johnson. Machine Learning Developments and Applications in Solid-Earth Geosciences: Fad or Future? 2023. doi: 10.1029/2022JB026310.
Z.-H. Li, Z. Xu, T. Gerya, and J.-P. Burg. “Collision of continental corner from 3-D numerical modeling”. In: Earth Planet. Sci. Lett. 380 (2013), pp. 98–111. doi: 10.1016/j.epsl. 2013.08.034.
Z.H. Li, Z.Q. Xu, and T.V. Gerya. “Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones”. In: Earth Planet. Sci. Lett. 301 (2011), pp. 65–77.
ZH Li, TV Gerya, and J-P Burg. “Influence of tectonic overpressure on P–T paths of HP–UHP rocks in continental collision zones: thermomechanical modelling”. In: Journal of Metamorphic Geology 28.3 (2010), pp. 227–247. doi: 10.1111/j.1525-1314.2009. 00864.x.
Zhong-Hai Li, Jeanette F Di Leo, and Neil M Ribe. “Subduction-induced mantle flow, finite strain, and seismic anisotropy: Numerical modeling”. In: J. Geophys. Res.: Solid Earth 119.6 (2014), pp. 5052–5076. doi: 10.1002/2014JB010996.
Zhong-Hai Li, Taras Gerya, and James AD Connolly. “Variability of subducting slab morphologies in the mantle transition zone: Insight from petrological-thermomechanical modeling”. In: Earth-Science Reviews 196 (2019), p. 102874. doi: 10.1016/j.earscirev. 2019.05.018.
Zhong-Hai Li and Neil M Ribe. “Dynamics of free subduction from 3-D boundary element modeling”. In: J. Geophys. Res.: Solid Earth 117.B6 (2012). doi: 10.1029/2012JB009165.
ZhongHai Li. “A review on the numerical geodynamic modeling of continental subduction, collision and exhumation”. In: Science China Earth Sciences 57 (2014), pp. 47–69. doi: 10.1007/s11430-013-4696-0.
Zhonghai Li and Taras V Gerya. “Polyphase formation and exhumation of high-to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China”. In: J. Geophys. Res.: Solid Earth 114.B9 (2009). doi: 10.1029/2008JB005935.
Z.-X. Lia and S. Zhong. “Supercontinent-superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics”. In: Phys. Earth. Planet. Inter. 176 (2009), pp. 143–156.
Qing Liang, Chao Chen, and Yaoguo Li. “3-D inversion of gravity data in spherical coordinates with application to the GRAIL data”. In: J. Geophys. Res.: Planets 119.6 (2014), pp. 1359–1373. doi: 10.1002/2014JE004626.
J Liao, T Gerya, and Q Wang. “Layered structure of the lithospheric mantle changes dynamics of craton extension”. In: Geophys. Res. Lett. 40.22 (2013), pp. 5861–5866. doi: 10.1002/2013GL058081.
J. Liao and T. Gerya. “Influence of lithospheric mantle stratification on craton extension: Insight from two-dimensional thermo-mechanical modeling”. In: Tectonophysics 631 (2014), pp. 50–64. doi: 10.1016/j.tecto.2014.01.020.
Jie Liao and Taras Gerya. “Partitioning of crustal shortening during continental collision: 2-D thermomechanical modeling”. In: J. Geophys. Res.: Solid Earth 122.1 (2017), pp. 592–606. doi: 10.1002/2016JB013398.
Jie Liao, Lun Li, Rui Gao, Yongqiang Shen, Jiarong Qing, and Yangming Wu. “Geodynamic modeling on subduction-spreading interaction and implications for the South China Sea and surrounding regions”. In: Geosystems and Geoenvironment 2.2 (2022), p. 100143. doi: 10.1016/j.geogeo.2022.100143.
Jie Liao, Qin Wang, Taras Gerya, and Maxim D Ballmer. “Modeling craton destruction by hydration-induced weakening of the upper mantle”. In: J. Geophys. Res.: Solid Earth 122.9 (2017), pp. 7449–7466. doi: 10.1002/2017JB014157.
C. Lim and C. Lee. “Effects of temporal plume-slab interaction on the partial melting of the subducted oceanic crust”. In: Journal of Asian Earth Sciences 113 (2015), pp. 857–865. doi: 10.1016/j.jseaes.2015.09.016.
Yi-An Lin, Lorenzo Colli, and Jonny Wu. “NW Pacific-Panthalassa intra-oceanic subduction during Mesozoic times from mantle convection and geoid models”. In: Geochem. Geophys. Geosyst. 23 (2022), e2022GC010514. doi: 10.1029/2022GC010514.
Jian Lin, Yigang Xu, Zhen Sun, and Zhiyuan Zhou. “Mantle upwelling beneath the South China Sea and links to surrounding subduction systems”. In: National Science Review 6.5 (2019), pp. 877–881. doi: 10.1093/nsr/nwz123.
Ja-Ren Lin, Taras V Gerya, Paul J Tackley, David A Yuen, and Gregor J Golabek. “Numerical modeling of protocore destabilization during planetary accretion: Methodology and results”. In: Icarus 204.2 (2009), pp. 732–748. doi: 10.1016/j.icarus.2009.06.035.
Ja-Ren Lin, Taras V Gerya, Paul J Tackley, David A Yuen, and Gregor J Golabek. “Protocore destabilization in planetary embryos formed by cold accretion: Feedbacks from non-Newtonian rheology and energy dissipation”. In: Icarus 213.1 (2011), pp. 24–42. doi: 10.1016/j.icarus.2011.02.021.
S.-C. Lin and P.E. van Keken. “Dynamics of thermochemical plumes: 1. Plume formation and entrainment of a dense layer”. In: Geochem. Geophys. Geosyst. 7.2 (2006). doi: 10. 1029/2005GC001071.
S.-C. Lin and P.E. van Keken. “Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes”. In: Geochem. Geophys. Geosyst. 7.3 (2006). doi: 10.1029/2005GC001072.
Shu-Chuan Lin and Peter E van Keken. “Multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes”. In: Nature 436.7048 (2005), pp. 250–252. doi: 10. 1038/nature03697.
E. Rune Lindgren. “The motion of a sphere in an incompressible viscous fluid at Reynolds numbers considerably less than one”. In: Physica Scripta 60 (1999), pp. 97–110.
Danhong Liu and Lin Chen. “Edge-driven convection and thinning of craton lithosphere: Two-dimensional thermal-mechanical modeling”. In: Science China Earth Sciences 62 (2019), pp. 2106–2120. doi: 10.1007/s11430-019-9371-0.
Hao Liu, Michael Gurnis, and Wei Leng. “Constraints on Mantle Viscosity from Slab Dynamics”. In: J. Geophys. Res.: Solid Earth 126 (2021), e2021JB022329. doi: 10.1029/ 2021JB022329.
Hao Liu, Michael Gurnis, Wei Leng, Zhe Jia, and Zhongwen Zhan. “Tonga Slab Morphology and Stress Variations Controlled by a Relic Slab: Implications for Deep Earthquakes in the Tonga-Fiji Region”. In: Geophys. Res. Lett. 48.7 (2021), e2020GL091331. doi: 10.1029/ 2020GL091331.
Hao Liu, Wei Leng, Wenzhong Wang, and Yong Zheng. “Deciphering the deep Earth heterogeneities from the temperature fluctuation of mantle plumes”. In: Earth Planet. Sci. Lett. 618 (2023), p. 118275. doi: 10.1016/j.epsl.2023.118275.
L. Liu and M. Gurnis. “Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection”. In: J. Geophys. Res.: Solid Earth 113.B8 (2008). doi: 10.1029/2008JB005594.
L. Liu and D. R. Stegman. “Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab”. In: Nature 482.7385 (2012), pp. 386–389. doi: 10.1038/ nature10749.
L. Liu and D.R. Stegman. “Segmentation of the Farallon slab”. In: Earth Planet. Sci. Lett. 311 (2011), pp. 1–10. doi: 10.1016/j.epsl.2011.09.027.
Liang Liu, Lijun Liu, Jason P Morgan, Yi-Gang Xu, and Ling Chen. “New constraints on Cenozoic subduction between India and Tibet”. In: Nature Communications 14.1 (2023), p. 1963. doi: 10.1038/s41467-023-37615-5.
Lijun Liu, Sonja Spasojević, and Michael Gurnis. “Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous”. In: Science 322.5903 (2008), pp. 934–938. doi: 10.1126/science.1162921.
MB Liu, GR Liu, and KY Lam. “Constructing smoothing functions in smoothed particle hydrodynamics with applications”. In: Journal of Computational and applied Mathematics 155.2 (2003), pp. 263–284. doi: 10.1016/S0377-0427(02)00869-5.
MB Liu, GR Liu, and KY Lam. “Investigations into water mitigation using a meshless particle method”. In: Shock waves 12.3 (2002), pp. 181–195. doi: 10.1007/s00193-002-0163-0.
MB Liu and Gui-Rong Liu. “Restoring particle consistency in smoothed particle hydrodynamics”. In: Applied numerical mathematics 56.1 (2006), pp. 19–36. doi: 10. 1016/j.apnum.2005.02.012.
Mengxue Liu and Dinghui Yang. “How do pre-existing weak zones and rheological layering of the continental lithosphere influence the development and evolution of intra-continental subduction?” In: Journal of Asian Earth Sciences 238 (2022), p. 105385. doi: 10.1016/ j.jseaes.2022.105385.
Mengxue Liu, Dinghui Yang, and Rui Qi. “The role of continental lithospheric thermal structure in the evolution of orogenic systems: application to the Himalayan–Tibetan collision zone”. In: Solid Earth 14.11 (2023), pp. 1155–1168. doi: 10.5194/se-14-1155-2023.
Mingqi Liu and Taras Gerya. “Forced subduction initiation near spreading centers: effects of brittle-ductile damage”. In: J. Geophys. Res.: Solid Earth 128.2 (2023), e2022JB024701. doi: 10.1029/2022JB024701.
Mingqi Liu and Zhonghai Li. “Dynamics of thinning and destruction of the continental cratonic lithosphere: Numerical modeling”. In: Science China Earth Sciences 61 (2018), pp. 823–852. doi: 10.1007/s11430-017-9184-x.
Mou B Liu, WP Xie, and GR Liu. “Modeling incompressible flows using a finite particle method”. In: Applied mathematical modelling 29.12 (2005), pp. 1252–1270. doi: 10.1016/ j.apm.2005.05.003.
S. Liu and C.A. Currie. “Farallon plate dynamics prior to the Laramide orogeny: Numerical models of flat subduction”. In: Tectonophysics 666 (2016), pp. 33–47.
S. Liu and S.D. King. “A benchmark study of incompressible Stokes flow in a 3-D spherical shell using ASPECT”. In: Geophy. J. Int. 217 (2019), pp. 650–667. doi: 10.1093/gji/ ggz036.
Shangxin Liu and Scott D King. “Dynamics of the North American Plate: Large-Scale Driving Mechanism From Far-Field Slabs and the Interpretation of Shallow Negative Seismic Anomalies”. In: Geochem. Geophys. Geosyst. 23.3 (2022), e2021GC009808. doi: 10.1029/ 2021GC009808.
Shaofeng Liu et al. “Craton deformation from flat-slab subduction and rollback”. In: Nature Geoscience xxx (2024), p. xxx. doi: 10.1038/s41561-024-01513-2.
Sibiao Liu, Stephan V Sobolev, Andrey Y Babeyko, and Michaël Vincent Pons. “Controls of the foreland-deformation pattern in the Orogen-foreland shortening system: Constraints from high-resolution geodynamic models”. In: Tectonics 41 (2022), e2021TC007121. doi: 10.1029/2021TC007121.
Sibiao Liu et al. “Sensitivity of gravity anomalies to mantle rheology at mid-ocean ridge–transform fault systems”. In: Earth Planet. Sci. Lett. 622 (2023), p. 118420. doi: 10.1016/j.epsl.2023.118420.
W. Liu and S. Xu. “A new improved Uzawa method for finite element solution of Stokes problem”. In: Computational Mechanics 27 (2001), pp. 305–310. doi: 10.1007/ s004660100244.
X. Liu and S. Zhong. “The long-wavelength geoid from three-dimensional spherical models of thermal and thermochemical mantle convection”. In: J. Geophys. Res.: Solid Earth 120.6 (2015), pp. 4572–4596. doi: 10.1002/2015JB012016.
Xi Liu, Juan Li, Zhigang Zhang, and Weidong Sun. “The foundering of stagnant slabs bearing oceanic plateau into the lower mantle”. In: Deep Sea Research Part I: Oceanographic Research Papers 194 (2023), p. 103964. doi: 10.1016/j.dsr.2023.103964.
Xi Liu and Shijie Zhong. “Constraining mantle viscosity structure for a thermochemical mantle using the geoid observation”. In: Geochem. Geophys. Geosyst. 17.3 (2016), pp. 895–913. doi: 10.1002/2015GC006161.
Xiaowen Liu and Russell Pysklywec. “Transient injection of flow: How torn and bent slabs induce unusual mantle circulation patterns near a flat slab”. In: Geochem. Geophys. Geosyst. 24.10 (2023), e2023GC011056. doi: 10.1029/2023GC011056.
Xiaowen Liu, Lara S Wagner, Claire A Currie, and Mark J Caddick. “Implications of flat-slab subduction on hydration, slab seismicity, and arc volcanism in the Pampean region of Chile and Argentina”. In: Geochem. Geophys. Geosyst. 25.3 (2024), e2023GC011317. doi: 10.1029/2023GC011317.
Yan Liu and Ted Belytschko. “A new support integration scheme for the weakform in mesh-free methods”. In: International journal for numerical methods in engineering 82.6 (2010), pp. 699–715. doi: 10.1002/nme.2780.
Z. Liu and P. Bird. “Two-dimensional and three-dimensional finite element modelling of mantle processes beneath central South Island, New Zealand”. In: Geophy. J. Int. 165 (2006), pp. 1003–1028.
Ze Liu et al. “Deep-shallow coupling mechanism in pull-apart basins: Insight from 3D numerical simulation”. In: Journal of Asian Earth Sciences 242 (2023), p. 105509. doi: 10.1016/j.jseaes.2022.105509.
Ze Liu et al. “Mesozoic magmatic activity and tectonic evolution in the southern East China Sea Continental Shelf Basin: thermo-mechanical modelling”. In: Geological Journal 53 (2018), pp. 240–251. doi: 10.1002/gj.3021.
Zhen Liu and Peter Bird. “Finite element modeling of neotectonics in New Zealand”. In: J. Geophys. Res.: Solid Earth 107.B12 (2002), p. 2328. doi: 10.1029/2001JB001075.
Zhen Liu and Peter Bird. “North America plate is driven westward by lower mantle flow”. In: Geophys. Res. Lett. 29.24 (2002), pp. 17–1. doi: 10.1029/2002GL016002.
M.-G. Llorens. “Stress and strain evolution during single-layer folding under pure and simple shear”. In: Journal of Structural Geology 126 (2019), pp. 245–257. doi: 10.1016/j.jsg. 2019.06.009.
Rosalia Lo Bue, Manuele Faccenda, and Jianfeng Yang. “The Role of Adria Plate Lithospheric Structures on the Recent Dynamics of the Central Mediterranean Region”. In: 2021 126.10 (2021), e2021JB022377. doi: 10.1029/2021JB022377.
IS Lobanov, I Yu Popov, AI Popov, and TV Gerya. “Numerical approach to the Stokes problem with high contrasts in viscosity”. In: Applied Mathematics and Computation 235 (2014), pp. 17–25. doi: 10.1016/j.amc.2014.02.084.
LI Lobkovsky, AA Baranov, AM Bobrov, and AV Chuvaev. “Global Geodynamic Model of the Earth and Its Application to the Arctic Region”. In: Doklady Earth Sciences. 2024, pp. 1–6. doi: 10.1134/S1028334X23603000.
A. Loddoch and U. Hansen. “Temporally transitional mantle convection: Implications for Mars”. In: J. Geophys. Res.: Solid Earth 113.E9 (2008). doi: 10.1029/2007JE003023.
A. Loddoch, C. Stein, and U. Hansen. “Temporal variations in the convective style of planetary mantles”. In: Earth Planet. Sci. Lett. 251.1-2 (2006), pp. 79–89. doi: 10.1016/ j.epsl.2006.08.026.
Liz C Logan, Luc L Lavier, Eunseo Choi, Eh Tan, and Ginny A Catania. “Semi-brittle rheology and ice dynamics in DynEarthSol3D”. In: The Cryosphere 11.1 (2017), pp. 117–132. doi: 10.5194/tc-11-117-2017.
Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equations by the finite element method: The FEniCS book. Vol. 84. Springer Science & Business Media, 2012.
C. Loiselet et al. “Subducting slabs: Jellyfishes in the Earth’s mantle”. In: Geochem. Geophys. Geosyst. 11.8 (2010). doi: 10.1029/2010GC003172.
M. D. Long, B. H. Hager, M. V. de Hoop, and R. D. van der Hilst. “Two-dimensional modelling of subduction zone anisotropy with application to southwestern Japan”. In: Geophy. J. Int. 170.2 (2007), pp. 839–856. doi: 10.1111/j.1365-246X.2007.03464.x.
Aurelie Louis–Napoleon, Muriel Gerbault, Thomas Bonometti, Cedric Thieulot, Roland Martin, and Olivier Vanderhaeghe. “3D numerical modeling of crustal polydiapirs with Volume-Of-Fluid methods”. In: Geophy. J. Int. 222 (2020), pp. 474–506. doi: 10.1093/ gji/ggaa141.
Diogo L Lourenço, Antoine B Rozel, Maxim D Ballmer, and Paul J Tackley. “Plutonic-squishy lid: A new global tectonic regime generated by intrusive magmatism on earth-like planets”. In: Geochem. Geophys. Geosyst. 21.4 (2020), e2019GC008756. doi: 10.1029/2019GC008756.
Diogo L Lourenço and Max L Rudolph. “Shallow lower mantle viscosity modulates the pattern of mantle structure”. In: Geochem. Geophys. Geosyst. 21.8 (2020), e2020GC008934. doi: 10.1029/2020GC008934.
JP Lowman, AD Gait, CW Gable, and H Kukreja. “Plumes anchored by a high viscosity lower mantle in a 3D mantle convection model featuring dynamically evolving plates”. In: Geophys. Res. Lett. 35.19 (2008). doi: 10.1029/2008GL035342.
JP Lowman, SD King, and SJ Trim. “The influence of plate boundary motion on planform in viscously stratified mantle convection models”. In: J. Geophys. Res.: Solid Earth 116.B12 (2011). doi: 10.1029/2011JB008362.
Julian P Lowman and Carl W Gable. “Thermal evolution of the mantle following continental aggregation in 3D convection models”. In: Geophys. Res. Lett. 26.17 (1999), pp. 2649–2652. doi: 10.1029/1999GL008332.
Julian P Lowman, Scott D King, and Carl W Gable. “Steady plumes in viscously stratified, vigorously convecting, three-dimensional numerical mantle convection models with mobile plates”. In: Geochem. Geophys. Geosyst. 5.1 (2004). doi: 10.1029/2003GC000583.
Julian P Lowman, Scott D King, and Carl W Gable. “The influence of tectonic plates on mantle convection patterns, temperature and heat flow”. In: Geophy. J. Int. 146.3 (2001), pp. 619–636. doi: 10.1046/j.1365-246X.2001.00471.x.
Julian P Lowman, Scott D King, and Carl W Gable. “The role of the heating mode of the mantle in intermittent reorganization of the plate velocity field”. In: Geophy. J. Int. 152.2 (2003), pp. 455–467. doi: 10.1046/j.1365-246X.2003.01862.x.
Julian P Lowman, Laura T Pinero-Feliciangeli, J-Michael Kendall, and M Hosein Shahnas. “Influence of convergent plate boundaries on upper mantle flow and implications for seismic anisotropy”. In: Geochem. Geophys. Geosyst. 8.8 (2007). doi: 10.1029/2007GC001627.
Chang Lu et al. “The Sensitivity of Joint Inversions of Seismic and Geodynamic Data to Mantle Viscosity”. In: Geochem. Geophys. Geosyst. 21.4 (2020), e2019GC008648. doi: 10.1029/2019GC008648.
G. Lu, B.J.P. Kaus, L. Zhao, and T. Zheng. “Self-consistent subduction initiation induced by mantle flow”. In: Terra Nova (2015). doi: 10.1111/ter.12140.
Gang Lu and Ritske S Huismans. “Melt volume at Atlantic volcanic rifted margins controlled by depth-dependent extension and mantle temperature”. In: Nature Communications 12.1 (2021), pp. 1–10. doi: 10.1038/s41467-021-23981-5.
Gang Lu, Dave A May, and Ritske S Huismans. “A Three-Field Formulation for Two-Phase Flow in Geodynamic Modeling: Toward the Zero-Porosity Limit”. In: J. Geophys. Res.: Solid Earth 129.1 (2024), e2023JB027469. doi: 10.1029/2023JB027469.
Leon B Lucy. “A numerical approach to the testing of the fission hypothesis”. In: The astronomical journal 82 (1977), pp. 1013–1024. doi: xxxx.
ER Lundin, AG Doré, J Naliboff, and J van Wijk. “Utilization of continental transforms in break-up: observations, models, and a potential link to magmatism”. In: Geological Society, London, Special Publications 524 (2022). doi: 10.6084/m9.figshare.c.5756724.
Ting Luo and Wei Leng. “Thermal structure of continental subduction zone: high temperature caused by the removal of the preceding oceanic slab”. In: Earth and Planetary Physics 5.3 (2021), pp. 290–295. doi: 10.26464/epp2021027.
P. Ma, S. Liu, M. Gurnis, and B. Zhang. “Slab Horizontal Subduction and Slab Tearing Beneath East Asia”. In: Geophys. Res. Lett. 46 (2019), pp. 5161–5169. doi: 10.1029/ 2018GL081703.
ZiQi Ma, Gang Lu, JianFeng Yang, and Liang Zhao. “Numerical modeling of metamorphic core complex formation: Implications for the destruction of the North China Craton”. In: Earth and Planetary Physics 6.2 (2022), pp. 191–203. doi: 10.26464/epp2022016.
Julia G MacDougall, Margarete A Jadamec, and Karen M Fischer. “The zone of influence of the subducting slab in the asthenospheric mantle”. In: J. Geophys. Res.: Solid Earth 122.8 (2017), pp. 6599–6624. doi: 10.1002/2017JB014445.
Daniele Maestrelli, Sascha Brune, Giacomo Corti, Derek Keir, Ameha A Muluneh, and Federico Sani. “Analog and Numerical Modeling of Rift-Rift-Rift Triple Junctions”. In: Tectonics 41.10 (2022), e2022TC007491. doi: 10.1029/2022TC007491.
M. Maffione, C. Thieulot, D.J.J. van Hinsbergen, A. Morris, O. Plümper, and W. Spakman. “Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites”. In: Geochem. Geophys. Geosyst. 16 (2015), pp. 1753–1770. doi: 10.1002/2015GC005746.
John Keith Magali, Thomas Bodin, Navid Hedjazian, Henri Samuel, and Suzanne Atkins. “Geodynamic tomography: constraining upper-mantle deformation patterns from Bayesian inversion of surface waves”. In: Geophy. J. Int. 224.3 (2021), pp. 2077–2099. doi: 10. 1093/gji/ggaa577.
V Magni, J van Hunen, F Funiciello, and C Faccenna. “Numerical models of slab migration in continental collision zones.” In: Solid Earth 3.2 (2012), pp. 293–306. doi: 10.5194/se- 3-293-2012.
V. Magni. “The effects of back-arc spreading on arc magmatism”. In: Earth Planet. Sci. Lett. 519 (2019), pp. 141–151. doi: 10.1016/j.epsl.2019.05.009.
V. Magni, M.B. Allen, J. van Hunen, and P. Bouilhol. “Continental underplating after slab break-off”. In: Earth Planet. Sci. Lett. 474 (2017), pp. 59–67. doi: 10.1016/j.epsl. 2017.06.017.
V. Magni, P. Bouilhol, and J. van Hunen. “Deep water recycling through time”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 4203–4216. doi: 10.1002/2014GC005525.
V. Magni, J. Naliboff, M. Prada, and C. Gaina. “Ridge Jumps and Mantle Exhumation in Back-Arc Basins”. In: Geosciences 11 (2021), p. 475. doi: 10 . 3390 / geosciences11110475.
Valentina Magni, Claudio Faccenna, Jeroen van Hunen, and Francesca Funiciello. “Delamination vs. break-off: the fate of continental collision”. In: Geophys. Res. Lett. 40.2 (2013), pp. 285–289. doi: 10.1002/grl.50090.
P. Maierova, O. Lexa, K. Schulmann, and P. Stipska. “Contrasting tectono-metamorphic evolution of orogenic lower crust in the Bohemian Massif: A numerical model”. In: Gondwana Research 25 (2014), pp. 509–521.
Petra Maierova. “Evolution of the Bohemian Massif: Insights from numerical modeling”. PhD thesis. Charles University in Prague, 2012.
P Maierová, P Hasalová, Karel Schulmann, P Štpská, and O Souček. “Porous melt flow in continental crust—A numerical modeling study”. In: J. Geophys. Res.: Solid Earth 128.8 (2023), e2023JB026523. doi: 10.1029/2023JB026523.
Petra Maierová, Karel Schulmann, and Taras Gerya. “Relamination styles in collisional orogens”. In: Tectonics 37.1 (2018), pp. 224–250. doi: 10.1002/2017TC004677.
C. Malatesta, T. Gerya, L. Crispini, L. Federico, and G. Capponi. “Interplate deformation at early-stage oblique subduction: 3-D thermomechanical numerical modeling”. In: Tectonics 35 (2016), pp. 1610–1625.
C. Malatesta, T. Gerya, L. Crispini, L. Federico, and G. Capponi. “Oblique subduction modelling indicates along-trench tectonic transport of sediments”. In: Nature Communications 4 (2013). doi: 10.1038/ncomms3456.
Cristina Malatesta, Taras Gerya, Simone Pittaluga, and Daniela Cabiddu. “Intermediate-depth seismicity and intraslab stress changes due to outer-rise faulting”. In: Communications Earth & Environment 5.1 (2024), p. 253. doi: 10.1038/s43247-024-01420-9.
C Mallard, B Jacquet, and N Coltice. “ADOPT: A tool for automatic detection of tectonic plates at the surface of convection models”. In: Geochem. Geophys. Geosyst. 18.8 (2017), pp. 3197–3208.
Rocco Malservisi, Christine Gans, and Kevin P Furlong. “Numerical modeling of strike-slip creeping faults and implications for the Hayward fault, California”. In: Tectonophysics 361.1-2 (2003), pp. 121–137. doi: 10.1016/S0040-1951(02)00587-5.
Lucan Mameri, Andréa Tommasi, Alain Vauchez, Javier Signorelli, and Riad Hassani. “Structural inheritance controlled by olivine viscous anisotropy in fossil mantle shear zones with different past kinematics”. In: Tectonophysics 863 (2023), p. 229982. doi: 10.1016/ j.tecto.2023.229982.
V. Manea and M. Gurnis. “Subduction zone evolution and low viscosity wedges and channels”. In: Earth Planet. Sci. Lett. 264 (2007), pp. 22–45.
V. C. Manea, M. Manea, W. P. Leeman, and D. L. Schutt. “The influence of plume head-lithosphere interaction on magmatism associated with the Yellowstone hotspot track”. In: Journal of Volcanology and Geothermal Research 188.1-3 (2009), pp. 68–85. doi: 10. 1016/j.jvolgeores.2008.12.012.
V.C. Manea, W.P. Leeman, T. Gerya, M. Manea, and G. Zhu. “Subduction of fracture zones controls mantle melting and geochemical signature above slabs”. In: Nature Communications (2014). doi: 10.1038/ncomms6095.
Vlad C Manea, Marta Pérez-Gussinyé, and Marina Manea. “Chilean flat slab subduction controlled by overriding plate thickness and trench rollback”. In: Geology 40.1 (2012), pp. 35–38.
G. Maniatis, D. Kurfess, A. Hampel, and O. Heidbach. “Slip acceleration on normal faults due to erosion and sedimentation - Results from a new three-dimensional numerical model coupling tectonics and landscape evolution”. In: Earth Planet. Sci. Lett. 284 (2009), pp. 570–582.
Georgios Maniatis and Andrea Hampel. “Along-strike variations of the slip direction on normal faults: Insights from three-dimensional finite-element models”. In: Journal of Structural Geology 30.1 (2008), pp. 21–28. doi: 10.1016/j.jsg.2007.10.002.
Antonio Manjón-Cabeza Córdoba and Maxim D Ballmer. “The role of edge-driven convection in the generation of volcanism–Part 1: A 2D systematic study”. In: Solid Earth 12.3 (2021), pp. 613–632. doi: 10.5194/se-12-613-2021.
Antonio Manjón-Cabeza Córdoba and Maxim D Ballmer. “The role of edge-driven convection in the generation ofvolcanism–Part 2: Interaction with mantle plumes, applied to the Canary Islands”. In: Solid Earth 13.10 (2022), pp. 1585–1605. doi: 10.5194/se-13-1585-2022.
Utsav Mannu, Kosuke Ueda, Sean D Willett, Taras V Gerya, and Michael Strasser. “Impact of sedimentation on evolution of accretionary wedges: Insights from high-resolution thermomechanical modeling”. In: Tectonics 35.12 (2016), pp. 2828–2846.
Utsav Mannu, Kosuke Ueda, Sean D Willett, Taras V Gerya, and Michael Strasser. “Stratigraphic signatures of forearc basin formation mechanisms”. In: Geochem. Geophys. Geosyst. 18.6 (2017), pp. 2388–2410.
John Mansour et al. “Underworld2: Python Geodynamics Modelling for Desktop, HPC and Cloud”. In: Journal of Open Source Software 5.47 (2020), p. 1797. doi: 10.21105/joss. 01797.
Wei Mao and Shijie Zhong. “Constraints on mantle viscosity from intermediate-wavelength geoid anomalies in mantle convection models with plate motion history”. In: J. Geophys. Res.: Solid Earth 126.4 (2021), e2020JB021561. doi: 10.1029/2020JB021561.
Wei Mao and Shijie Zhong. “Controls on global mantle convective structures and their comparison with seismic models”. In: J. Geophys. Res.: Solid Earth 124 (2019), pp. 9345–9372. doi: 10.1029/2019JB017918.
Wei Mao and Shijie Zhong. “Formation of horizontally deflected slabs in the mantle transition zone caused by spinel-to-post-spinel phase transition, its associated grainsize reduction effects, and trench retreat”. In: Geophys. Res. Lett. 48.15 (2021), e2021GL093679. doi: 10.1029/2021GL093679.
Wei Mao and Shijie Zhong. “Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone”. In: Nature Geoscience 11.11 (2018), p. 876. doi: 10.1038/ s41561-018-0225-2.
X. Mao, M. Gurnis, and D.A. May. “Subduction Initiation With Vertical Lithospheric Heterogeneities and New Fault Formation”. In: Geophys. Res. Lett. 44 (2017), pp. 11, 349–11, 356. doi: 10.1002/2017GL075389.
Walter V Maresch and Taras V Gerya. “Blueschists and blue amphiboles: How much subduction do they need?” In: International Geology Review 47.7 (2005), pp. 688–702.
G Marketos, C J Spiers, and Rob Govers. “Impact of rock salt creep law choice on subsidence calculations for hydrocarbon reservoirs overlain by evaporite caprocks”. In: J. Geophys. Res.: Solid Earth 121.6 (2016), pp. 4249–4267.
G. Marketos, R. Govers, and C.J. Spiers. “Ground motions induced by a producing hydrocarbon reservoir that is overlain by a viscoelastic rocksalt layer: a numerical model”. In: Geophy. J. Int. 203 (2015), pp. 228–242. doi: 10.1093/gji/ggv294.
A.M. Marotta and M.I. Spalla. “Permian-Triassic high thermal regime in the Alps: Result of late Variscan collapse or continental rifting? Validation by numerical modeling”. In: Tectonics 26.TC4016 (2007), 10.1029/2006TC002047.
A.M. Marotta, E. Spelta, and C. Rizzetto. “Gravity signature of crustal subduction inferred from numerical modelling”. In: Geophys. J. Int. 166 (2006), pp. 923–938.
AM Marotta, M Fernandez, and R Sabadini. “Mantle unrooting in collisional settings”. In: Tectonophysics 296.1-2 (1998), pp. 31–46. doi: 10.1016/S0040-1951(98)00134-6.
Anna Maria Marotta, Manel Fernŕndez, and Roberto Sabadini. “The onset of extension during lithospheric shortening: a two-dimensional thermomechanical model for lithospheric unrooting”. In: Geophy. J. Int. 139.1 (1999), pp. 98–114. doi: 10.1046/j.1365- 246X.1999.00922.x.
Anna Maria Marotta, Manuel Roda, Katya Conte, and Maria Iole Spalla. “Thermo-mechanical numerical model of the transition from continental rifting to oceanic spreading: the case study of the Alpine Tethys”. In: Geological Magazine 155.2 (2018), pp. 250–279. doi: 10.1017/S0016756816000856.
F.O. Marques, F.R. Cabral, T.V. Gerya, G. Zhu, and D.A. May. “Subduction initiates at straight passive margins”. In: geology (2014). doi: 10.1130/G35246.1.
F.O. Marques and B.J.P. Kaus. “Speculations on the impact of catastrophic subduction initiation on the Earth System”. In: Journal of Geodynamics 93 (2016), pp. 1–16. doi: 10.1016/j.jog.2015.09.003.
Fernando O Marques et al. “Testing the influence of far-field topographic forcing on subduction initiation at a passive margin”. In: Tectonophysics 608 (2013), pp. 517–524.
Simone Marras, Michal A Kopera, Emil M Constantinescu, Jenny Suckale, and Francis X Giraldo. “A continuous/discontinuous Galerkin solution of the shallow water equations with dynamic viscosity, high-order wetting and drying, and implicit time integration”. In: arXiv preprint arXiv:1607.04547 (2016). doi: xxxx.
J. Martinod et al. “How do subduction processes contribute to forearc Andean uplift? Insights from numerical models”. In: Journal of Geodynamics 96 (2016), pp. 6–18. doi: 10.1016/j.jog.2015.04.001.
W.G. Mason, L. Moresi, P.G. Betts, and M.S. Miller. “Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones”. In: Tectonophysics 483 (2010), pp. 71–79.
B Mather, Louis Moresi, and P Rayner. “Adjoint inversion of the thermal structure of Southeastern Australia”. In: Geophy. J. Int. 219.3 (2019), pp. 1648–1659. doi: 10.1093/ gji/ggz368.
Ben Mather et al. “Spreading ridge migration enabled by plume-ridge de-anchoring”. In: Nature Communications 15.1 (2024), p. 8934. doi: 10.1038/s41467-024-53397-w.
K. J. Matthews, A. J. Hale, M. Gurnis, R. D. Müller, and L. DiCaprio. “Dynamic subsidence of Eastern Australia during the Cretaceous”. In: Gondwana Research 19.2 (2011), pp. 372–383. doi: 10.1016/j.gr.2010.06.006.
B Maunder, J Prytulak, S Goes, and M Reagan. “Rapid subduction initiation and magmatism in the Western Pacific driven by internal vertical forces”. In: Nature Communications 11.1 (2020), pp. 1–8. doi: 10.1038/s41467-020-15737-4.
B. Maunder, J. van Hunen, P. Bouilhol, and V. Magni. “Modeling Slab Temperature: A Reevaluation of the Thermal Parameter”. In: Geochem. Geophys. Geosyst. (2019). doi: 10.1029/2018GC007641.
B. Maunder, J. van Hunen, V. Magni, and P. Bouilhol. “Relamination of mafic subducting crust throughout Earth’s history”. In: Earth Planet. Sci. Lett. 449 (2016), pp. 206–216. doi: 10.1016/j.epsl.2016.05.042.
Maxime Maurice, Nicola Tosi, Henri Samuel, Ana-Catalina Plesa, Christian Hüttig, and Doris Breuer. “Onset of solid-state mantle convection and mixing during magma ocean solidification”. In: J. Geophys. Res.: Planets 122.3 (2017), pp. 577–598. doi: 10.1002/ 2016JE005250.
D. A. May and J. J. Monaghan. “Can a single bubble sink a ship?” In: American Journal of Physics 71.9 (2003), pp. 842–849.
D.A. May. “Volume reconstruction of point cloud data sets derived from computational geodynamic simulations”. In: Geochem. Geophys. Geosyst. 13.5 (2012), Q05019. doi: 10. 1029/2012GC004170.
D.A. May, J. Brown, and L. Le Pourhiet. “A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow”. In: Computer Methods in Applied Mechanics and Engineering 290 (2015), pp. 496–523. doi: 10.1016/j.cma.2015. 03.014.
D.A. May and L. Moresi. “Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 33–47. doi: 10.1016/j.pepi.2008.07.036.
Dave A May, Jed Brown, and Laetitia Le Pourhiet. “pTatin3D: High-performance methods for long-term lithospheric dynamics”. In: Proceedings of the international conference for high performance computing, networking, storage and analysis. IEEE Press. 2014, pp. 274–284. doi: 10.1109/SC.2014.28.
W. B. McKinnon et al. “Convection in a volatile nitrogen-ice-rich layer drives Pluto’s geological vigour”. In: Nature 534.7605 (2016), pp. 82–85. doi: 10.1038/nature18289.
A. K. McNamara, E. J. Garnero, and S. Rost. “Tracking deep mantle reservoirs with ultra-low velocity zones”. In: Earth Planet. Sci. Lett. 299.1-2 (2010), pp. 1–9. doi: 10. 1016/j.epsl.2010.07.042.
A. K. McNamara and S. Zhong. “Thermochemical structures within a spherical mantle: Superplumes or piles?” In: J. Geophys. Res.: Solid Earth 109.B7 (2004). doi: 10.1029/ 2003JB002847.
A.K. McNamara and S. Zhong. “Degree-one mantle convection: Dependence on internal heating and temperature-dependent rheology”. In: Geophys. Res. Lett. 32.L01301 (2005).
A.K. McNamara and S. Zhong. “Thermochemical structures beneath Africa and the Pacific Ocean”. In: Nature 437 (2005), p. 1136.
Allen K McNamara, Peter E van Keken, and Shun-Ichiro Karato. “Development of anisotropic structure in the Earth’s lower mantle by solid-state convection”. In: Nature 416.6878 (2002), pp. 310–314. doi: 10.1038/416310a.
Allen K McNamara, Peter E van Keken, and Shun-Ichiro Karato. “Development of finite strain in the convecting lower mantle and its implications for seismic anisotropy”. In: J. Geophys. Res.: Solid Earth 108.B5 (2003). doi: 10.1029/2002JB001970.
Tobias G Meier, Dan J Bower, Tim Lichtenberg, Paul J Tackley, and Brice-Olivier Demory. “Hemispheric tectonics on super-Earth LHS 3844b”. In: The Astrophysical Journal Letters 908.2 (2021), p. L48. doi: 10.3847/2041-8213/abe400.
HJ Melosh and A Raefsky. “A simple and efficient method for introducing faults into finite element computations”. In: Bulletin of the Seismological Society of America 71.5 (1981), pp. 1391–1400.
HJ Melosh and Arthur Raefsky. “The dynamical origin of subduction zone topography”. In: Geophy. J. Int. 60.3 (1980), pp. 333–354.
Armel Menant, Samuel Angiboust, and Taras Gerya. “Stress-driven fluid flow controls long-term megathrust strength and deep accretionary dynamics”. In: Scientific Reports 9.1 (2019), pp. 1–11. doi: 10.1038/s41598-019-46191-y.
Armel Menant, Samuel Angiboust, Taras Gerya, Robin Lacassin, Martine Simoes, and Raphael Grandin. “Transient stripping of subducting slabs controls periodic forearc uplift”. In: Nature Communications 11.1 (2020), pp. 1–10. doi: 10.1038/s41467-020-15580-7.
Armel Menant, Pietro Sternai, Laurent Jolivet, Laurent Guillou-Frottier, and Taras Gerya. “3D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: The eastern Mediterranean case”. In: Earth Planet. Sci. Lett. 442 (2016), pp. 93–107. doi: 10.1016/j.epsl.2016.03.002.
Qingfeng Meng and David Hodgetts. “Combined control of décollement layer thickness and cover rock cohesion on structural styles and evolution of fold belts: A discrete element modelling study”. In: Tectonophysics 757 (2019), pp. 58–67. doi: 10.1016/j.tecto. 2019.03.004.
Qingfeng Meng and David Hodgetts. “Structural styles and decoupling in stratigraphic sequences with double décollements during thin-skinned contractional tectonics: Insights from numerical modelling”. In: Journal of Structural Geology 127 (2019), p. 103862. doi: 10.1016/j.jsg.2019.103862.
C.A. Mériaux, A. May D, J. Mansour, Z. Chen, and O. Kaluza. “Benchmark of three-dimensional numerical models of subduction against a laboratory experiment”. In: Phys. Earth. Planet. Inter. 283 (2018), pp. 110–121.
CA Mériaux, JA Mansour, Louis N Moresi, RC Kerr, and David Alexander May. “On the rise of strongly tilted mantle plume tails”. In: Phys. Earth. Planet. Inter. 184.1-2 (2011), pp. 63–79. doi: 10.1016/j.pepi.2010.10.013.
Grégoire Messager, Riad Hassani, and Bertrand Nivičre. “Mechanical analysis of a natural example of onland gravity gliding: The role of river incision and deposition”. In: J. Geophys. Res.: Earth Surface 119.7 (2014), pp. 1581–1603. doi: 10.1002/2013JF003062.
L. Métivier and C. P. Conrad. “Body tides of a convecting, laterally heterogeneous, and aspherical Earth”. In: J. Geophys. Res.: Solid Earth 113.B11 (2008). doi: 10.1029/ 2007JB005448.
V Mikhailov et al. “Numerical modelling of post-seismic rupture propagation after the Sumatra 26.12.2004 earthquake constrained by GRACE gravity data”. In: Geophy. J. Int. 194.2 (2013), pp. 640–650.
M. S. Miller and T. W. Becker. “Mantle flow deflected by interactions between subducted slabs and cratonic keels”. In: Nature Geoscience 5.10 (2012), pp. 726–730. doi: 10.1038/ ngeo1553.
Y.A. Mishin, T.V. Gerya, J.-P. Burg, and J.A.D. Connolly. “Dynamics of double subduction: Numerical modeling”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 280–295. doi: 10. 1016/j.pepi.2008.06.012.
G. Mitri and A. P. Showman. “Convective-conductive transitions and sensitivity of a convecting ice shell to perturbations in heat flux and tidal-heating rate: Implications for Europa”. In: Icarus 177.2 (2005), pp. 447–460. doi: 10.1016/j.icarus.2005.03.019.
J.X. Mitrovica and A.M. Forte. “A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data”. In: Earth Planet. Sci. Lett. 225.1-2 (2004), pp. 177–189. doi: 10.1016/j.epsl.2004.06.005.
JX Mitrovica et al. “Dynamic Topography and Ice Age Paleoclimate”. In: Annual Review of Earth and Planetary Sciences 48 (2020), pp. 585–621. doi: 10.1146/annurev-earth- 082517-010225.
Eric Mittelstaedt and Paul J Tackley. “Plume heat flow is much lower than CMB heat flow”. In: Earth Planet. Sci. Lett. 241.1-2 (2006), pp. 202–210.
Takehiro Miyagoshi, Masanori Kameyama, and Masaki Ogawa. “Tectonic plates in 3D mantle convection model with stress-history-dependent rheology”. In: Earth, Planets and Space 72 (2020), pp. 1–6. doi: 10.1186/s40623-020-01195-1.
Takehiro Miyagoshi, Masanori Kameyama, and Masaki Ogawa. “Thermal convection and the convective regime diagram in super-Earths”. In: J. Geophys. Res.: Planets 120.7 (2015), pp. 1267–1278. doi: 10.1002/2015JE004793.
Ayumu Miyakawa, Atsushi Noda, and Hiroaki Koge. “Evolution of the geological structure and mechanical properties due to the collision of multiple basement topographic highs in a forearc accretionary wedge: insights from numerical simulations”. In: Progress in Earth and Planetary Science 9.1 (2022), pp. 1–13. doi: 10.1186/s40645-021-00461-4.
Martina Monaco, Juliane Dannberg, Rene Gassmoeller, and Stephen Pugh. “Linking geodynamic models of basalt segregation in mantle plumes to the X-Discontinuity observed beneath hotspots”. In: J. Geophys. Res.: Solid Earth 128 (2023), e2022JB025036. doi: 10.1029/2022JB025036.
JJ Monaghan. “Particle methods for hydrodynamics”. In: Computer Physics Reports 3.2 (1985), pp. 71–124. doi: 10.1016/0167-7977(85)90010-3.
Joe J Monaghan. “Smoothed particle hydrodynamics”. In: Annual review of astronomy and astrophysics 30.1 (1992), pp. 543–574. doi: 10.1146/annurev.aa.30.090192.002551.
Luke S Mondy, Patrice F Rey, and Guillaume Duclaux. “The role of surface processes in basin inversion and breakup unconformity”. In: Geology (2023). doi: 10.1130/G50833.1.
Luke S Mondy, Patrice F Rey, Guillaume Duclaux, and Louis Moresi. “The role of asthenospheric flow during rift propagation and breakup”. In: Geology 46.2 (2017), pp. 103–106. doi: 10.1130/G39674.1.
N. L. Montague, L. H. Kellogg, and M. Manga. “High Rayleigh number thermo-chemical models of a dense boundary layer in D””. In: Geophys. Res. Lett. 25.13 (1998), pp. 2345–2348. doi: 10.1029/98GL51872.
Nancy L Montague and Louise H Kellogg. “Numerical models of a dense layer at the base of the mantle and implications for the geodynamics of D””. In: J. Geophys. Res.: Solid Earth 105.B5 (2000), pp. 11101–11114. doi: 10.1029/1999JB900450.
A. Montlaur, S. Fernandez-Mendez, and A. Huerta. “Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations”. In: Int. J. Num. Meth. Fluids 57.08 (2008), pp. 1071–1092.
A. Montlaur, S. Fernandez-Mendez, J. Peraire, and A. Huerta. “Discontinuous Galerkin methods for the Navier-Stokes equations using solenoidal approximations”. In: Int. J. Num. Meth. Fluids 64 (2010), pp. 549–564. doi: 10.1002/fld.2161.
William B Moore, Gerald Schubert, and Paul Tackley. “Three-dimensional simulations of plume-lithosphere interaction at the Hawaiian swell”. In: Science 279.5353 (1998), pp. 1008–1011.
William B Moore and A Alexander G Webb. “Heat-pipe earth”. In: Nature 501.7468 (2013), p. 501. doi: 10.1038/nature12473.
P. Mora and D.A. Yuen. “Simulation of regimes of convection and plume dynamics by the thermal Lattice Boltzmann Method”. In: Phys. Earth. Planet. Inter. 275 (2018), pp. 69–79. doi: 10.1016/j.pepi.2018.01.003.
Peter Mora, Gabriele Morra, and David A Yuen. “Models of plate tectonics with the Lattice Boltzmann Method”. In: Artificial Intelligence in Geosciences 4 (2023), pp. 47–58. doi: 10.1016/j.aiig.2023.03.002.
Peter Mora and David A Yuen. “Simulation of plume dynamics by the Lattice Boltzmann Method”. In: Geophy. J. Int. 210.3 (2017), pp. 1932–1937. doi: 10.1093/gji/ggx279.
C. Morency, R.S. Huismans, C. Beaumont, and P. Fullsack. “A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability”. In: J. Geophys. Res.: Solid Earth 112.B10407 (2007). doi: 10.1029/ 2006JB004701.
Erika Jessenia Moreno and Marina Manea. “Geodynamic evaluation of the pacific tectonic model for chortis block evolution using 3D numerical models of subduction”. In: Journal of South American Earth Sciences 112 (2021), p. 103604. doi: 10.1016/j.jsames.2021. 103604.
L Moresi and H-B Mühlhaus. “Anisotropic viscous models of large-deformation Mohr–Coulomb failure”. In: Philosophical Magazine 86.21-22 (2006), pp. 3287–3305. doi: 10.1080/14786430500255419.
L-N Moresi and A. Lenardic. “Three-dimensional numerical simulations of crustal deformation and subcontinental mantle convection”. In: Earth Planet. Sci. Lett. 150.3-4 (1997), pp. 233–243. doi: 10.1016/S0012-821X(97)00093-9.
L. Moresi, F. Dufour, and H.B. Mühlhaus. “A Lagrangian integration point finite element method for large deformation modeling of visco-elastic geomaterials”. In: J. Comp. Phys. 184.2 (2003), pp. 476–497. doi: 10.1016/S0021-9991(02)00031-1.
L. Moresi and M. Gurnis. “Constraints on the lateral strength of slabs from three-dimensional dynamic flow models”. In: Earth Planet. Sci. Lett. 138.1 (1996), pp. 15–28. doi: 10. 1016/0012-821X(95)00221-W.
L. Moresi, S. Quenette, V. Lemiale, C. Mériaux, B. Appelbe, and H.-B. Mühlhaus. “Computational approaches to studying non-linear dynamics of the crust and mantle”. In: Phys. Earth. Planet. Inter. 163 (2007), pp. 69–82. doi: 10.1016/j.pepi.2007.06.009.
L. Moresi and V. Solomatov. “Mantle convection with a brittle lithosphere: thoughts on the global tectonics styles of the Earth and Venus”. In: Geophy. J. Int. 133 (1998), pp. 669–682.
L. Moresi, S. Zhong, and M. Gurnis. “The accuracy of finite element solutions of Stokes’ flow with strongly varying viscosity”. In: Phys. Earth. Planet. Inter. 97.1-4 (1996), pp. 83–94. doi: 10.1016/0031-9201(96)03163-9.
L.-N. Moresi and V.S. Solomatov. “Numerical investigation of 2D convection with extremely large viscosity variations”. In: Physics of Fluids 7.9 (1995), pp. 2154–2162.
Louis Moresi, Francois Dufour, and HB Mühlhaus. “Viscoelastic formulation for modeling of plate tectonics”. In: Bifurcation and localization in soils and rocks (2001), pp. 337–344.
Louis Moresi and Adrian Lenardic. “Three-dimensional mantle convection with continental crust: first-generation numerical simulations”. In: Earth Interactions 3.2 (1999), pp. 1–14.
Louis Moresi and Barry Parsons. “Interpreting gravity, geoid, and topography for convection with temperature dependent viscosity: Application to surface features on Venus”. In: J. Geophys. Res.: Planets 100.E10 (1995), pp. 21155–21171. doi: 10.1029/95JE01622.
M Morishige. “Spatial variations in the degree of upper-mantle depletion in a mid-ocean ridge–Transform fault system”. In: Geochem. Geophys. Geosyst. 25.2 (2024), e2023GC011227. doi: 10.1029/2023GC011227.
M Morishige and S Honda. “Three-dimensional structure of P-wave anisotropy in the presence of small-scale convection in the mantle wedge”. In: Geochem. Geophys. Geosyst. 12.12 (2011). doi: 10.1029/2011GC003866.
M Morishige, S Honda, and Paul J Tackley. “Construction of semi-dynamic model of subduction zone with given plate kinematics in 3D sphere”. In: Earth, planets and space 62.9 (2010), pp. 665–673. doi: 10.5047/eps.2010.09.002.
M Morishige, S Honda, and M Yoshida. “Possibility of hot anomaly in the sub-slab mantle as an origin of low seismic velocity anomaly under the subducting Pacific plate”. In: Phys. Earth. Planet. Inter. 183.1-2 (2010), pp. 353–365. doi: 10.1016/j.pepi.2010.04.002.
M Morishige and PE van Keken. “Fluid migration in a subducting viscoelastic slab”. In: Geochem. Geophys. Geosyst. 19.2 (2018), pp. 337–355. doi: 10.1002/2017GC007236.
M Morishige and Peter E van Keken. “Along-arc variation in short-term slow slip events caused by 3-D fluid migration in subduction zones”. In: J. Geophys. Res.: Solid Earth 122.2 (2017), pp. 1434–1448. doi: 10.1002/2016JB013091.
M Morishige and T Kuwatani. “Bayesian inversion of surface heat flow in subduction zones: a framework to refine geodynamic models based on observational constraints”. In: Geophy. J. Int. 222.1 (2020), pp. 103–109. doi: 10.1093/gji/ggaa149.
M Morishige and M Tasaka. “Limited impact of anisotropic thermal conductivity in the mantle wedge on the slab temperature in the Tohoku subduction zone, Northeast Japan”. In: Tectonophysics 820 (2021), p. 229110. doi: 10.1016/j.tecto.2021.229110.
M. Morishige and P.E. van Keken. “Along-arc variation in the 3-D thermal structure around the junction between the Japan and Kurile arcs”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 2225–2240. doi: 10.1002/2014GC005394.
Manabu Morishige. “A new regime of slab-mantle coupling at the plate interface and its possible implications for the distribution of volcanoes”. In: Earth Planet. Sci. Lett. 427 (2015), pp. 262–271. doi: 10.1016/j.epsl.2015.07.011.
Manabu Morishige and Satoru Honda. “Mantle flow and deformation of subducting slab at a plate junction”. In: Earth Planet. Sci. Lett. 365 (2013), pp. 132–142. doi: 10.1016/j. epsl.2013.01.033.
Gabriele Morra, Philippe Chatelain, Paul Tackley, and Petros Koumoutsakos. “Earth curvature effects on subduction morphology: Modeling subduction in a spherical setting”. In: Acta Geotechnica 4.2 (2009), pp. 95–105. doi: 10.1007/s11440-008-0060-5.
Gabriele Morra, Philippe Chatelain, Paul Tackley, and Petros Koumoutsakos. “Large scale three-dimensional boundary element simulation of subduction”. In: International Conference on Computational Science. 2007, pp. 1122–1129. doi: 10.1007/978-3-540-72588-6_178.
Gabriele Morra and K Regenauer-Lieb. “A coupled solid–fluid method for modelling subduction”. In: Philosophical magazine 86.21-22 (2006), pp. 3307–3323.
Gabriele Morra, David A Yuen, L Boschi, P Chatelain, P Koumoutsakos, and PJ Tackley. “The fate of the slabs interacting with a density/viscosity hill in the mid-mantle”. In: Phys. Earth. Planet. Inter. 180.3-4 (2010), pp. 271–282. doi: 10.1016/j.pepi.2010.04.001.
J.P. Morris, P.J. Fox, and Y. Zhu. “Modeling Low Reynolds Number Incompressible Flows Using SPH”. In: J. Comp. Phys. 136 (1997), pp. 214–226. doi: 10.1006/jcph.1997.5776.
M. H. Motoki and M. D. Ballmer. “Intraplate volcanism due to convective instability of stagnant slabs in the mantle transition zone”. In: Geochem. Geophys. Geosyst. 16.2 (2015), pp. 538–551. doi: 10.1002/2014GC005608.
R. Moucha, A.M. Forte, J.X. Mitrovica, and A. Daradich. “Lateral variations in mantle rheology: implications for convection related surface observables and inferred viscosity models”. In: Geophy. J. Int. 169 (2007), pp. 113–135.
Evangelos Moulas, Boris Kaus, and Bjřrn Jamtveit. “Dynamic pressure variations in the lower crust caused by localized fluid-induced weakening”. In: Communications Earth & Environment 3.1 (2022), pp. 1–7. doi: 10.1038/s43247-022-00478-7.
L. Mu, J. Wang, X. Ye, and S. Zhang. “A discrete divergence free weak Galerkin finite element method for the Stokes equations”. In: Applied Numerical Mathematics 125 (2018), pp. 172–182.
H-B Mühlhaus, Frédéric Dufour, Louis Moresi, and Bruce Hobbs. “A director theory for visco-elastic folding instabilities in multilayered rock”. In: International Journal of Solids and Structures 39.13-14 (2002), pp. 3675–3691.
H-B Mühlhaus, L Moresi, and Miroslav Cada. “Emergent anisotropy and flow alignment in viscous rock”. In: Pure Appl. Geophys. 161.11-12 (2004), pp. 2451–2463.
H-B Mühlhaus, L Moresi, and M Čada. “Anisotropy model for mantle convection”. In: Computational Fluid and Solid Mechanics 2003. 2003, pp. 1044–1046. doi: 10.1016/B978- 008044046-0.50255-4.
H.B. Mühlhaus and K. Regenauer-Lieb. “Towards a self-consistent plate mantle model that includes elasticity: simple benchmarks and application to basic modes of convection”. In: Geophy. J. Int. 163 (2005), pp. 788–800. doi: 10.1111/j.1365-246X.2005.02742.x.
Hans B Mühlhaus, Jingyu Shi, Louise Olsen-Kettle, and Louis Moresi. “Effects of a non-coaxial flow rule on shear bands in viscous-plastic materials”. In: Granular Matter 13.3 (2011), pp. 205–210.
Hans-Bernd Mühlhaus, Matt Davies, and Louis Moresi. “Elasticity, yielding and episodicity in simple models of mantle convection”. In: Computational Earthquake Physics: Simulations, Analysis and Infrastructure, Part I. Springer, 2006, pp. 2031–2047.
Ameha Muluneh et al. “To rotate or to link? The connection between the red sea and Gulf of Aden rifts in central afar”. In: Geophys. Res. Lett. 51.12 (2024), e2024GL108732. doi: 10.1029/2024GL108732.
Ameha A Muluneh et al. “Mechanism for deep crustal seismicity: Insight from modeling of deformation processes at the Main Ethiopian Rift”. In: Geochem. Geophys. Geosyst. 21.7 (2020), e2020GC008935. doi: 10.1029/2020GC008935.
E. Mulyukova, B. Steinberger, M. Dabrowski, and S.V. Sobolev. “Survival of LLSVPs for billions of years in a vigorously convecting mantle: Replenishment and destruction of chemical anomaly”. In: J. Geophys. Res.: Solid Earth 120 (2015), pp. 3824–3847. doi: 10.1002/ 2014JB011688.
Jessica Munch, Taras Gerya, and Kosuke Ueda. “Oceanic crust recycling controlled by weakening at slab edges”. In: Nature Communications 11.1 (2020), pp. 1–6. doi: 10. 1038/s41467-020-15750-7.
Jessica Munch, Kosuke Ueda, Stephanie Schnydrig, Dave A May, and Taras V Gerya. “Contrasting influence of sediments vs surface processes on retreating subduction zones dynamics”. In: Tectonophysics 836 (2022), p. 229410. doi: 10.1016/j.tecto.2022. 229410.
Josh P Murphy and Scott D King. “Reconciling Mars InSight Results, Geoid, and Melt Evolution with 3D Spherical Models of Convection”. In: J. Geophys. Res.: Planets 129 (2023), e2023JE008143. doi: 10.1029/2023JE008143.
M.A. Murphy, M.H. Taylor, J. Gosse, C.R.P. Silver, D.M. Whipp, and C. Beaumont. “Limit of strain partitioning in the Himalaya marked by large earthquakes in western Nepal”. In: Nature Geoscience 7.1 (2014), pp. 38–42. doi: 10.1038/ngeo2017.
Seyed Tohid Nabavi, Seyed Ahmad Alavi, Soheil Mohammadi, and Mohammad Reza Ghassemi. “Mechanical evolution of transpression zones affected by fault interactions: insights from 3D elasto-plastic finite element models”. In: Journal of Structural Geology 106 (2018), pp. 19–40. doi: 10.1016/j.jsg.2017.11.003.
Seyed Tohid Nabavi, Seyed Ahmad Alavi, Soheil Mohammadi, Mohammad Reza Ghassemi, and Marcel Frehner. “Analysis of transpression within contractional fault steps using finite-element method”. In: Journal of Structural Geology 96 (2017), pp. 1–20. doi: 10. 1016/j.jsg.2017.01.004.
Seyed Tohid Nabavi and Jonas B Ruh. “Hybrid thrust sequences–a new structural perspective”. In: Journal of Asian Earth Sciences 253 (2023), p. 105701. doi: 10.1016/ j.jseaes.2023.105701.
K Nagel, D Breuer, and T Spohn. “A model for the interior structure, evolution, and differentiation of Callisto”. In: Icarus 169.2 (2004), pp. 402–412. doi: 10.1016/j.icarus. 2003.12.019.
Thorsten J Nagel and W Roger Buck. “Control of rheological stratification on rifting geometry: a symmetric model resolving the upper plate paradox”. In: International Journal of Earth Sciences 96.6 (2007), pp. 1047–1057. doi: 10.1007/s00531-007-0195-x.
Mahdi Najafi et al. “Pliocene growth of the Dowlatabad syncline in Frontal Fars arc: Folding propagation across the Zagros Fold Belt, Iran”. In: GSA Bulletin 133.7-8 (2021), pp. 1381–1403. doi: 10.1130/B35748.1.
T. Nakagawa and B.A. Buffett. “Mass transport mechanism between the upper and lower mantle in numerical simulations of thermochemical mantle convection with multicomponent phase changes”. In: Earth Planet. Sci. Lett. 230 (2005), pp. 11–27. doi: 10.1016/j. epsl.2004.11.005.
Takashi Nakagawa. “Numerical modeling on global-scale mantle water cycle and its impact on the sea-level change”. In: Earth Planet. Sci. Lett. 619 (2023), p. 118312. doi: 10. 1016/j.epsl.2023.118312.
Takashi Nakagawa. “On the numerical modeling of the deep mantle water cycle in global-scale mantle dynamics: The effects of the water solubility limit of lower mantle minerals”. In: Journal of Earth Science 28.4 (2017), pp. 563–577. doi: 10.1007/s12583-017-0755-3.
Takashi Nakagawa and Hikaru Iwamori. “Long-term stability of plate-like behavior caused by hydrous mantle convection and water absorption in the deep mantle”. In: J. Geophys. Res.: Solid Earth 122.10 (2017), pp. 8431–8445. doi: 10.1002/2017JB014052.
Takashi Nakagawa and Hikaru Iwamori. “On the implications of the coupled evolution of the deep planetary interior and the presence of surface ocean water in hydrous mantle convection”. In: Comptes Rendus. Géoscience 351.2-3 (2019), pp. 197–208. doi: 10.1016/ j.crte.2019.02.001.
Takashi Nakagawa, Hikaru Iwamori, Ryunosuke Yanagi, and Atsushi Nakao. “On the evolution of the water ocean in the plate-mantle system”. In: Progress in Earth and Planetary Science 5 (2018), pp. 1–16. doi: 10.1186/s40645-018-0209-2.
Takashi Nakagawa and Shun-ichiro Karato. “Influence of realistic rheological properties on the style of mantle convection: roles of dynamic friction and depth-dependence of rheological properties”. In: Geophy. J. Int. 226.3 (2021), pp. 1986–1996. doi: 10.1093/gji/ggab197.
Takashi Nakagawa and Tomoeki Nakakuki. “Dynamics in the uppermost lower mantle: insights into the deep mantle water cycle based on the numerical modeling of subducted slabs and global-scale mantle dynamics”. In: Annual Review of Earth and Planetary Sciences 47 (2019), pp. 41–66. doi: 10.1146/annurev-earth-053018-060305.
Takashi Nakagawa, Tomoeki Nakakuki, and Hikaru Iwamori. “Water circulation and global mantle dynamics: Insight from numerical modeling”. In: Geochem. Geophys. Geosyst. 16.5 (2015), pp. 1449–1464. doi: 10.1002/2014GC005701.
Takashi Nakagawa and Marc W Spiegelman. “Global-scale water circulation in the Earth’s mantle: Implications for the mantle water budget in the early Earth”. In: Earth Planet. Sci. Lett. 464 (2017), pp. 189–199. doi: 10.1016/j.epsl.2017.02.010.
Takashi Nakagawa and Paul J Tackley. “Deep mantle heat flow and thermal evolution of the Earth’s core in thermochemical multiphase models of mantle convection”. In: Geochem. Geophys. Geosyst. 6.8 (2005). doi: 10.1029/2005GC000967.
Takashi Nakagawa and Paul J Tackley. “Effects of a perovskite-post perovskite phase change near core-mantle boundary in compressible mantle convection”. In: Geophys. Res. Lett. 31.16 (2004). doi: 10.1029/2004GL020648.
Takashi Nakagawa and Paul J Tackley. “Effects of low-viscosity post-perovskite on thermo-chemical mantle convection in a 3-D spherical shell”. In: Geophys. Res. Lett. 38.4 (2011). doi: 10.1029/2010GL046494.
Takashi Nakagawa and Paul J Tackley. “Effects of thermo-chemical mantle convection on the thermal evolution of the Earth’s core”. In: Earth Planet. Sci. Lett. 220.1-2 (2004), pp. 107–119. doi: 10.1016/S0012-821X(04)00055-X.
Takashi Nakagawa and Paul J Tackley. “Implications of high core thermal conductivity on Earth’s coupled mantle and core evolution”. In: Geophys. Res. Lett. 40.11 (2013), pp. 2652–2656. doi: 10.1002/grl.50574.
Takashi Nakagawa and Paul J Tackley. “Influence of combined primordial layering and recycled MORB on the coupled thermal evolution of Earth’s mantle and core”. In: Geochem. Geophys. Geosyst. 15.3 (2014), pp. 619–633. doi: 10.1002/2013GC005128.
Takashi Nakagawa and Paul J Tackley. “Influence of initial CMB temperature and other parameters on the thermal evolution of Earth’s core resulting from thermochemical spherical mantle convection”. In: Geochem. Geophys. Geosyst. 11.6 (2010). doi: 10.1029/ 2010GC003031.
Takashi Nakagawa and Paul J Tackley. “Influence of plate tectonic mode on the coupled thermochemical evolution of Earth’s mantle and core”. In: Geochem. Geophys. Geosyst. 16.10 (2015), pp. 3400–3413. doi: 10.1002/2015GC005996.
Takashi Nakagawa and Paul J Tackley. “Lateral variations in CMB heat flux and deep mantle seismic velocity caused by a thermal–chemical-phase boundary layer in 3D spherical convection”. In: Earth Planet. Sci. Lett. 271.1-4 (2008), pp. 348–358. doi: 10.1016/j. epsl.2008.04.013.
Takashi Nakagawa and Paul J Tackley. “The interaction between the post-perovskite phase change and a thermo-chemical boundary layer near the core–mantle boundary”. In: Earth Planet. Sci. Lett. 238.1-2 (2005), pp. 204–216. doi: 10.1016/j.epsl.2005.06.048.
Takashi Nakagawa and Paul J Tackley. “Thermo-chemical structure in the mantle arising from a three-component convective system and implications for geochemistry”. In: Phys. Earth. Planet. Inter. 146.1-2 (2004), pp. 125–138. doi: 10.1016/j.pepi.2003.05.006.
Takashi Nakagawa, Paul J Tackley, Frederic Deschamps, and James AD Connolly. “Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth’s mantle”. In: Geochem. Geophys. Geosyst. 10.3 (2009). doi: 10.1029/ 2008GC002280.
Takashi Nakagawa, Paul J Tackley, Frederic Deschamps, and James AD Connolly. “The influence of MORB and harzburgite composition on thermo-chemical mantle convection in a 3-D spherical shell with self-consistently calculated mineral physics”. In: Earth Planet. Sci. Lett. 296.3-4 (2010), pp. 403–412. doi: 10.1016/j.epsl.2010.05.026.
Takashi Nakagawa, Paul J Tackley, Frédéric Deschamps, and James AD Connolly. “Radial 1-D seismic structures in the deep mantle in mantle convection simulations with self-consistently calculated mineralogy”. In: Geochem. Geophys. Geosyst. 13.11 (2012). doi: 10.1029/2012GC004325.
J. Naliboff and S.J.H. Buiter. “Rift reactivation and migration during multiphase extension”. In: Earth Planet. Sci. Lett. 421 (2015), pp. 58–67. doi: 10.1016/j.epsl.2015.03.050.
J. B. Naliboff and L. H. Kellogg. “Can large increases in viscosity and thermal conductivity preserve large-scale heterogeneity in the mantle?” In: Phys. Earth. Planet. Inter. 161.1-2 (2007), pp. 86–102. doi: 10.1016/j.pepi.2007.01.009.
J. B. Naliboff and L. H. Kellogg. “Dynamic effects of a step-wise increase in thermal conductivity and viscosity in the lowermost mantle”. In: Geophys. Res. Lett. 33.12 (2006). doi: 10.1029/2006GL025717.
J.B. Naliboff, M.I. Billen, T. Gerya, and J. saunders. “Dynamics of outer-rise faulting in oceanic-continental subduction systems”. In: Geochem. Geophys. Geosyst. 14.7 (2013). doi: 10.1002/ggge.20155.
J.B. Naliboff, S.J.H. Buiter, G. Péron-Pinvidic, P.T. Osmundsen, and J. Tetreault. “Complex fault interaction controls continental rifting”. In: Nature Communications 8 (2017), p. 1179. doi: 10.1038/s41467-017-00904-x.
J.B. Naliboff, C.P. Conrad, and C. Lithgow-Bertelloni. “Modification of the lithospheric stress field by lateral variations in plate-mantle coupling”. In: Geophys. Res. Lett. 36.L22307 (2009). doi: 10.1029/2009GL040484.
J.B. Naliboff, C. Lithgow-Bertelloni, L.J. Ruff, and N. de Koker. “The effects of lithospheric thickness and density structure on Earth’s stress field”. In: Geophy. J. Int. 188 (2012), pp. 1–17. doi: 10.1111/j.1365-246X.2011.05248.x.
JB Naliboff, A Glerum, S Brune, G Péron-Pinvidic, and T Wrona. “Development of 3D rift heterogeneity through fault network evolution”. In: Geophys. Res. Lett. 47 (2020), e2019GL086611. doi: 10.1029/2019GL086611.
A. Napov and Y. Notay. “An algebraic multigrid method with guaranteed convergence rate”. In: SIAM J. Sci. Comput. 34 (2012), A1079–A1109. doi: 10.1137/100818509.
S. I. Natarov and C. P. Conrad. “The role of Poiseuille flow in creating depth-variation of asthenospheric shear: Poiseuille flow and asthenospheric shear”. In: Geophy. J. Int. 190.3 (2012), pp. 1297–1310. doi: 10.1111/j.1365-246X.2012.05562.x.
A. M. Negredo, F. de Lis Mancilla, C. Clemente, J. Morales, and J. Fullea. “Geodynamic Modeling of Edge-Delamination Driven by Subduction-Transform Edge Propagator Faults: The Westernmost Mediterranean Margin (Central Betic Orogen) Case Study”. In: Frontiers in Earth Science 8 (2020), p. 435. doi: 10.3389/feart.2020.533392.
A.M. Negredo, R. Sabadini, G. Bianco, and M. Fernandez. “Three-dimensional modelling of crustal motions caused by subduction and continental convergence in the central Mediterranean”. In: Geophy. J. Int. 136 (1999), pp. 261–274. doi: 10.1046/j.1365- 246X.1999.00726.x.
A.M. Negredo, R. Sabadini, and C. Giunchi. “Interplay between subduction and continental convergence:a three-dimensional dynamic model for the Central Mediterranean”. In: Geophy. J. Int. 131 (1997), F9–F13. doi: 10.1111/j.1365-246X.1997.tb00590.x.
AM Negredo, S Barba, E Carminati, R Sabadini, and C Giunchi. “Contribution of numeric dynamic modelling to the understanding of the seismotectonic regime of the northern Apennines”. In: Tectonophysics 315.1-4 (1999), pp. 15–30. doi: 10.1016/S0040- 1951(99)00286-3.
AM Negredo, JL Valera, and E Carminati. “TEMSPOL: a MATLAB thermal model for deep subduction zones including major phase transformations”. In: Computers and Geosciences 30.3 (2004), pp. 249–258. doi: 10.1016/j.cageo.2004.01.002.
Ana M Negredo, Peter Bird, Carlos Sanz de Galdeano, and Elisa Buforn. “Neotectonic modeling of the Ibero-Maghrebian region”. In: J. Geophys. Res.: Solid Earth 107.B11 (2002), ETG–10. doi: 10.1029/2001JB000743.
Ana M Negredo, Jeroen van Hunen, Juan Rodrguez-González, and Javier Fullea. “On the origin of the Canary Islands: Insights from mantle convection modelling”. In: Earth Planet. Sci. Lett. 584 (2022), p. 117506. doi: 10.1016/j.epsl.2022.117506.
Ana M Negredo, Ivone Jiménez-Munt, and Antonio Villasenor. “Evidence for eastward mantle flow beneath the Caribbean plate from neotectonic modeling”. In: Geophys. Res. Lett. 31.6 (2004). doi: 10.1029/2003GL019315.
Emily A Neil and Gregory A Houseman. “Geodynamics of the Tarim Basin and the Tian Shan in central Asia”. In: Tectonics 16.4 (1997), pp. 571–584. doi: 10.1029/97TC01413.
Michal Nemčok and Andreas Henk. “Oil reservoirs in foreland basins charged by thrustbelt source rocks: insights from numerical stress modelling and geometric balancing in the West Carpathians”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 415–428. doi: 10.1144/GSL.SP.2006.253.01.22.
R. Nerlich, L. Colli, S. Ghelichkhan, B. Schuberth, and H.-P. Bunge. “Constraining central Neo-Tethys Ocean reconstructions with mantle convection models”. In: Geophys. Res. Lett. 43.18 (2016), pp. 9595–9603. doi: 10.1002/2016GL070524.
Dan Nettelfield and Julian P Lowman. “The influence of plate-like surface motion on upwelling dynamics in numerical mantle convection models”. In: Phys. Earth. Planet. Inter. 161.3-4 (2007), pp. 184–201. doi: 10.1016/j.pepi.2007.02.003.
M. Nettesheim, T.A. Ehlers, D.M. Whipp, and A. Koptev. “The influence of upper-plate advance and erosion on overriding plate deformation in orogen syntaxes”. In: Solid Earth 9 (2018), pp. 1207–1224. doi: 10.5194/se-9-1207-2018.
Derek Neuharth, Sascha Brune, Anne Glerum, Christian Heine, and J Kim Welford. “Formation of continental microplates through rift linkage: Numerical modeling and its application to the Flemish Cap and Sao Paulo Plateau”. In: Geochem. Geophys. Geosyst. 22.4 (2021), e2020GC009615. doi: 10.1029/2020GC009615.
Derek Neuharth, Sascha Brune, Anne Glerum, Chris K Morley, Xiaoping Yuan, and Jean Braun. “Flexural strike-slip basins”. In: Geology 50.3 (2022), pp. 361–365. doi: 10.1130/ G49351.1.
Derek Neuharth, Sascha Brune, Thilo Wrona, Anne Glerum, Jean Braun, and Xiaoping Yuan. “Evolution of rift systems and their fault networks in response to surface processes”. In: Tectonics 41.3 (2022), e2021TC007166. doi: 10.1029/2021TC007166.
Derek Neuharth and Eric Mittelstaedt. “Temporal variations in plume flux: characterizing pulsations from tilted plume conduits in a rheologically complex mantle”. In: Geophy. J. Int. 233.1 (2023), pp. 338–358. doi: 10.1093/gji/ggac455.
Wladimir Neumann. “Towards 3D modelling of convection in planetesimals and meteorite parent bodies”. In: Monthly Notices of the Royal Astronomical Society: Letters 490.1 (2019), pp. L47–L51. doi: 10.1093/mnrasl/slz147.
Sérgio P Neves, Andréa Tommasi, Alain Vauchez, and Riad Hassani. “Intraplate continental deformation: influence of a heat-producing layer in the lithospheric mantle”. In: Earth Planet. Sci. Lett. 274.3-4 (2008), pp. 392–400. doi: 10.1016/j.epsl.2008.07.040.
N.C. Nguyen and J. Peraire. “Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics”. In: J. Comp. Phys. 231 (2012), pp. 5955–5988. doi: 10.1016/j.jcp.2012.02.033.
N.C. Nguyen, J. Peraire, and B. Cockburn. “A hybridizable discontinuous Galerkin method for Stokes flow”. In: Computer Methods in Applied Mechanics and Engineering 199 (2010), pp. 582–597. doi: 10.1016/j.cma.2009.10.007.
N.C. Nguyen, J. Peraire, and B. Cockburn. “An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations ”. In: J. Comp. Phys. 228 (2009), pp. 3232–3254. doi: 10.1016/j.jcp.2009.01.030.
N.C. Nguyen, J. Peraire, and B. Cockburn. “An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations”. In: J. Comp. Phys. 230 (2011), pp. 1147–1170. doi: 10.1016/j.jcp.2010.10.032.
Brian C Nichols and Gianna Bassi. “Use of ADINA to model large deformation of the Earth’s lithosphere”. In: Computers & Structures 32.3-4 (1989), pp. 761–777. doi: 10.1016/0045- 7949(89)90362-3.
Nicolai Nijholt and Rob Govers. “The role of passive margins on the evolution of Subduction-Transform Edge Propagators (STEPs)”. In: J. Geophys. Res.: Solid Earth 120.10 (2015), pp. 7203–7230. doi: 10.1002/2015JB012202.
Nicolai Nijholt, Rob Govers, and Rinus Wortel. “On the forces that drive and resist deformation of the south-central Mediterranean: a mechanical model study”. In: Geophy. J. Int. 214.2 (2018), pp. 876–894. doi: 10.1093/gji/ggy144.
K. Nikolaeva, T.V. Gerya, and F.O. Marques. “Subduction initiation at passive margins: numerical modeling”. In: J. Geophys. Res.: Solid Earth 115.B03406 (2010). doi: 10.1029/ 2009JB006549.
Ksenia Nikolaeva, Taras V Gerya, and James AD Connolly. “Numerical modelling of crustal growth in intraoceanic volcanic arcs”. In: Phys. Earth. Planet. Inter. 171.1-4 (2008), pp. 336–356. doi: 10.1016/j.pepi.2008.06.026.
Ksenia Nikolaeva, Taras V Gerya, and Fernando O Marques. “Numerical analysis of subduction initiation risk along the Atlantic American passive margins”. In: Geology 39.5 (2011), pp. 463–466. doi: 10.1130/G31972.1.
F. Nilfouroushan, R. Pysklywec, A. Cruden, and H. Koyi. “Thermal-mechanical modeling of salt-based mountain belts with pre-existing basement faults: Application to the Zagros fold and thrust belt, southwest Iran”. In: Tectonics 32 (2013), pp. 1212–1226. doi: 10.1002/ tect.20075.
Daisuke Nishiura, Mikito Furuichi, and Hide Sakaguchi. “Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing”. In: Computer Physics Communications 194 (2015), pp. 18–32. doi: 10.1016/j.cpc.2015. 04.006.
Reuben W Nixon-Hill, Daniel Shapero, Colin J Cotter, and David A Ham. “Consistent point data assimilation in Firedrake and Icepack”. In: Geosci. Model. Dev. 17.13 (2024), pp. 5369–5386. doi: 10.5194/gmd-17-5369-2024.
Emmanuel A Njinju, D Sarah Stamps, Estella A Atekwana, Tyrone O Rooney, and Tahiry A Rajaonarison. “Instantaneous 3D tomography-based convection beneath the Rungwe Volcanic Province, East Africa: implications for melt generation”. In: Geophy. J. Int. 235.1 (2023), pp. 296–311. doi: 10.1093/gji/ggad219.
Emmanuel A Njinju, D Sarah Stamps, Kodi Neumiller, and James Gallager. “Lithospheric Control of Melt Generation Beneath the Rungwe Volcanic Province, East Africa: Implications for a Plume Source”. In: J. Geophys. Res.: Solid Earth 126 (2021), e2020JB020728. doi: 10.1029/2020JB020728.
Emmanuel A. Njinju et al. “Lithospheric Structure of the Malawi Rift: Implications for Magma-Poor Rifting Processes”. In: Tectonics 38 (2019), pp. 3835–3853. doi: 10.1029/ 2019tc005549.
L. Noack, A. Rivoldini, and T. van Hoolst. “CHIC - Coupling Habitability, Interior and Crust”. In: INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation (2015).
Lena Noack and Doris Breuer. “First-and second-order Frank-Kamenetskii approximation applied to temperature-, pressure-and stress-dependent rheology”. In: Geophy. J. Int. 195.1 (2013), pp. 27–46. doi: 10.1093/gji/ggt248.
Lena Noack, Doris Breuer, and Tilman Spohn. “Coupling the atmosphere with interior dynamics: Implications for the resurfacing of Venus”. In: Icarus 217.2 (2012), pp. 484–498. doi: 10.1016/j.icarus.2011.08.026.
Y. Notay. “Aggregation-based algebraic multigrid for convection-diffusion equations”. In: SIAM J. Sci. Comput. 34 (2012), A2288–A2316. doi: 10.1137/110835347.
Y. Notay. “An aggregation-based algebraic multigrid method”. In: Electron. Trans. Numer. Anal. 37 (2010), pp. 123–146. doi: xxxx.
K.A. O’Farrell, J.P. Lowman, and H.-P. Bunge. “Comparison of spherical-shell and plane-layer mantle convection thermal structure in viscously stratified models with mixed-mode heating: Implications for the incorporation of temperature-dependent parameters”. In: Geophy. J. Int. 192.2 (2013), pp. 456–472. doi: 10.1093/gji/ggs053.
Keely A O’Farrell and Julian P Lowman. “Emulating the thermal structure of spherical shell convection in plane-layer geometry mantle convection models”. In: Phys. Earth. Planet. Inter. 182.1-2 (2010), pp. 73–84. doi: 10.1016/j.pepi.2010.06.010.
C O’Neill, Julian Lowman, and Jonathon Wasiliev. “The effect of galactic chemical evolution on terrestrial exoplanet composition and tectonics”. In: Icarus 352 (2020), p. 114025. doi: 10.1016/j.icarus.2020.114025.
C O’Neill, L Moresi, A Lenardic, and CM Cooper. “Inferences on Australia’s heat flow and thermal structure from mantle convection modelling results”. In: SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA (2003), pp. 169–184.
C. O’Neill, A. Lenardic, M. Weller, L. Moresi, S. Quenette, and S. Zhang. “A window for plate tectonics in terrestrial planet evolution?” In: Phys. Earth. Planet. Inter. 255 (2016), pp. 80–92. doi: 10.1016/j.pepi.2016.04.002.
C. O’Neill, L. Moresi, D. Müller, R. Albert, and F. Dufour. “Ellipsis 3D: a particle-in-cell finite element hybrid code for modelling mantle convection and lithospheric deformation”. In: Computers and Geosciences 32 (2006), pp. 1769–1779. doi: 10.1016/j.cageo.2006. 04.006.
C.J. O’Neill, A. Lenardic, W.L. Griffin, and S.Y. O’Reilly. “Dynamics of cratons in an evolving mantle”. In: Lithos 102 (2008), pp. 12–24. doi: 10.1016/j.lithos.2007.04. 006.
Craig O’Neill, Vinciane Debaille, and William Griffin. “Deep earth recycling in the Hadean and constraints on surface tectonics”. In: American Journal of Science 313.9 (2013), pp. 912–932. doi: 10.2475/09.2013.04.
Craig O’Neill, Adrian Lenardic, AM Jellinek, and Louis Moresi. “Influence of supercontinents on deep mantle flow”. In: Gondwana Research 15.3-4 (2009), pp. 276–287. doi: 10.1016/ j.gr.2008.11.005.
Craig O’Neill, Adrian Lenardic, L Moresi, Trond Helge Torsvik, and C-TA Lee. “Episodic precambrian subduction”. In: Earth Planet. Sci. Lett. 262.3-4 (2007), pp. 552–562. doi: 10.1016/j.epsl.2007.04.056.
Craig O’Neill, L Moresi, and Adrian Lenardic. “Insulation and depletion due to thickened crust: effects on melt production on Mars and Earth”. In: Geophys. Res. Lett. 32.14 (2005), p. L14304. doi: 10.1029/2005GL022855.
Craig J O’Neill and Louis Moresi. “How long can diamonds remain stable in the continental lithosphere?” In: Earth Planet. Sci. Lett. 213.1-2 (2003), pp. 43–52. doi: 10.1016/S0012- 821X(03)00294-2.
Craig J O’Neill, Louis Moresi, and AL Jaques. “Geodynamic controls on diamond deposits: implications for Australian occurrences”. In: Tectonophysics 404.3-4 (2005), pp. 217–236. doi: 10.1016/j.tecto.2005.04.010.
C. O’Neill, S. Marchi, S. Zhang, and W. Bottke. “Impact-driven subduction on the Hadean Earth”. In: Nature Geoscience 10.10 (2017), p. 793. doi: 10.1038/ngeo3029.
C. J. O’Neill and S. Zhang. “Lateral mixing processes in the Hadean”. In: J. Geophys. Res.: Solid Earth 123 (2018), pp. 7074–7089. doi: 10.1029/2018JB015698.
Craig O’Neill and Sonja Aulbach. “Destabilization of deep oxidized mantle drove the Great Oxidation Event”. In: Science Advances 8.7 (2022), eabg1626. doi: 10.1126/sciadv. abg1626.
H. Obermaier, M. I. Billen, H. Hagen, M. Hering-Bertram, and B. Hamann. “Visualizing Strain Anisotropy in Mantle Flow Fields”. In: Computer Graphics Forum 30.8 (2011), pp. 2301–2313. doi: 10.1111/j.1467-8659.2011.02036.x.
J. Oeser, H.-P. Bunge, and M. Mohr. “Cluster design in the earth sciences tethys”. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4208 LNCS (2006), pp. 31–40.
J. Oeser, H.-P. Bunge, M. Mohr, and H. Igel. “Frontiers in computational geophysics: Simulations of mantle circulation, plate tectonics and seismic wave propagation”. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design 100 (2009), pp. 387–397. doi: 10.1007/978-3-540-70805-6_30.
L Oger and SB Savage. “Smoothed particle hydrodynamics for cohesive grains”. In: Computer Methods in Applied Mechanics and Engineering 180.1-2 (1999), pp. 169–183.
J.-A. Olive, M.D. Behn, E. Mittelstaedt, G. Ito, and B.Z. Klein. “The role of elasticity in simulating long-term tectonic extension”. In: Geophy. J. Int. 205 (2016), pp. 728–743. doi: 10.1093/gji/ggw044.
Magda E Oliveira et al. “Impact of crustal rheology and inherited mechanical weaknesses on early continental rifting and initial evolution of double graben structural configurations: Insights from 2D numerical models”. In: Tectonophysics 831 (2022), p. 229281. doi: 10. 1016/j.tecto.2022.229281.
P. Olson, R. Deguen, L.A. Hinnov, and S. Zhong. “Controls on geomagnetic reversals and core evolution by mantle convection in the Phanerozoic”. In: Phys. Earth. Planet. Inter. 214 (214), pp. 87–103. doi: 10.1016/j.pepi.2012.10.003.
Peter Olson, Gerald Schubert, and Charles Anderson. “Structure of axisymmetric mantle plumes”. In: J. Geophys. Res.: Solid Earth 98.B4 (1993), pp. 6829–6844. doi: 10.1029/ 92JB01013.
Peter Olson, Gerald Schubert, Charles Anderson, and Peggy Goldman. “Plume formation and lithosphere erosion: A comparison of laboratory and numerical experiments”. In: J. Geophys. Res.: Solid Earth 93.B12 (1988), pp. 15065–15084. doi: 10.1029/JB093iB12p15065.
Éva Oravecz, Attila Balázs, Taras Gerya, Dave A. May, and László Fodor. “Competing effects of crustal shortening, thermal inheritance, and surface processes explain subsidence anomalies in inverted rift basins”. In: Geology xxx (2024), p. xxx. doi: 10.1130/G51971.1.
Olga Ortega-Gelabert, Sergio Zlotnik, Juan Carlos Afonso, and Pedro Dez. “Fast stokes flow simulations for geophysical-geodynamic inverse problems and sensitivity analyses based on reduced order modeling”. In: J. Geophys. Res.: Solid Earth 125.3 (2020), e2019JB018314. doi: 10.1029/2019JB018314.
C. P. Orth and V. S. Solomatov. “The isostatic stagnant lid approximation and global variations in the Venusian lithospheric thickness”. In: Geochem. Geophys. Geosyst. 12.7 (2011). doi: 10.1029/2011GC003582.
Ali Değer Özbakr, Rob Govers, and Rinus Wortel. “Active faults in the Anatolian-Aegean plate boundary region with Nubia”. In: Turkish Journal Of Earth Sciences (2017), pp. 30–56. doi: 10.3906/yer-1603-4.
M. OzBench et al. “A model comparison study of large-scale mantle-lithosphere dynamics driven by subduction”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 224–234. doi: 10. 1016/j.pepi.2008.08.011.
Karen Paczkowski, Laurent GJ Montési, Maureen D Long, and Christopher J Thissen. “Three-dimensional flow in the subslab mantle”. In: Geochem. Geophys. Geosyst. 15.10 (2014), pp. 3989–4008. doi: 10.1002/2014GC005441.
Debanjan Pal and Attreyee Ghosh. “How the Indian Ocean geoid low was formed”. In: Geophys. Res. Lett. 50.9 (2023), e2022GL102694. doi: 10.1029/2022GL102694.
Camilla Palmiotto, Eleonora Ficini, Maria Filomena Loreto, Filippo Muccini, and Marco Cuffaro. “Back-Arc Spreading Centers and Superfast Subduction: The Case of the Northern Lau Basin (SW Pacific Ocean)”. In: Geosciences 12.2 (2022), p. 50. doi: 10.3390/ geosciences12020050.
I Palomeras et al. “Geophysical model of the lithosphere across the Variscan Belt of SW-Iberia: Multidisciplinary assessment”. In: Tectonophysics 508.1-4 (2011), pp. 42–51. doi: 10.1016/j.tecto.2010.07.010.
Sophie Pan, John Naliboff, Rebecca E Bell, and Chris Jackson. “Bridging spatiotemporal scales of normal fault growth during continental extension using high-resolution 3D numerical models”. In: Geochem. Geophys. Geosyst. 23 (2022), e2021GC010316. doi: 10.1029/ 2021GC010316.
Fengping Pang, Jie Liao, Maxim D Ballmer, and Lun Li. “Plume–ridge interactions: ridgeward versus plate-drag plume flow”. In: Solid Earth 14.3 (2023), pp. 353–368. doi: 10.5194/se-14-353-2023.
Yajin Pang, Huai Zhang, Yaolin Shi, and Taras Gerya. “Plume-induced rifting of thickened crust: 2D numerical model and implications for N–S rifts in southern Tibet”. In: Geophys. Res. Lett. 49 (2022), e2022GL101479. doi: 10.1029/2022GL101479.
Marion Panien, SJH Buiter, Guido Schreurs, and Othmar-Adrian Pfiffner. “Inversion of a symmetric basin: insights from a comparison between analogue and numerical experiments”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 253–270. doi: 10. 1144/GSL.SP.2006.253.01.13.
James Panton, J Huw Davies, Tim Elliott, Morten Andersen, Don Porcelli, and Matthew G Price. “Investigating influences on the Pb Pseudo-Isochron using three-dimensional mantle convection models with a continental reservoir”. In: Geochem. Geophys. Geosyst. 23.8 (2022), e2021GC010309. doi: 10.1029/2021GC010309.
James Panton, J Huw Davies, and Robert Myhill. “The stability of dense oceanic crust near the core-mantle boundary”. In: J. Geophys. Res.: Solid Earth 128.2 (2023), e2022JB025610. doi: 10.1029/2022JB025610.
Jay Parker et al. “Geophysical Finite-Element Simulation Tool (GeoFEST): algorithms and validation for quasistatic regional faulted crust problems”. In: Pure Appl. Geophys. 165.3-4 (2008), pp. 497–521. doi: 10.1007/s00024-008-0325-9.
EM Parmentier, C Sotin, and BJ Travis. “Turbulent 3-D thermal convection in an infinite Prandtl number, volumetrically heated fluid: implications for mantle dynamics”. In: Geophy. J. Int. 116.2 (1994), pp. 241–251. doi: 10.1111/j.1365-246X.1994.tb01795.x.
V Patočka, O Čadek, Paul J Tackley, and H Čžková. “Stress memory effect in viscoelastic stagnant lid convection”. In: Geophy. J. Int. 209.3 (2017), pp. 1462–1475. doi: 10.1093/ gji/ggx102.
V Patočka, H Čžková, and PJ Tackley. “Do elasticity and a free surface affect lithospheric stresses caused by upper-mantle convection?” In: Geophy. J. Int. 216.3 (2019), pp. 1740–1760. doi: 10.1093/gji/ggy513.
Jyotirmoy Paul, Clinton P Conrad, Thorsten W Becker, and Attreyee Ghosh. “Convective Self-Compression of Cratons and the Stabilization of Old Lithosphere”. In: Geophys. Res. Lett. 50.4 (2023), e2022GL101842. doi: 10.1029/2022GL101842.
Jyotirmoy Paul and Attreyee Ghosh. “Evolution of cratons through the ages: A time-dependent study”. In: Earth Planet. Sci. Lett. 531 (2020), p. 115962. doi: 10.1016/ j.epsl.2019.115962.
Jyotirmoy Paul, Attreyee Ghosh, and Clinton P Conrad. “Traction and strain-rate at the base of the lithosphere: an insight into cratonic survival”. In: Geophy. J. Int. 217.2 (2019), pp. 1024–1033. doi: 10.1093/gji/ggz079.
Archie Paulson, Shijie Zhong, and John Wahr. “Modelling post-glacial rebound with lateral viscosity variations”. In: Geophy. J. Int. 163.1 (2005), pp. 357–371. doi: 10.1111/j.1365- 246X.2005.02645.x.
David Pedreira et al. “Geophysical-petrological modeling of the lithosphere beneath the Cantabrian Mountains and the North-Iberian margin: geodynamic implications”. In: Lithos 230 (2015), pp. 46–68. doi: 10.1016/j.lithos.2015.04.018.
Xu Pei, Zhong-Hai Li, and Yaolin Shi. “Formation Mechanism of Arcuate Tectonic Structures around Northeast Tibetan Plateau: Insight from 3-D Numerical Modeling”. In: Terra Nova 33 (2021), pp. 345–355. doi: 10.1111/ter.12519.
D. Pelletier, A. Fortin, and R. Camarero. “Are FEM solutions of incompressible flows really incompressible ? (Or how simple flows can cause headaches!)” In: Int. J. Num. Meth. Fluids 9 (1989), pp. 99–112. doi: 10.1002/fld.1650090108.
Diandian Peng and Lijun Liu. “Importance of global spherical geometry for studying slab dynamics and evolution in models with data assimilation”. In: Earth-Science Reviews 241 (2023), p. 104414. doi: 10.1016/j.earscirev.2023.104414.
Diandian Peng and Lijun Liu. “Quantifying slab sinking rates using global geodynamic models with data-assimilation”. In: Earth-Science Reviews 230 (2022), p. 104039. doi: 10.1016/j.earscirev.2022.104039.
Diandian Peng and Dave Stegman. “Modeling subduction with extremely fast trench retreat”. In: J. Geophys. Res.: Solid Earth 129 (2024), e2024JB029240. doi: https: //doi.org/10.1029/2024JB029240.
J. Peraire and P.-O. Persson. “The compact discontinuous Galerkin method for elliptic problems”. In: SIAM J. Sci. Comput. 30.4 (2008), pp. 1806–1824. doi: 10.1137/ 070685518.
M Peral, M Fernŕndez, J Vergés, S Zlotnik, and I Jiménez-Munt. “Numerical modelling of opposing subduction in the Western Mediterranean”. In: Tectonophysics 830 (2022), p. 229309. doi: 10.1016/j.tecto.2022.229309.
Mireia Peral et al. “Analog and numerical experiments of double subduction systems with opposite polarity in adjacent segments”. In: Geochem. Geophys. Geosyst. 21.6 (2020), e2020GC009035. doi: 10.1029/2020GC009035.
AL Perchuk, TV Gerya, VS Zakharov, and WL Griffin. “Building cratonic keels in Precambrian plate tectonics”. In: Nature 586.7829 (2020), pp. 395–401. doi: 10.1038/ s41586-020-2806-7.
AL Perchuk, TV Gerya, VS Zakharov, and WL Griffin. “Depletion of the upper mantle by convergent tectonics in the Early Earth”. In: Scientific Reports 11.1 (2021), pp. 1–12. doi: 10.1038/s41598-021-00837-y.
Alexei L Perchuk, Vladimir S Zakharov, Taras V Gerya, and William L Griffin. “Flat subduction in the Early Earth: The key role of discrete eclogitization kinetics”. In: Gondwana Research 119 (2023), pp. 186–203. doi: 10.1016/j.gr.2023.03.015.
Leonid L Perchuk and Taras V Gerya. “Formation and evolution of Precambrian granulite terranes: a gravitational redistribution model”. In: Geological Society of America Memoirs 207 (2011), pp. 289–310. doi: 10.1130/2011.1207(15).
J.A. Percival, S.B. Lucas, A.G. Jones, C. Beaumont, D. Eaton, and T. Rivers. “How will LITHOPROBE’s final chapter be written?” In: Geoscience Canada 26.1 (1999), pp. 17–26. doi: xxxx.
Marta Pérez-Gussinyé, Miguel Andrés-Martnez, M Araújo, Y Xin, J Armitage, and JP Morgan. “Lithospheric strength and rift migration controls on synrift stratigraphy and breakup unconformities at rifted margins: Examples from numerical models, the Atlantic and South China Sea margins”. In: Tectonics 39.12 (2020), e2020TC006255. doi: 10. 1029/2020TC006255.
Marta Pérez-Gussinyé et al. “Synrift and postrift thermal evolution of rifted margins: a re-evaluation of classic models of extension”. In: Geological Society, London, Special Publications 547.1 (2024), SP547–2023. doi: 10.1144/SP547-2023-128.
G Peron-Pinvidic, L Fourel, and SJH Buiter. “The influence of orogenic collision inheritance on rifted margin architecture: Insights from comparing numerical experiments to the Mid-Norwegian margin”. In: Tectonophysics 828 (2022), p. 229273. doi: 10.1016/j. tecto.2022.229273.
Gwenn Peron-Pinvidic and John Naliboff. “The exhumation detachment factory”. In: Geology (2020). doi: 10.1130/G47174.1.
Alexander Perrin, Saskia Goes, Julie Prytulak, D Rhodri Davies, Cian Wilson, and Stephan Kramer. “Reconciling mantle wedge thermal structure with arc lava thermobarometric determinations in oceanic subduction zones”. In: Geochem. Geophys. Geosyst. 17.10 (2016), pp. 4105–4127. doi: 10.1002/2016GC006527.
Alexander Perrin, Saskia Goes, Julie Prytulak, Stéphane Rondenay, and D Rhodri Davies. “Mantle wedge temperatures and their potential relation to volcanic arc location”. In: Earth Planet. Sci. Lett. 501 (2018), pp. 67–77. doi: 10.1029/2001GC000256.
Paul Perron, Laetitia Le Pourhiet, Anthony Jourdon, Tristan Cornu, and Claude Gout. “Toward the calibration of 2D thermomechanical simulations of magma poor passive continental margins: method, validation and case example”. In: Comptes Rendus. Géoscience 356.S2 (2024), pp. 1–22. doi: 10.5802/crgeos.258.
Paul Perron et al. “Control of inherited accreted lithospheric heterogeneity on the architecture and the low, long-term subsidence rate of intracratonic basins”. In: Bulletin de la Société Géologique de France 192.1 (2021). doi: 10.1051/bsgf/2020038.
Jonathan Perry-Hout. “Geodynamic Origin of the Columbia River Flood Basalts”. PhD thesis. University of Oregon, 2019. url: http://hdl.handle.net/1794/24526.
J. Perry-Houts and L. Karlstrom. “Anisotropic viscosity and time-evolving lithospheric instabilities due to aligned igneous intrusions”. In: Geophy. J. Int. 216.2 (2018), pp. 794–802. doi: 10.1093/gji/ggy466.
Patricia Persaud, Eh Tan, Juan Contreras, and Luc Lavier. “A bottom-driven mechanism for distributed faulting in the Gulf of California rift”. In: Tectonophysics 719 (2017), pp. 51–65. doi: 10.1016/j.tecto.2016.11.024.
M. Peters, M. Veveakis, T. Poulet, A. Karrech, M. Herwegh, and K. Regenauer-Lieb. “Boudinage as a material instability of elasto-visco-plastic rocks”. In: Journal of Structural Geology 78 (2015), pp. 86–102. doi: 10.1016/j.jsg.2015.06.005.
R.I. Petersen, D.R. Stegman, and P.J. Tackley. “A regime diagram of mobile lid convection with plate-like behavior”. In: Phys. Earth. Planet. Inter. 241 (2015), pp. 65–76. doi: 10.1016/j.pepi.2015.01.002.
Robert I Petersen, Dave R Stegman, and Paul J Tackley. “The subduction dichotomy of strong plates and weak slabs”. In: Solid Earth 8.2 (2017), pp. 339–350. doi: 10.5194/se- 8-339-2017.
Benot Petri, Thibault Duretz, Geoffroy Mohn, Stefan M Schmalholz, Garry D Karner, and Othmar Müntener. “Thinning mechanisms of heterogeneous continental lithosphere”. In: Earth Planet. Sci. Lett. 512 (2019), pp. 147–162. doi: 10.1016/j.epsl.2019.02.007.
Claudio Petrini, Taras Gerya, Viktoriya Yarushina, Ylona van Dinther, James Connolly, and Claudio Madonna. “Seismo-hydro-mechanical modelling of the seismic cycle: Methodology and implications for subduction zone seismicity”. In: Tectonophysics 791 (2020), p. 228504. doi: 10.1016/j.tecto.2020.228504.
A.G. Petrunin and S.V. Sobolev. “Three-dimensional numerical models of the evolution of pull-apart basins”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 387–399. doi: 10. 1016/j.pepi.2008.08.017.
AG Petrunin, MK Kaban, S El Khrepy, and N Al-Arifi. “Mantle Convection Patterns Reveal the Mechanism of the Red Sea Rifting”. In: Tectonics 39.2 (2020), e2019TC005829. doi: 10.1029/2019TC005829.
AG Petrunin, MK Kaban, S El Khrepy, and N Al-Arifi. “Mantle convection patterns reveal the mechanism of the Red Sea rifting”. In: Tectonics 39.2 (2020), e2019TC005829. doi: 10.1029/2019TC005829.
AG Petrunin, MK Kaban, Irina Rogozhina, and V Trubitsyn. “Revising the spectral method as applied to modeling mantle dynamics”. In: Geochem. Geophys. Geosyst. 14.9 (2013), pp. 3691–3702. doi: 10.1002/ggge.20226.
Alexey Petrunin and Stephan V Sobolev. “What controls thickness of sediments and lithospheric deformation at a pull-apart basin?” In: Geology 34.5 (2006), pp. 389–392. doi: 10.1130/G22158.1.
O.A. Pfiffner, S. Ellis, and C. Beaumont. “Collision tectonics in the Swiss Alps: Insight fro geodynamic modeling”. In: Tectonics 19.6 (2000), pp. 1065–1094. doi: 10.1029/ 2000TC900019.
Thomas Philippe. “Single viscous layer fold interplay and linkage”. PhD thesis. ETH Zurich, 2013.
B.R. Phillips and H.-P. Bunge. “Heterogeneity and time dependence in 3D spherical mantle convection models with continental drift”. In: Earth Planet. Sci. Lett. 233.1-2 (2005), pp. 121–135. doi: 10.1016/j.epsl.2005.01.041.
B.R. Phillips and H.-P. Bunge. “Supercontinent cycles disrupted by strong mantle plumes”. In: Geology 35.9 (2007), pp. 847–850. doi: 10.1130/G23686A.1.
B.R. Phillips, H.-P. Bunge, and K. Schaber. “True polar wander in mantle convection models with multiple, mobile continents”. In: Gondwana Research 15 (2009), pp. 288–296.
Thomas B Phillips, John B Naliboff, Ken JW McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen. “The influence of crustal strength on rift geometry and development–insights from 3D numerical modelling”. In: Solid Earth 14.4 (2023), pp. 369–388. doi: 10.5194/se-14-369-2023.
Andrea Piccolo, Boris JP Kaus, Richard W White, Richard M Palin, and Georg S Reuber. “Plume-Lid interactions during the Archean and implications for the generation of early continental terranes”. In: Gondwana Research 88 (2020), pp. 150–168. doi: 10.1016/j. gr.2020.06.024.
Leonardo M Pichel, Ritske S Huismans, Robert Gawthorpe, and Jan Inge Faleide. “How post-salt sediment flux and progradation rate influence salt tectonics on rifted margins: Insights from geodynamic modelling”. In: Basin Research (2023). doi: 10.1111/bre. 12802.
Leonardo M Pichel, Ritske S Huismans, Robert Gawthorpe, Jan Inge Faleide, and Thomas Theunissen. “Coupling Crustal-Scale Rift Architecture With Passive Margin Salt Tectonics: A Geodynamic Modeling Approach”. In: J. Geophys. Res.: Solid Earth 127.11 (2022), e2022JB025177. doi: 10.1029/2022JB025177.
Leonardo M Pichel, Ritske S Huismans, Robert Gawthorpe, Jan Inge Faleide, and Thomas Theunissen. “Late-Syn-to Post-Rift Salt Tectonics on Wide Rifted Margins—Insights From Geodynamic Modeling”. In: Tectonics 41.8 (2022), e2021TC007158. doi: 10.1029/ 2021TC007158.
Simone Pilia et al. “Post-subduction tectonics induced by extension from a lithospheric drip”. In: Nature Geoscience (2023), pp. 1–7. doi: 10.1038/s41561-023-01201-7.
C. Piromallo, T.W. Becker, F. Funiciello, and C. Faccenna. “Three-dimensional instantaneous mantle flow induced by subduction”. In: Geophys. Res. Lett. 33.L08304 (2006). doi: 10.1029/2005GL025390.
T. Plank and P.E. van Keken. “The ups and downs of sediments”. In: Nature Geoscience 1 (2008), p. 17. doi: 10.1038/ngeo.2007.68.
C Plattner, R Malservisi, K P Furlong, and Rob Govers. “Development of the Eastern California Shear Zone — Walker Lane belt: The effects of microplate motion and pre-existing weakness in the Basin and Range”. In: Tectonophysics 485.1-4 (2010), pp. 78–84. doi: 10.1016/j.tecto.2009.11.021.
C Plattner, R Malservisi, and Rob Govers. “On the plate boundary forces that drive and resist Baja California motion”. In: GEOLOGY 37.4 (2009), pp. 359–362. doi: 10.1130/ G25360A.1.
Christina Plattner, Falk Amelung, Scott Baker, Rob Govers, and Michael Patrick Poland. “The role of viscous magma mush spreading in volcanic flank motion at Klauea Volcano, Hawai’i”. In: J. Geophys. Res.: Solid Earth 118.5 (2013), pp. 2474–2487. doi: 10.1002/ jgrb.50194.
A-C Plesa et al. “The thermal state and interior structure of Mars”. In: Geophys. Res. Lett. 45.22 (2018), pp. 12–198. doi: 10.1029/2018GL080728.
Ana-Catalina Plesa, Nicola Tosi, and Christian Hüttig. “Thermo-chemical convection in planetary mantles: advection methods and magma ocean overturn simulations”. In: Integrated Information and Computing Systems for Natural, Spatial, and Social Sciences. IGI Global, 2013, pp. 302–323. doi: 10.4018/978-1-4666-2190-9.ch015.
A. Plunder, C. Thieulot, and D.J.J. van Hinsbergen. “The effect of obliquity on temperature in subduction zones: insights from 3D numerical modeling”. In: Solid Earth 9 (2018), pp. 759–776. doi: 10.5194/se-2017-134.
Jonathan Poh, Philippe Yamato, Thibault Duretz, Denis Gapais, and Patrick Ledru. “Precambrian deformation belts in compressive tectonic regimes: A numerical perspective”. In: Tectonophysics 777 (2020), p. 228350. doi: 10.1016/j.tecto.2020.228350.
Jonathan Poh, Philippe Yamato, Thibault Duretz, Denis Gapais, and Patrick Ledru. “The transition from ancient to modern-style tectonics: insights from lithosphere dynamics modelling in compressional regimes”. In: Gondwana Research 99 (2021), pp. 77–92. doi: 10.1016/j.gr.2021.06.016.
Jakub Pokornỳ, Hana Čžková, Craig R Bina, and Arie van den Berg. “2D stress rotation in the Tonga subduction region”. In: Earth Planet. Sci. Lett. 621 (2023), p. 118379. doi: 10.1016/j.epsl.2023.118379.
Jakub Pokornỳ, Hana Čžková, and Arie van den Berg. “Feedbacks between subduction dynamics and slab deformation: Combined effects of nonlinear rheology of a weak decoupling layer and phase transitions”. In: Phys. Earth. Planet. Inter. 313 (2021), p. 106679. doi: 10.1016/j.pepi.2021.106679.
A. Poliakov, P. Cundall, P. Podlachikov, and V. Lyakhovsky. “An explicit inertial method for the simulation of viscoelastic flow: an evaluation of elastic effects on diapiric flow in two- and three-layers models”. In: Flow and creep in the solar system: Observations, Modeling and theory. Kluwer Academic Publishers, 1993, pp. 175–195.
A. Poliakov and Y. Podlachikov. “Diapirism and topography”. In: Geophy. J. Int. 109 (1992), pp. 553–564. doi: 10.1111/j.1365-246X.1992.tb00117.x.
Michaël Pons, Constanza Rodriguez Piceda, Stephan V Sobolev, Magdalena Scheck-Wenderoth, and Manfred R Strecker. “Localization of deformation in a non-collisional subduction orogen: The roles of dip geometry and plate strength on the evolution of the broken Andean foreland, Sierras Pampeanas, Argentina”. In: Tectonics 42.8 (2023), e2023TC007765. doi: 10.1029/2023TC007765.
Michaël Pons, Stephan V Sobolev, Sibiao Liu, and Derek Neuharth. “Hindered trench migration due to slab steepening controls the formation of the Central Andes”. In: J. Geophys. Res.: Solid Earth 127.12 (2022), e2022JB025229. doi: 10.1029/2022JB025229.
J-P Ponthot and Ted Belytschko. “Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method”. In: Computer Methods in Applied Mechanics and Engineering 152.1-2 (1998), pp. 19–46. doi: 10.1016/S0045-7825(97)00180-1.
A.A. Popov and S.V. Sobolev. “SLIM3D: a tool for three-dimensional thermomechanical modelling of lithospheric deformation with elasto-visco-plastic rheology”. In: Phys. Earth. Planet. Inter. 171.1 (2008), pp. 55–75. doi: 10.1016/j.pepi.2008.03.007.
Kristóf Porkoláb, Thibault Duretz, Philippe Yamato, Antoine Auzemery, and Ernst Willingshofer. “Extrusion of subducted crust explains the emplacement of far-travelled ophiolites”. In: Nature Communications 12 (2021), p. 1499. doi: 10.1038/s41467-021- 21866-1.
Mahesh Prakash and Paul W Cleary. “Three dimensional modelling of lava flow using Smoothed Particle Hydrodynamics”. In: Applied Mathematical Modelling 35.6 (2011), pp. 3021–3035.
Matthew Price. “Investigating the initial condition of mantle models using data assimilation”. PhD thesis. Cardiff University, 2016.
Matthew G Price, JH Davies, and James Panton. “Controls on the Deep-Water Cycle Within Three-Dimensional Mantle Convection Models”. In: Geochem. Geophys. Geosyst. 20.5 (2019), pp. 2199–2213. doi: 10.1029/2018GC008158.
MG Price and JH Davies. “Profiling the robustness, efficiency and limits of the forward-adjoint method for 3-D mantle convection modelling”. In: Geophy. J. Int. 212.2 (2018), pp. 1450–1462. doi: 10.1093/gji/ggx489.
Ann-Sophie Provost, Jean Chéry, and Riad Hassani. “3D mechanical modeling of the GPS velocity field along the North Anatolian fault”. In: Earth Planet. Sci. Lett. 209.3-4 (2003), pp. 361–377. doi: 10.1016/S0012-821X(03)00099-2.
E.G. Puckett, D.L. Turcotte, Y. He, H. Lokavarapu, J.M. Robey, and L.H. Kellogg. “New numerical approaches for modeling thermochemical convection in a compositionally stratified fluid”. In: Phys. Earth. Planet. Inter. 276 (2018), pp. 10–35. doi: 10.1016/j.pepi. 2017.10.004.
A.E. Pusok and B.J.P. Kaus. “Development of topography in 3D continental collision models”. In: Geochem. Geophys. Geosyst. (2015). doi: 10.1002/2015GC005732.
Adina E Pusok and Dave R Stegman. “Formation and stability of same-dip double subduction systems”. In: J. Geophys. Res.: Solid Earth 124.7 (2019), pp. 7387–7412. doi: 10.1029/2018JB017027.
Adina E Pusok and Dave R Stegman. “The convergence history of India-Eurasia records multiple subduction dynamics processes”. In: Science Advances 6.19 (2020), eaaz8681. doi: 10.1126/sciadv.aaz8681.
Adina E Pusok, Dave R Stegman, and Madeleine Kerr. “The effect of low-viscosity sediments on the dynamics and accretionary style of subduction margins”. In: Solid Earth 13 (2022), pp. 1455–1473. doi: 10.5194/se-13-1455-2022.
P. Puster, B. H. Hager, and T. H. Jordan. “Mantle convection experiments with evolving plates”. In: Geophys. Res. Lett. 22.16 (1995), pp. 2223–2226. doi: 10.1029/95GL01998.
P. Puster, T. H. Jordan, and B. H. Hager. “Characterization of mantle convection experiments using two-point correlation functions”. In: J. Geophys. Res.: Solid Earth 100.B4 (1995), pp. 6351–6365. doi: 10.1029/94JB03268.
C. Püthe and T. Gerya. “Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models”. In: Gondwana Research 25 (2014), pp. 270–283. doi: 10.1016/ j.gr.2013.04.005.
R.N. Pysklywec. “Surface erosion control on the evolution of the deep lithosphere”. In: Geology 34 (2006), pp. 225–228. doi: 10.1130/G21963.1.
R.N. Pysklywec and C. Beaumont. “Intraplate tectonics: feedback between radioactive thermal weakening and crustal deformation driven by mantle lithosphere instabilities”. In: Earth Planet. Sci. Lett. 221 (2004), pp. 275–292. doi: 10.1016/S0012-821X(04)00098-6.
R.N. Pysklywec, C. Beaumont, and P. Fullsack. “Lithospheric deformation during the early stages of continental collision: Numerical experiments and comparison with South Island, New Zealand”. In: J. Geophys. Res.: Solid Earth 107.B72133 (2002). doi: 10.1029/ 2001JB000252.
R.N. Pysklywec, C. Beaumont, and P. Fullsack. “Modeling the behavior of continental mantle lithosphere during plate convergence”. In: Geology 28.7 (2000), pp. 655–658. doi: 10.1130/0091-7613(2000)28<655:MTBOTC>2.0.CO;2.
R.N. Pysklywec and A.R. Cruden. “Coupled crust-mantle dynamics and intraplate tectonics: Two-dimensional numerical and three-dimensional analogue modeling”. In: Geochem. Geophys. Geosyst. 5.10 (2004). doi: 10.1029/2004GC000748.
R.N. Pysklywec, S.M. Ellis, and A.R. Gorman. “Three-dimensional mantle lithosphere deformation at collisional plate boundaries: A subduction scissor across the South Island of New Zealand”. In: Earth Planet. Sci. Lett. 289 (2010), pp. 334–346. doi: 10.1016/j. epsl.2009.11.022.
R.N. Pysklywec, O. Gogus, J. Percival, A.R. Cruden, and C. Beaumont. “Insights from geodynamical modeling on possible fates of continental mantle lithosphere: collision, removal, and overturn”. In: Can. J. Earth Sci. 47 (2010), pp. 541–563. doi: 10.1139/E09-043.
R.N. Pysklywec, J.X. Mitrovica, and M. Ishii. “Mantle avalanche as a driving force for tectonic reorganization in the southwest Pacific”. In: Earth Planet. Sci. Lett. 209 (2003), pp. 29–38. doi: 10.1016/S0012-821X(03)00073-6.
Russell N Pysklywec. “Evolution of subducting mantle lithosphere at a continental plate boundary”. In: Geophys. Res. Lett. 28.23 (2001), pp. 4399–4402. doi: 10.1029/ 2001GL013567.
Liang Qi, Nan Zhang, Bei Xu, and Zhiwei Wang. “Geodynamic modeling on the formation mechanism of Linxi Basin: New constraints on the closure time of the Paleo-Asian Ocean”. In: Tectonophysics (2021), p. 228866. doi: 10.1016/j.tecto.2021.228866.
Chuan Qin, Shijie Zhong, and John Wahr. “Elastic tidal response of a laterally heterogeneous planet: a complete perturbation formulation”. In: Geophy. J. Int. 207.1 (2016), pp. 89–110. doi: 10.1093/gji/ggw257.
Jiarong Qing, Jie Liao, and Sascha Brune. “Rift propagation interacting with pre-existing microcontinental blocks”. In: J. Geophys. Res.: Solid Earth 129.3 (2024), e2023JB028109. doi: 10.1029/2023JB028109.
Jiarong Qing, Jie Liao, Lun Li, and Rui Gao. “Dynamic evolution of induced subduction through the inversion of spreading ridges”. In: J. Geophys. Res.: Solid Earth 126.3 (2021), e2020JB020965. doi: 10.1029/2020JB020965.
QiJia QIU et al. “Effects of lithospheric mantle layering on craton stability”. In: Chinese Journal of Geophysics (2024). doi: 10.6038/cjg2024R0789.
Rui Qu, Weiling Zhu, Yingfeng Ji, Chaodi Xie, Deng Zeng, and Fan Zhang. “Subduction thermal regime, petrological metamorphism and seismicity under the Mariana arc”. In: Scientific Reports 13.1 (2023), p. 1948. doi: 10.1038/s41598-023-29004-1.
S. Quenette, Y. Xi, J. Mansour, L. Moresi, and D. Abramson. “Underworld-GT Applied to Guangdong, a Tool to Explore the Geothermal Potential of the Crust”. In: Journal of Earth Sciences 26.1 (2015), pp. 78–88. doi: 10.1007/s12583-015-0517-z.
Steve Quenette, Louis Moresi, PD Sunter, and Bill F Appelbe. “Explaining StGermain: An aspect oriented environment for building extensible computational mechanics modeling software”. In: 2007 IEEE International Parallel and Distributed Processing Symposium. IEEE. 2007, pp. 1–8.
S. Quéré, J.P. Lowman, J. Arkani-Hamed, J.H. Roberts, and R. Moucha. “Subcontinental sinking slab remnants in a spherical geometry mantle model”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 1760–1777. doi: 10.1002/jgrb.50102.
L Quevedo, B Hansra, G Morra, N Butterworth, and RD Müller. “Oblique mid ocean ridge subduction modelling with the parallel fast multipole boundary element method”. In: Computational Mechanics 51.4 (2013), pp. 455–463. doi: 10.1007/s00466-012-0751-5.
L Quevedo, G Morra, and RD Müller. “Global paleo-lithospheric models for geodynamical analysis of plate reconstructions”. In: Phys. Earth. Planet. Inter. 212 (2012), pp. 106–113. doi: 10.1016/j.pepi.2012.09.007.
M.E.T. Quinquis and S.J.H. Buiter. “Testing the effects of basic numerical implementations of water migration on models of subduction dynamics”. In: Solid Earth 5 (2014), pp. 537–555. doi: 10.5194/se-5-537-2014.
Matthieu E.T. Quinquis, Suzanne J.H. Buiter, and Susan Ellis. “The role of boundary conditions in numerical models of subduction zone dynamics”. In: Tectonophysics 497 (2011), pp. 57–70. doi: 10.1016/j.tecto.2010.11.001.
J. Quinteros, V.A. Ramos, and P.M. Jacovkis. “An elasto-visco-plastic model using the finite element method for crustal and lithospheric deformation”. In: Journal of Geodynamics 48 (2009), pp. 83–94. doi: 10.1016/j.jog.2009.06.006.
J. Quinteros, S.V. Sobolev, and A.A. Popov. “Viscosity in transition zone and lower mantle: Implications for slab penetration”. In: Geophys. Res. Lett. 37.L09307 (2010). doi: 10. 1029/2010GL043140.
G Raghuram, M Pérez-Gussinyé, M Andrés-Martnez, J Garca-Pintado, M Neto Araujo, and JP Morgan. “Asymmetry and evolution of craton-influenced rifted margins”. In: Geology (2023). doi: 10.1130/G51370.1.
Tahiry A Rajaonarison, D Sarah Stamps, and John Naliboff. “Role of lithospheric buoyancy forces in driving deformation in East Africa from 3D geodynamic modeling”. In: Geophys. Res. Lett. 48.6 (2021), e2020GL090483. doi: 10.1029/2020GL090483.
Tahiry A Rajaonarison, D Sarah Stamps, John Naliboff, Andrew Nyblade, and Emmanuel A Njinju. “A Geodynamic Investigation of Plume-Lithosphere Interactions Beneath the East African Rift”. In: J. Geophys. Res.: Solid Earth (2023), e2022JB025800. doi: 10.1029/ 2022JB025800.
B. Ramaswamy and T.C. Jue. “A segregated finite element formulation of Navier-Stokes equations under laminar conditions”. In: Finite Elements in Analysis and Design 9 (1991), pp. 257–270.
T. Ramsay and R. Pysklywec. “Anomalous bathymetry, 3D edge driven convection, and dynamic topography at the western Atlantic passive margin”. In: Journal of Geodynamics 52.1 (2011), pp. 45–56. doi: 10.1016/j.jog.2010.11.008.
H. Ran et al. “High-strain deformation of conglomerates: Numerical modelling, strain analysis, and an example from the Wutai Mountains, North China Craton”. In: Journal of Structural Geology 114 (2018), pp. 222–234. doi: 10.1016/j.jsg.2018.06.018.
Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y Podladchikov. “Assessing the robustness and scalability of the accelerated pseudo-transient method”. In: Geosci. Model. Dev. 15.14 (2022), pp. 5757–5786. doi: 10.5194/gmd-15-5757-2022.
Markus Rast and Jonas B Ruh. “Numerical shear experiments of quartz-biotite aggregates: Insights on strain weakening and two-phase flow laws”. In: Journal of Structural Geology 149 (2021), p. 104375. doi: 10.1016/j.jsg.2021.104375.
Florian Rathgeber et al. “Firedrake: automating the finite element method by composing abstractions”. In: ACM Transactions on Mathematical Software (TOMS) 43.3 (2016), pp. 1–27. doi: 10.1145/2998441.
Vishagan Ratnaswamy, Georg Stadler, and Michael Gurnis. “Adjoint-based estimation of plate coupling in a non-linear mantle flow model: theory and examples”. In: Geophy. J. Int. 202.2 (2015), pp. 768–786. doi: 10.1093/gji/ggv166.
R. Reali, J. M. Jackson, J. van Orman, D. J. Bower, P. Carrez, and P. Cordier. “Modeling viscosity of (Mg,Fe)O at lowermost mantle conditions”. In: Phys. Earth. Planet. Inter. 287 (2019), pp. 65–75. doi: 10.1016/j.pepi.2018.12.005.
H. L. Redmond and S. D. King. “Does mantle convection currently exist on Mercury?” In: Phys. Earth. Planet. Inter. 164.3-4 (2007), pp. 221–231. doi: 10.1016/j.pepi.2007. 07.004.
Hannah L Redmond and Scott D King. “A numerical study of a mantle plume beneath the Tharsis Rise: Reconciling dynamic uplift and lithospheric support models”. In: J. Geophys. Res.: Planets 109.E9 (2004). doi: 10.1029/2003JE002228.
William H Reed and TR Hill. Triangular mesh methods for the neutron transport equation. Tech. rep. Los Alamos Scientific Lab., N. Mex.(USA), 1973.
C.C. Reese, V.S. Solomatov, and J.R. Baumgardner. “Scaling laws for time-dependent stagnant lid convection in a spherical shell”. In: Phys. Earth. Planet. Inter. 149.3-4 (2005), pp. 361–370. doi: 10.1016/j.pepi.2004.11.004.
C.C. Reese, V.S. Solomatov, J.R. Baumgardner, D.R. Stegman, and A.V. Vezolainen. “Magmatic evolution of impact-induced Martian mantle plumes and the origin of Tharsis”. In: J. Geophys. Res.: Planets 109.8 (2004), E08009. doi: 10.1029/2003JE002222.
C.C. Reese, V.S. Solomatov, J.R. Baumgardner, and W.-S. Yang. “Stagnant lid convection in a spherical shell”. In: Phys. Earth. Planet. Inter. 116.1-4 (1999), pp. 1–7. doi: 10. 1016/S0031-9201(99)00115-6.
CC Reese, VS Solomatov, and L-N Moresi. “Heat transport efficiency for stagnant lid convection with dislocation viscosity: Application to Mars and Venus”. In: J. Geophys. Res.: Planets 103.E6 (1998), pp. 13643–13657.
CC Reese, VS Solomatov, and L-N Moresi. “Non-newtonian stagnant lid convection and magmatic resur facing on venus”. In: Icarus 139.1 (1999), pp. 67–80.
K Regenauer-Lieb and DA Yuen. “Fast mechanisms for the formation of new plate boundaries”. In: Tectonophysics 322.1-2 (2000), pp. 53–67.
K. Regenauer-Lieb and D.A. Yuen. “Rapid conversion of elastic energy into plastic shear heating during incipient necking of the lithosphere”. In: Geophys. Res. Lett. 25.14 (1998), pp. 2737–2740. doi: 10.1029/98GL02056.
A Regorda, AM Marotta, and MI Spalla. “Numerical model of an ocean/continent subduction and comparison with Variscan orogeny natural data”. In: Rend. Online Soc. Geol. It. 29 (2013), pp. 142–145.
Alessandro Regorda, Jean-Marc Lardeaux, Manuel Roda, Anna Maria Marotta, and Maria Iole Spalla. “How many subductions in the Variscan orogeny? Insights from numerical models”. In: Geoscience Frontiers 11 (2020), pp. 1025–1052.
Alessandro Regorda, Manuel Roda, Anna Maria Marotta, and Maria Iole Spalla. “2-D numerical study of hydrated wedge dynamics from subduction to post-collisional phases”. In: Geophy. J. Int. 211.2 (2017), pp. 952–978.
Alessandro Regorda, Maria Iole Spalla, Manuel Roda, Jean-Marc Lardeaux, and Anna Maria Marotta. “Metamorphic facies and deformation fabrics diagnostic of subduction: insights from 2D numerical models”. In: Geochem. Geophys. Geosyst. 22 (2021), e2021GC009899. doi: 10.1029/2021GC009899.
M. ur Rehman, C. Vuik, and G. Segal. “A comparison of preconditioners for incompressible Navier-Stokes solvers”. In: Int. J. Num. Meth. Fluids 57 (2008), pp. 1731–1751. doi: 10.1002/fld.1684.
Georg S Reuber. “Statistical and deterministic inverse methods in the geosciences: introduction, review, and application to the nonlinear diffusion equation”. In: GEM-International Journal on Geomathematics 12.1 (2021), pp. 1–49. doi: 10.1007/ s13137-021-00186-y.
Georg S Reuber, Lukas Holbach, and Ludovic Räss. “Adjoint-based inversion for porosity in shallow reservoirs using pseudo-transient solvers for non-linear hydro-mechanical processes”. In: J. Comp. Phys. 423 (2020), p. 109797. doi: 10.1016/j.jcp.2020.109797.
Georg S Reuber, Boris JP Kaus, Anton A Popov, and Tobias S Baumann. “Unraveling the physics of the Yellowstone magmatic system using geodynamic simulations”. In: Frontiers in Earth Science 6 (2018), p. 117. doi: 10.3389/feart.2018.00117.
Georg S Reuber, Anton A Popov, and Boris JP Kaus. “Deriving scaling laws in geodynamics using adjoint gradients”. In: Tectonophysics 746 (2018), pp. 352–363. doi: 10.1016/j. tecto.2017.07.017.
Georg S Reuber and Frederik J Simons. “Multi-physics adjoint modeling of Earth structure: combining gravimetric, seismic, and geodynamic inversions”. In: GEM-International Journal on Geomathematics 11.1 (2020), pp. 1–38. doi: 10.1007/s13137-020-00166-8.
GS Reuber, L Holbach, AA Popov, M Hanke, and BJP Kaus. “Inferring rheology and geometry of subsurface structures by adjoint-based inversion of principal stress directions”. In: Geophy. J. Int. 223.2 (2020), pp. 851–861. doi: 10.1093/gji/ggaa344.
Patrice F Rey, Nicolas Coltice, and Nicolas Flament. “Archean geodynamics underneath weak, flat, and flooded continents”. In: Elements 20.3 (2024), pp. 180–186. doi: 10.2138/ gselements.20.3.180.
Patrice F Rey, Nicolas Coltice, and Nicolas Flament. “Spreading continents kick-started plate tectonics”. In: Nature 513.7518 (2014), p. 405.
Patrice F Rey, Christian Teyssier, Seth C Kruckenberg, and Donna L Whitney. “Viscous collision in channel explains double domes in metamorphic core complexes”. In: Geology 39.4 (2011), pp. 387–390. doi: 10.1130/G31587.1.
PF Rey, Christian Teyssier, and Donna L Whitney. “The role of partial melting and extensional strain rates in the development of metamorphic core complexes”. In: Tectonophysics 477.3-4 (2009), pp. 135–144. doi: 10.1016/j.tecto.2009.03.010.
S. Rhebergen, B. Cockburn, and J.J.W. van der Vegt. “A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations”. In: J. Comp. Phys. 233 (2013), pp. 339–358.
Neil M Ribe. “Bending mechanics and mode selection in free subduction: A thin-sheet analysis”. In: Geophy. J. Int. 180.2 (2010), pp. 559–576. doi: 10.1111/j.1365- 246X.2009.04460.x.
Neil M Ribe, Paul J Tackley, and Patrick Sanan. “The strength of the Iceland plume: A geodynamical scaling approach”. In: Earth Planet. Sci. Lett. 551 (2020), p. 116570. doi: 10.1016/j.epsl.2020.116570.
Fred D Richards, Sophie L Coulson, Mark J Hoggard, Jacqueline Austermann, Blake Dyer, and Jerry X Mitrovica. “Geodynamically corrected Pliocene shoreline elevations in Australia consistent with midrange projections of Antarctic ice loss”. In: Science Advances 9.46 (2023), eadg3035. doi: 10.1126/sciadv.adg3035.
M.A. Richards, H.-P. Bunge, Y. Ricard, and J.R. Baumgardner. “Polar wandering in mantle convection models”. In: Geophys. Res. Lett. 26.12 (1999), pp. 1777–1780. doi: 10.1029/ 1999GL900331.
Maximilian Richter, Sascha Brune, Simon Riedl, Anne Glerum, Derek Neuharth, and Manfred R Strecker. “Controls on asymmetric rift dynamics: Numerical modeling of strain localization and fault evolution in the Kenya Rift”. In: Tectonics 40.5 (2021), e2020TC006553. doi: 10.1029/2020TC006553.
Nicolas Riel, Fabio A Capitanio, and Mirko Velic. “Numerical modeling of stress and topography coupling during subduction: Inferences on global vs. regional observables interpretation”. In: Tectonophysics 746 (2018), pp. 239–250. doi: 10.1016/j.tecto. 2017.07.023.
Nicolas Riel et al. “Subduction initiation triggered the Caribbean large igneous province”. In: Nature Communications 14.1 (2023), p. 786. doi: 10.1038/s41467-023-36419-x.
G.H. Ristow. “Wall correction for sinking cylinders in fluids”. In: Physical Review E 55.3 (1997), pp. 2808–2813.
J. Ritsema, A.K. McNamara, and A.L. Bull. “Tomographic filtering of geodynamic models: Implications for model interpretation and large-scale mantle structure”. In: J. Geophys. Res.: Solid Earth 112.B01303 (2007).
Béatrice Rivičre, Mary F Wheeler, and Vivette Girault. “Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I”. In: Computational Geosciences 3.3-4 (1999), pp. 337–360.
J. H. Roberts and J. Arkani-Hamed. “Impact-induced mantle dynamics on Mars”. In: Icarus 218.1 (2012), pp. 278–289. doi: 10.1016/j.icarus.2011.11.038.
J. H. Roberts and O. S. Barnouin. “The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury”. In: J. Geophys. Res.: Planets 117.E2 (2012). doi: 10.1029/ 2011JE003876.
J. H. Roberts, R. J. Lillis, and M. Manga. “Giant impacts on early Mars and the cessation of the Martian dynamo”. In: J. Geophys. Res.: Solid Earth 114.E4 (2009). doi: 10.1029/ 2008JE003287.
J. H. Roberts and F. Nimmo. “Tidal heating and the long-term stability of a subsurface ocean on Enceladus”. In: Icarus 194.2 (2008), pp. 675–689. doi: 10.1016/j.icarus. 2007.11.010.
J. H. Roberts and S. Zhong. “Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy”. In: J. Geophys. Res.: Solid Earth 111.E6 (2006). doi: 10.1029/2005JE002668.
J. H. Roberts and S. Zhong. “The cause for the north-south orientation of the crustal dichotomy and the equatorial location of Tharsis on Mars”. In: Icarus 190.1 (2007), pp. 24–31. doi: 10.1016/j.icarus.2007.03.002.
James H Roberts and Shijie Zhong. “Plume-induced topography and geoid anomalies and their implications for the Tharsis rise on Mars”. In: J. Geophys. Res.: Planets 109.E3 (2004). doi: 10.1029/2003JE002226.
Jonathan M Robey and Elbridge Gerry Puckett. “Implementation of a volume-of-fluid method in a finite element code with applications to thermochemical convection in a density stratified fluid in the earth’s mantle”. In: Computers & Fluids 190 (2019), pp. 217–253.
M.P. Robichaud, P.A. Tanguy, and M. Fortin. “An iterative implementation of the Uzawa algorithm for 3D fluid flow problems”. In: Int. J. Num. Meth. Fluids 10 (1990), pp. 429–442.
M. Roda, A.M. Marotta, and M.I. Spalla. “Numerical simulations of an ocean-continent convergent system: Influence of subduction geometry and mantle wedge hydration on crustal recycling”. In: Geochem. Geophys. Geosyst. 11.5 (2010), 10.1029/2009GC003015.
Manuel Roda, Alessandro Regorda, Maria Iole Spalla, and Anna Maria Marotta. “What drives A lpine T ethys opening? Clues from the review of geological data and model predictions”. In: Geological Journal 54.4 (2019), pp. 2646–2664.
Manuel Roda, Maria Iole Spalla, and Anna Maria Marotta. “Integration of natural data within a numerical model of ablative subduction: a possible interpretation for the Alpine dynamics of the Austroalpine crust”. In: Journal of Metamorphic Geology 30.9 (2012), pp. 973–996.
Manuel Roda, Michele Zucali, Alessandro Regorda, and Maria Iole Spalla. “Formation and evolution of a subduction-related mélange: The example of the Rocca Canavese Thrust Sheets (Western Alps)”. In: GSA Bulletin 132.3-4 (2020), pp. 884–896. doi: 10.1130/B35213.1.
Mathieu Rodriguez, Maëlis Arnould, Nicolas Coltice, and Mathieu Soret. “Long-term evolution of a plume-induced subduction in the Neotethys realm”. In: Earth Planet. Sci. Lett. 561 (2021), p. 116798. doi: 10.1016/j.epsl.2021.116798.
J. Rodriguez-González, A.M. Negredo, and M.I. Billen. “The role of the overriding plate thermal state on slab dip variability and on the occurrence of flat subduction”. In: Geochem. Geophys. Geosyst. 13.1 (2012). doi: 10.1029/2011GC003859.
Juan Rodrguez-González, Magali I Billen, Ana M Negredo, and Laurent GJ Montesi. “Along-strike variation in subducting plate velocity induced by along-strike variation in overriding plate structure: Insights from 3D numerical models”. In: Journal of Geodynamics 100 (2016), pp. 175–183.
Yamirka Rojas-Agramonte et al. “Zircon Dates Long-Lived Plume Dynamics in Oceanic Islands”. In: Geochem. Geophys. Geosyst. 23.11 (2022), e2022GC010485. doi: 10.1029/ 2022GC010485.
T Rolf, Nicolas Coltice, and PJ Tackley. “Linking continental drift, plate tectonics and the thermal state of the Earth’s mantle”. In: Earth Planet. Sci. Lett. 351 (2012), pp. 134–146.
T Rolf and LJ Pesonen. “Geodynamically consistent inferences on the uniform sampling of Earth’s paleomagnetic inclinations”. In: Gondwana Research 63 (2018), pp. 1–14. doi: 10.1016/j.gr.2018.05.008.
T. Rolf and P.J. Tackley. “Focussing of stress by continents in 3D spherical mantle convection with self-consistent plate tectonics”. In: Geophys. Res. Lett. 38.L18301 (2011). doi: 10. 1029/2011GL048677.
Tobias Rolf, Fabio Antonio Capitanio, and Paul J Tackley. “Constraints on mantle viscosity structure from continental drift histories in spherical mantle convection models”. In: Tectonophysics 746 (2018), pp. 339–351. doi: 10.1016/j.tecto.2017.04.031.
Tobias Rolf, Nicolas Coltice, and Paul J Tackley. “Statistical cyclicity of the supercontinent cycle”. In: Geophys. Res. Lett. 41.7 (2014), pp. 2351–2358.
Tobias Rolf, Bernhard Steinberger, U Sruthi, and Stephanie C Werner. “Inferences on the mantle viscosity structure and the post-overturn evolutionary state of Venus”. In: Icarus 313 (2018), pp. 107–123. doi: 10.1016/j.icarus.2018.05.014.
Cui Ronghua, Fang Jian, and Wang Yong. “Effect of Mantle Viscosity Structures on Simulations of Geoid Anomalies in the Ross Sea Area”. In: Pure Appl. Geophys. (2022). doi: 10.1007/s00024-022-03081-1.
I. Rose, B. Buffet, and T. Heister. “Stability and accuracy of free surface time integration in viscous flows”. In: Phys. Earth. Planet. Inter. 262 (2017), pp. 90–100.
I. Rose and B. Buffett. “Scaling rates of true polar wander in convecting planets and moons”. In: Phys. Earth. Planet. Inter. (2017). issn: 0031-9201. doi: 10.1016/j.pepi.2017.10. 003.
A. Rowland and J. H. Davies. “Buoyancy rather than rheology controls the thickness of the overriding mechanical lithosphere at subduction zones”. In: Geophys. Res. Lett. 26.19 (1999), pp. 3037–3040. doi: 10.1029/1999GL005347.
Mousumi Roy, Stav Gold, Alex Johnson, Rodrigo Osuna Orozco, Benjamin K Holtzman, and James Gaherty. “Macroscopic coupling of deformation and melt migration at continental interiors, with applications to the Colorado Plateau”. In: J. Geophys. Res.: Solid Earth 121.5 (2016), pp. 3762–3781. doi: 10.1002/2015JB012149.
A Rozel, J Besserer, GJ Golabek, M Kaplan, and PJ Tackley. “Self-consistent generation of single-plume state for Enceladus using non-Newtonian rheology”. In: J. Geophys. Res.: Planets 119.3 (2014), pp. 416–439. doi: 10.1002/2013JE004473.
AB Rozel, Gregor J Golabek, C Jain, Paul J Tackley, and Taras Gerya. “Continental crust formation on early Earth controlled by intrusive magmatism”. In: Nature 545.7654 (2017), pp. 332–335. doi: 10.1038/nature22042.
Michael Rubey, Sascha Brune, Christian Heine, D Rhodri Davies, Simon E Williams, and R Dietmar Müller. “Global patterns in Earth’s dynamic topography since the Jurassic: the role of subducted slabs”. In: Solid Earth 8.5 (2017), pp. 899–919. doi: 10.5194/se-8- 899-2017.
Johann Rudi et al. “An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth’s mantle”. In: Proceedings of the international conference for high performance computing, networking, storage and analysis. ACM. 2015, p. 5. doi: 10.1145/2807591. 2807675.
M.L. Rudolph, T.V. Gerya, and D.A. Yuen. “Challenges in the visualization of a two-dimensional mantle dynamics simulation using one billion tracers”. In: 2005, pp. 459–462. doi: xxxx.
Maxwell L Rudolph, Taras V Gerya, David A Yuen, and Sara DeRosier. “Visualization of multiscale dynamics of hydrous cold plumes at subduction zones”. In: Visual Geosci 17 (2004), p. 59.
Maxwell L Rudolph and SJ Zhong. “History and dynamics of net rotation of the mantle and lithosphere”. In: Geochem. Geophys. Geosyst. 15.9 (2014), pp. 3645–3657. doi: 10.1002/ 2014GC005457.
ML Rudolph, Pritwiraj Moulik, and V Lekić. “Bayesian Inference of Mantle Viscosity From Whole-Mantle Density Models”. In: Geochem. Geophys. Geosyst. 21.11 (2020), e2020GC009335. doi: 10.1029/2020GC009335.
Thomas Ruedas and Doris Breuer. “On the relative importance of thermal and chemical buoyancy in regular and impact-induced melting in a Mars-like planet”. In: J. Geophys. Res.: Planets 122.7 (2017), pp. 1554–1579. doi: 10.1002/2016JE005221.
Thomas Ruedas, Paul J Tackley, and Sean C Solomon. “Thermal and compositional evolution of the Martian mantle: Effects of water”. In: Phys. Earth. Planet. Inter. 220 (2013), pp. 50–72. doi: 10.1016/j.pepi.2013.04.006.
Thomas Ruedas, Paul J. Tackley, and Sean C. Solomon. “Thermal and compositional evolution of the martian mantle: Effects of phase transitions and melting”. In: Phys. Earth. Planet. Inter. 216 (2013), pp. 32–58. doi: 10.1016/j.pepi.2012.12.002.
J.B. Ruh, T. Gerya, and J.-P. Burg. “High-resolution 3D numerical modeling of thrust wedges: Influence of décollement strength on transfer zones”. In: Geochem. Geophys. Geosyst. 14.4 (2013), pp. 1131–1155. doi: 10.1002/ggge.20085.
J.B. Ruh, L. Le Pourhiet, Ph. Agard, E. Burov, and T. Gerya. “Tectonic slicing of subducting oceanic crust along plate interfaces: Numerical modeling”. In: Geochem. Geophys. Geosyst. 16 (2015), 10.1002/2015GC005998.
Jonas Ruh, Whitney Behr, and Leif Tokle. “Effect of Grain-Size and Textural Weakening in Polyphase Crustal and Mantle Lithospheric Shear Zones”. In: Tektonika 2.1 (2024), pp. 91–110. doi: 10.55575/tektonika2024.68.1.2.
Jonas B Ruh. “Effect of fluid pressure distribution on the structural evolution of accretionary wedges”. In: Terra Nova 29.3 (2017), pp. 202–210. doi: 10.1111/ter.12263.
Jonas B Ruh. “Numerical modeling of tectonic underplating in accretionary wedge systems”. In: Geosphere 16.6 (2020), pp. 1385–1407. doi: 10.1130/GES02273.1.
Jonas B Ruh, Boris JP Kaus, and Jean-Pierre Burg. “Numerical investigation of deformation mechanics in fold-and-thrust belts: Influence of rheology of single and multiple décollements”. In: Tectonics 31.3 (2012). doi: 10.1029/2011TC003047.
Jonas B Ruh, L. Tokle, and W.M. Behr. “Grain size evolution controls on lithospheric weakening during continental rifting”. In: Nature Geoscience 15 (2022), pp. 585–890. doi: 10.1038/s41561-022-00964-9.
Jonas B Ruh and Jaume Vergés. “Effects of reactivated extensional basement faults on structural evolution of fold-and-thrust belts: Insights from numerical modelling applied to the Kopet Dagh Mountains”. In: Tectonophysics 746 (2018), pp. 493–511. doi: 10.1016/ j.tecto.2017.05.020.
Jonas B Ruh, Jaume Vergés, and Jean-Pierre Burg. “Shale-related minibasins atop a massive olistostrome in an active accretionary wedge setting: Two-dimensional numerical modeling applied to the Iranian Makran”. In: Geology 46.9 (2018), pp. 791–794. doi: 10.1130/ G40316.1.
R. Sabadini, D.A. Yuen, and M. Portney. “The effects of upper-mantle lateral heterogeneities on postglacial rebound”. In: Geophys. Res. Lett. 13.4 (1986), pp. 337–340. doi: 10.1029/ GL013i004p00337.
Victor Sacek. “Post-rift influence of small-scale convection on the landscape evolution at divergent continental margins”. In: Earth Planet. Sci. Lett. 459 (2017), pp. 48–57. doi: 10.1016/j.epsl.2016.11.026.
Victor Sacek, Jamison Assunçăo, Agustina Pesce, and Rafael Monteiro da Silva. “Mandyoc: A finite element code to simulate thermochemical convection in parallel”. In: Journal of Open Source Software 7.71 (2022), p. 4070. doi: 10.21105/joss.04070.
Victor Sacek and Naomi Ussami. “Reappraisal of the effective elastic thickness for the sub-Andes using 3-D finite element flexural modelling, gravity and geological constraints”. In: Geophy. J. Int. 179.2 (2009), pp. 778–786. doi: 10.1111/j.1365-246X.2009.04334.x.
Victor Sacek et al. “Computational Geodynamics of the South American Plate: Contributions and Perspectives”. In: Brazilian Journal of Geophysics 40.6 (2022), pp. 125–136. doi: 10.22564/brjg.v40i6.2210.
Clément de Sagazan and Jean-Arthur Olive. “Assessing the impact of sedimentation on fault spacing at the Andaman Sea spreading center”. In: Geology 49.4 (2021), pp. 447–451. doi: 10.1130/G48263.1.
Clément de Sagazan et al. “Seismicity near Mayotte explained by interacting magma bodies: Insights from numerical modeling”. In: Journal of Volcanology and Geothermal Research 446 (2024), p. 107985. doi: 10.1016/j.jvolgeores.2023.107985.
Morvarid Saki, Sara Aniko Wirp, Magali Billen, and Christine Thomas. “Seismic evidence for possible entrainment of rising plumes by subducting slab induced flow in three subduction zones surrounding the Caribbean Plate”. In: Phys. Earth. Planet. Inter. 352 (2024), p. 107212. doi: 10.1016/j.pepi.2024.107212.
C.A. Salazar-Mora, R. Huismans, H. Fossen, and M. Egydio-Silva. “The Wilson Cycle and Effects of Tectonic Structural Inheritance on Rifted Passive Margin Formation”. In: Tectonics 37 (2018). doi: 10.1029/2018TC004962.
Claudio Alejandro Salazar-Mora and Victor Sacek. “Lateral flow of thick continental lithospheric mantle during tectonic quiescence”. In: Journal of Geodynamics 145 (2021), p. 101830. doi: 10.1016/j.jog.2021.101830.
V Morena Salerno, Fabio A Capitanio, Rebecca J Farrington, and Nicolas Riel. “The role of long-term rifting history on modes of continental lithosphere extension”. In: J. Geophys. Res.: Solid Earth 121.12 (2016), pp. 8917–8940. doi: 10.1002/2016JB013005.
Arnaud Salvador and Henri Samuel. “Convective outgassing efficiency in planetary magma oceans: insights from computational fluid dynamics”. In: Icarus 390 (2023), p. 115265. doi: 10.1016/j.icarus.2022.115265.
M. Sambridge. “Geophysical inversion with a neighbourhood algorithm -I. Searching a parameter space”. In: Geophy. J. Int. 138 (1999), pp. 479–494. doi: 10.1046/j.1365- 246X.1999.00876.x.
M. Sambridge. “Geophysical inversion with a neighbourhood algorithm -II. Appraising the ensemble”. In: Geophy. J. Int. 138 (1999), pp. 727–746. doi: 10.1046/j.1365- 246x.1999.00900.x.
H Samuel, V Aleksandrov, and B Deo. “The effect of continents on mantle convective stirring”. In: Geophys. Res. Lett. 38.4 (2011), p. L04307. doi: 10.1029/2010GL046056.
H Samuel and PJ Tackley. “Dynamics of core formation and equilibration by negative diapirism”. In: Geochem. Geophys. Geosyst. 9.6 (2008).
H Samuel, PJ Tackley, and M Evonuk. “Heat partitioning in terrestrial planets during core formation by negative diapirism”. In: Earth Planet. Sci. Lett. 290.1-2 (2010), pp. 13–19.
H. Samuel. Fast and accurate modelling of sharp discontinuities in geophysical flows using Lagrangian implicit surfaces (Annual report BGI). Tech. rep. 2009.
H. Samuel. STREAMV: A fast, robust and modular numerical code for modeling various 2D geodynamic scenarios (Annual report BGI). Tech. rep. 2008.
H. Samuel and M. Evonuk. “Modeling advection in geophysical flows with particle level sets”. In: Geochem. Geophys. Geosyst. 11.8 (2010). doi: 10.1029/2010GC003081.
H. Samuel and C. G. Farnetani. “Thermochemical convection and helium concentrations in mantle plumes”. In: Earth Planet. Sci. Lett. 207.1-4 (2003), pp. 39–56. doi: 10.1016/ S0012-821X(02)01125-1.
Henri Samuel. “A re-evaluation of metal diapir breakup and equilibration in terrestrial magma oceans”. In: Earth Planet. Sci. Lett. 313 (2012), pp. 105–114. doi: 10.1016/j. epsl.2011.11.001.
Henri Samuel, Maxim D Ballmer, Sebastiano Padovan, Nicola Tosi, Attilio Rivoldini, and Ana-catalina Plesa. “The Thermo-Chemical Evolution of Mars With a Strongly Stratified Mantle”. In: J. Geophys. Res.: Planets 126.4 (2021), e2020JE006613. doi: 10.1029/ 2020JE006613.
Henri Samuel and Nicola Tosi. “The influence of post-perovskite strength on the Earth’s mantle thermal and chemical evolution”. In: Earth Planet. Sci. Lett. 323 (2012), pp. 50–59.
David A Sanchez, Christopher Gonzalez, David A Yuen, Grady B Wright, and Gregory A Barnett. “High rayleigh number mantle convection on GPU”. In: GPU Solutions to Multi-scale Problems in Science and Engineering. Springer, 2013, pp. 335–352. doi: 10. 1007/978-3-642-16405-7_22.
D. Sandiford and L. Moresi. “Improving subduction interface implementation in dynamic numerical models”. In: Solid Earth 10 (2019), pp. 969–985. doi: 10.5194/se-10-969- 2019.
Dan Sandiford, Sascha Brune, Anne Glerum, John Naliboff, and Joanne M Whittaker. “Kinematics of footwall exhumation at oceanic detachment faults: solid-block rotation and apparent unbending”. In: Geochem. Geophys. Geosyst. 22.4 (2021), e2021GC009681. doi: 10.1029/2021GC009681.
Dan Sandiford and Timothy J Craig. “Plate bending earthquakes and the strength distribution of the lithosphere”. In: Geophy. J. Int. 235.1 (2023), pp. 488–508. doi: 10. 1093/gji/ggad230.
Dan Sandiford, Louis Moresi, Mike Sandiford, Rebecca Farrington, and Ting Yang. “The fingerprints of flexure in slab seismicity”. In: Tectonics 39 (2020), e2019TC005894. doi: 10.1029/2019TC005894.
Dan Sandiford, Louis Moresi, Mike Sandiford, and Ting Yang. “Geometric controls on flat slab seismicity”. In: Earth Planet. Sci. Lett. 527 (2019), p. 115787.
Jorge Sanhueza, Gonzalo Yáńez, W Roger Buck, Jaime Araya Vargas, and Eugenio Veloso. “Ridge subduction: Unraveling the consequences linked to a slab window development beneath South America at the Chile Triple Junction”. In: Geochem. Geophys. Geosyst. 24.9 (2023), e2023GC010977. doi: 10.1029/2023GC010977.
Arushi Saxena, Eunseo Choi, Christine A Powell, and Khurram S Aslam. “Seismicity in the central and southeastern United States due to upper mantle heterogeneities”. In: Geophy. J. Int. 225.3 (2021), pp. 1624–1636. doi: 10.1093/gji/ggab051.
Arushi Saxena, Juliane Dannberg, Rene Gassmöller, Menno Fraters, Timo Heister, and Richard Styron. “High-Resolution Mantle Flow Models Reveal Importance of Plate Boundary Geometry and Slab Pull Forces on Generating Tectonic Plate Motions”. In: J. Geophys. Res.: Solid Earth 128.8 (2023), e2022JB025877. doi: 10.1029/2022JB025877.
K. Schaber, H.-P. Bunge, B.S.A. Schuberth, R. Malservisi, and A. Horbach. “Stability of the rotation axis in high-resolution mantle circulation models: Weak polar wander despite strong core heating”. In: Geochem. Geophys. Geosyst. 10.11 (2009). doi: 10.1029/2009GC002541.
J. F. Schaefer, L. Boschi, T. W. Becker, and E. Kissling. “Radial anisotropy in the European mantle: Tomographic studies explored in terms of mantle flow”. In: Geophys. Res. Lett. 38.23 (2011). doi: 10.1029/2011GL049687.
W. P. Schellart. “Andean mountain building and magmatic arc migration driven by subduction-induced whole mantle flow”. In: Nature Communications 8 (2010).
W.P. Schellart, J. Freeman, D.R. Stegman, L. Moresi, and D. May. “Evolution and diversity of subduction zones controlled by slab width”. In: Nature 446 (2007), pp. 308–311.
W.P. Schellart and L. Moresi. “A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow: Results from dynamic subduction models with an overriding plate”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 1–28. doi: 10.1002/jgrb.50173.
W.P. Schellart and W. Spakman. “Australian plate motion and topography linked to fossil New Guinea slab below Lake Eyre”. In: Earth Planet. Sci. Lett. 421 (2015), pp. 107–116. doi: 10.1016/j.epsl.2015.03.036.
Wouter Pieter Schellart. “Control of Subduction Zone Age and Size on Flat Slab Subduction”. In: Frontiers in Earth Science 8 (2020), p. 26. doi: 10.3389/feart.2020. 00026.
WP Schellart, DR Stegman, RJ Farrington, and L Moresi. “Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning”. In: J. Geophys. Res.: Solid Earth 116.B10 (2011).
WP Schellart and V Strak. “Geodynamic models of short-lived, long-lived and periodic flat slab subduction”. In: Geophy. J. Int. 226.3 (2021), pp. 1517–1541. doi: 10.1093/gji/ ggab126.
WP Schellart, V Strak, A Beniest, JC Duarte, and FM Rosas. “Subduction invasion polarity switch from the Pacific to the Atlantic Ocean: A new geodynamic model of subduction initiation based on the Scotia Sea region”. In: Earth-Science Reviews 236 (2022), p. 104277. doi: 10.1016/j.earscirev.2022.104277.
O. Schenk and K. Gaertner. “Solving unsymmetric sparse systems of linear equations with PARDISO”. In: Future Gener. Comput. Syst. 20 (2004), pp. 475–487. doi: 10.1016/j. future.2003.07.011.
Filippo L Schenker, Taras Gerya, and J-P Burg. “Bimodal behavior of extended continental lithosphere: Modeling insight and application to thermal history of migmatitic core complexes”. In: Tectonophysics 579 (2012), pp. 88–103.
Jana Schierjott, Antoine Rozel, and Paul Tackley. “On the self-regulating effect of grain size evolution in mantle convection models: application to thermochemical piles”. In: Solid Earth 11.3 (2020), pp. 959–982. doi: 10.5194/se-11-959-2020.
Jana C Schierjott, Marcel Thielmann, Antoine B Rozel, Gregor J Golabek, and Taras V Gerya. “Can grain size reduction initiate transform faults?-Insights from a 3D numerical study”. In: Tectonics 39 (2020), e2019TC005793. doi: 10.1029/2019TC005793.
Nicholas Schliffke, Jeroen van Hunen, Mark B Allen, Valentina Magni, and Frédéric Gueydan. “Episodic back-arc spreading centre jumps controlled by transform fault to overriding plate strength ratio”. In: Nature Communications 13.1 (2022), pp. 1–7. doi: 10.1038/s41467-022-28228-5.
Nicholas Schliffke, Jeroen van Hunen, Frédéric Gueydan, Valentina Magni, and Mark B Allen. “Curved orogenic belts, back-arc basins, and obduction as consequences of collision at irregular continental margins”. In: Geology 49 (2021). doi: 10.1130/G48919.1.
Nicholas Schliffke, Jeroen van Hunen, Valentina Magni, and Mark B. Allen. “The Role of Crustal Buoyancy in the Generation and Emplacement of Magmatism During Continental Collision”. In: Geochem. Geophys. Geosyst. (2019). doi: 10.1029/2019GC008590.
S.M. Schmalholz and Y.Y. Podlachikov. “Tectonic overpressure in weak crustal-scale shear zones and implications for the exhumation of high-pressure rocks”. In: Geophys. Res. Lett. 40.1-5 (2013). doi: 10.1002/grl.50417.
J. Schmalzl, M. Breuer, and U. Hansen. “On the validity of two-dimensional numerical approaches to time-dependent thermal convection”. In: Europhysics Letters 67.3 (2004), pp. 390–396. doi: 10.1209/epl/i2003-10298-4.
J. Schmalzl, M. Breuer, and U. Hansen. “The influence of the Prandtl number on the style of vigorous thermal convection”. In: Geophysical & Astrophysical Fluid Dynamics 96.5 (2002), pp. 381–403. doi: 10.1080/0309192021000049929.
J. Schmalzl, G.A. Houseman, and U. Hansen. “Mixing in vigorous, time-dependent three-dimensional convection and application to Earth’s mantle”. In: J. Geophys. Res.: Solid Earth 101.B10 (1996), pp. 21847–21858.
J. Schmalzl, G.A. Houseman, and U. Hansen. “Mixing properties of three-dimensional (3-D) stationary convection”. In: Physics of Fluids 7.5 (1995), pp. 1027–1033. doi: 10.1063/ 1.868614.
G Schmalzle, T Dixon, R Malservisi, and Rob Govers. “Strain accumulation across the Carrizo segment of the San Andreas Fault, California: Impact of laterally varying crustal properties”. In: J. Geophys. Res.: Solid Earth 111 (2006), B05403. doi: 10.1029/ 2005JB003843.
H. Schmeling et al. “A benchmark comparison of spontaneous subduction models - Towards a free surface”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 198–223. doi: 10.1016/ j.pepi.2008.06.028.
D.W. Schmid, M. Dabrowski, and M. Krotkiewski. “Evolution of large amplitude 3D fold patterns: A FEM study”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 400–408. doi: 10.1016/j.pepi.2008.08.007.
D.W. Schmid and Y.Y. Podlachikov. “Analytical solutions for deformable elliptical inclusions in general shear”. In: Geophy. J. Int. 155 (2003), pp. 269–288. doi: 10.1046/j.1365- 246X.2003.02042.x.
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs. “Tectonic interactions during rift linkage: Insights from analog and numerical experiments”. In: Solid Earth 14 (2023), pp. 389–407. doi: 10.5194/se-14-389-2023.
Joachim Schöberl. “Robust multigrid methods for parameter dependent problems”. PhD thesis. Johannes Kepler Universität Linz, 1999.
B Schott, AP Van den Berg, and DA Yuen. “Focussed time-dependent martian volcanism from chemical differentiation coupled with variable thermal conductivity”. In: Geophys. Res. Lett. 28.22 (2001), pp. 4271–4274. doi: 10.1029/2001GL013638.
B Schott, AP Van den Berg, and DA Yuen. “Slow secular cooling and long lived volcanism on Mars, explained”. In: Lunar and Planetary Science Conference. 2002, p. 1285. doi: xxxx.
Simon Schröder, John A Peterson, Harald Obermaier, Louise H Kellogg, Kenneth I Joy, and Hans Hagen. “Visualization of Flow Behavior in Earth Mantle Convection”. In: IEEE Transactions on Visualization and Computer Graphics 18.12 (2012), pp. 2198–2207. doi: 10.1109/TVCG.2012.283.
P. Schroeder and G. Lube. “Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes”. In: J. Comp. Phys. 335 (2017), pp. 760–779.
P.W. Schroeder and G. Lube. “Divergence-Free H(div)-FEM for Time-Dependent Incompressible Flows with Applications to High Reynolds Number Vortex Dynamics”. In: J. Sci. Comput. (2007). doi: 10.1007/s10915-017-0561-1.
P.W. Schroeder and G. Lube. “Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible Navier-Stokes flows”. In: Journal of Numerical Mathematics 25.4 (2017), pp. 249–276.
G Schubert, P Olson, C Anderson, and P Goldman. “Solitary waves in mantle plumes”. In: J. Geophys. Res.: Solid Earth 94.B7 (1989), pp. 9523–9532. doi: 10.1029/JB094iB07p09523.
G Schubert and PJ Tackley. “Mantle dynamics: The strong control of the spinel-perovskite transition at a depth of 660 km”. In: Journal of Geodynamics 20.4 (1995), pp. 417–428.
Gerald Schubert, Charles Anderson, and Peggy Goldman. “Mantle plume interaction with an endothermic phase change”. In: J. Geophys. Res.: Solid Earth 100.B5 (1995), pp. 8245–8256. doi: 10.1029/95JB00032.
Gerald Schubert and Charles A Anderson. “Finite element calculations of very high Rayleigh number thermal convection”. In: Geophy. J. Int. 80.3 (1985), pp. 575–601. doi: 10.1111/ j.1365-246X.1985.tb05112.x.
Gerald Schubert, G Masters, P Olson, and P Tackley. “Superplumes or plume clusters?” In: Phys. Earth. Planet. Inter. 146.1-2 (2004), pp. 147–162.
M Schubert, T Driesner, TV Gerya, and P Ulmer. “Mafic injection as a trigger for felsic magmatism: A numerical study”. In: Geochem. Geophys. Geosyst. 14.6 (2013), pp. 1910–1928.
B.S.A. Schuberth, H.-P. Bunge, and J. Ritsema. “Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone?” In: Geochem. Geophys. Geosyst. 10.5 (2009). doi: 10.1029/2009GC002401.
B.S.A. Schuberth, H.-P. Bunge, G. Steinle-Neumann, C. Moder, and J. Oeser. “Thermal versus elastic heterogeneity in high-resolution mantle circulation models with pyrolite composition: High plume excess temperatures in the lowermost mantle”. In: Geochem. Geophys. Geosyst. 10.1 (2009). doi: 10.1029/2008GC002235.
Falko Schulz, Nicola Tosi, Ana-Catalina Plesa, and Doris Breuer. “Stagnant-lid convection with diffusion and dislocation creep rheology: Influence of a non-evolving grain size”. In: Geophy. J. Int. 220.1 (2020), pp. 18–36. doi: 10.1093/gji/ggz417.
Jorina M Schütt and David Michael Whipp. “Controls on continental strain partitioning above an oblique subduction zone, Northern Andes”. In: Tectonics 39.4 (2020), e2019TC005886. doi: 10.1029/2019TC005886.
A. Segal and N.P. Praagman. The Sepran FEM package. Tech. rep. Technical Report, Ingenieursbureau Sepra, The Netherlands. http://ta.twi.tudelft.nl/sepran/sepran.html, 2005.
P. Sekhar and S.D. King. “3D spherical models of Martian mantle convection constrained by melting history”. In: Earth Planet. Sci. Lett. 388 (2014), pp. 27–37. doi: 10.1016/j. epsl.2013.11.047.
C. Selzer, S.J.H. Buiter, and O.A. Pfiffner. “Numerical modeling of frontal and basal accretion at collisional margins”. In: Tectonics 27.TC3001 (2008). doi: 10.1029/2007TC002169.
Cornelia Selzer. “Tectonic accretion styles at convergent margins: A numerical modelling study”. PhD thesis. University of Bern, 2006.
Cornelia Selzer, Susanne JH Buiter, and O Adrian Pfiffner. “Sensitivity of shear zones in orogenic wedges to surface processes and strain softening”. In: Tectonophysics 437.1-4 (2007), pp. 51–70.
Alana Semple and Adrian Lenardic. “The Robustness of Pressure-Driven Asthenospheric Flow in Mantle Convection Models With Plate-Like Behavior”. In: Geophys. Res. Lett. (2020), e2020GL089556. doi: 10.1029/2020GL089556.
E Şengül Uluocak, RN Pysklywec, OH Göğüş, and EU Ulugergerli. “Multi-Dimensional Geodynamic Modeling in the Southeast Carpathians: Upper Mantle Flow Induced Surface Topography Anomalies”. In: Geochem. Geophys. Geosyst. 20 (2019), pp. 3134–3149. doi: 10.1029/2019GC008277.
Ebru Şengül Uluocak, Oğuz H Göğüş, Russell N Pysklywec, and Bo Chen. “Geodynamics of East Anatolia-Caucasus Domain: Inferences from 3D Thermo-mechanical Models, Residual Topography, and Admittance Function Analyses”. In: Tectonics 40 (2021), e2021TC007031. doi: 10.1029/2021TC007031.
Ebru Şengül Uluocak, Russell N Pysklywec, Andrea Sembroni, Sascha Brune, and Claudio Faccenna. “The role of upper mantle forces in post-subduction tectonics: Plumelet and active rifting in the East Anatolian Plateau”. In: Geochem. Geophys. Geosyst. 25.9 (2024), e2024GC011639. doi: 10.1029/2024GC011639.
Maria Seton, Nicolas Flament, Joanne Whittaker, R Dietmar Müller, Michael Gurnis, and Dan J Bower. “Ridge subduction sparked reorganization of the Pacific plate-mantle system 60–50 million years ago”. In: Geophys. Res. Lett. 42.6 (2015), pp. 1732–1740. doi: 10. 1002/2015GL063057.
M. Hosein Shahnas, J.P. Lowman, G.T. Jarvis, and H.-P. Bunge. “Convection in a spherical shell heated by an isothermal core and internal sources: Implications for the thermal state of planetary mantles”. In: Phys. Earth. Planet. Inter. 168.1-2 (2008), pp. 6–15. doi: 10. 1016/j.pepi.2008.04.007.
MH Shahnas and WR Peltier. “The impacts of mantle phase transitions and the iron spin crossover in ferropericlase on convective mixing - is the evidence for compositional convection definitive? New results from a Yin-Yang overset grid-based control volume model”. In: J. Geophys. Res.: Solid Earth 120.8 (2015), pp. 5884–5910. doi: 10.1002/2015JB012064.
MH Shahnas and RN Pysklywec. “Penetrative Superplumes in the Mantle of Large Super-Earth Planets: A Possible Mechanism for Active Tectonics in the Massive Super-Earths”. In: Geochem. Geophys. Geosyst. 24.2 (2023), e2022GC010678. doi: 10. 1029/2022GC010678.
MH Shahnas, DA Yuen, and RN Pysklywec. “Inverse problems in geodynamics using machine learning algorithms”. In: J. Geophys. Res.: Solid Earth 123.1 (2018), pp. 296–310. doi: 10.1002/2017JB014846.
NM Shapiro and MH Ritzwoller. “Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle”. In: Geophy. J. Int. 151.1 (2002), pp. 88–105. doi: 10. 1046/j.1365-246X.2002.01742.x.
W. Sharples, M.A. Jadamec, L.N. Moresi, and F.A. Capitanio. “Overriding plate controls on subduction evolution”. In: J. Geophys. Res.: Solid Earth 119 (2014), pp. 6684–6704. doi: 10.1002/2014JB011163.
W. Sharples, L.-N. Moresi, and M. A. Jadamec andJ. Revote. “Styles of rifting and fault spacing in numerical models of crustal extension”. In: J. Geophys. Res.: Solid Earth 120 (2015), pp. 4379–4404. doi: 10.1002/2014JB011813.
W. Sharples, L.N. Moresi, M. Velic, M.A. Jadamec, and D.A. May. “Simulating faults and plate boundaries with a transversely isotropic plasticity model”. In: Phys. Earth. Planet. Inter. 252 (2016), pp. 77–90. doi: 10.1016/j.pepi.2015.11.007.
M. Shaw and R. Pysklywec. “Anomalous uplift of the Apennines and subsidence of the Adriatic: The result of active mantle flow?” In: Geophys. Res. Lett. 34.L04311 (2007). doi: 10.1029/2006GL028337.
Yongqiang Shen, Jie Liao, and Kuidi Zhang. “Dynamic Evolution of Back-arc Basins Affected by Double Subduction”. In: J. Geophys. Res.: Solid Earth 127 (2022), e2022JB024294. doi: 10.1029/2022JB024294.
G. E. Shephard, L. Liu, R. D. Müller, and M. Gurnis. “Dynamic topography and anomalously negative residual depth of the Argentine Basin”. In: Gondwana Research 22.2 (2012), pp. 658–663. doi: 10.1016/j.gr.2011.12.005.
G. E. Shephard, R. D. Müller, L. Liu, and M. Gurnis. “Miocene drainage reversal of the Amazon River driven by plate-mantle interaction”. In: Nature Geoscience 3.12 (2010), pp. 870–875. doi: 10.1038/ngeo1017.
Grace E Shephard et al. “Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure”. In: Earth Planet. Sci. Lett. 317 (2012), pp. 204–217.
Ya-Nan Shi and Jason P Morgan. “Constraints on the fate of delaminated lithosphere in the upper and mid-mantle”. In: Geophys. Res. Lett. 51.16 (2024), e2024GL109552. doi: 10.1029/2024GL109552.
Yanan Shi, Dongping Wei, Zhong-Hai Li, Ming-Qi Liu, and Mengxue Liu. “Subduction mode selection during slab and mantle transition zone interaction: Numerical modeling”. In: Pure Appl. Geophys. (2017), pp. 5–24. doi: 10.1007/s00024-017-1762-0.
A. P. Showman and L. Han. “Effects of plasticity on convection in an ice shell: Implications for Europa”. In: Icarus 177.2 (2005), pp. 425–437. doi: 10.1016/j.icarus.2005.02.020.
A. P. Showman and L. Han. “Numerical simulations of convection in Europa’s ice shell: Implications for surface features”. In: J. Geophys. Res.: Solid Earth 109.E1 (2004). doi: 10.1029/2003JE002103.
Adam P Showman, Lijie Han, and William B Hubbard. “The effect of an asymmetric core on convection in Enceladus’ ice shell: Implications for south polar tectonics and heat flux”. In: Geophys. Res. Lett. 40.21 (2013), pp. 5610–5614. doi: 10.1002/2013GL057149.
Chi-Wang Shu. “Discontinuous Galerkin methods: general approach and stability”. In: Numerical solutions of partial differential equations 201 (2009).
I. Sidorin, M. Gurnis, and D. V. Helmberger. “Dynamics of a phase change at the base of the mantle consistent with seismological observations”. In: J. Geophys. Res.: Solid Earth 104.B7 (1999), pp. 15005–15023. doi: 10.1029/1999JB900065.
Javier Signorelli, Riad Hassani, Andréa Tommasi, and Lucan Mameri. “An effective parameterization of texture-induced viscous anisotropy in orthotropic materials with application for modeling geodynamical flows”. In: Journal of Theoretical, Computational and Applied Mechanics (2021). doi: 10.46298/jtcam.6737.
Joăo Pedro Macedo Silva, Victor Sacek, and Rafael Monteiro da Silva. “The influence of lithospheric rheology and surface processes on the preservation of escarpments at rifted margins”. In: Tectonophysics 851 (2023), p. 229769. doi: 10.1016/j.tecto.2023.229769.
RM da Silva and V Sacek. “Influence of Surface Processes on Postrift Faulting During Divergent Margins Evolution”. In: Tectonics 41.2 (2022), e2021TC006808. doi: 10.1029/ 2021TC006808.
Shi J Sim, Marc Spiegelman, Dave R Stegman, and Cian Wilson. “The influence of spreading rate and permeability on melt focusing beneath mid-ocean ridges”. In: Phys. Earth. Planet. Inter. 304 (2020), p. 106486. doi: 10.1016/j.pepi.2020.106486.
Shi J Sim, Dave R Stegman, and Nicolas Coltice. “Influence of continental growth on mid-ocean ridge depth”. In: Geochem. Geophys. Geosyst. 17.11 (2016), pp. 4425–4437. doi: 10.1002/2016GC006629.
N.A. Simmons, A.M. Forte, and S.P. Grand. “Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity: Implications for the relative importance of thermal versus compositional heterogeneity”. In: Geophy. J. Int. 177 (2009), pp. 1284–1304. doi: 10.1111/j.1365-246X.2009.04133.x.
Nathan A Simmons, Alessandro M Forte, and Stephen P Grand. “Constraining mantle flow with seismic and geodynamic data: a joint approach”. In: Earth Planet. Sci. Lett. 246.1-2 (2006), pp. 109–124. doi: 10.1016/j.epsl.2006.04.003.
K. Simon, R.S. Huismans, and C. Beaumont. “Dynamical modelling of lithospheric extension and small-scale convection: implications for magmatism during the formation of volcanic rifted margins”. In: Geophy. J. Int. 176 (2009), pp. 327–350. doi: 10.1111/j.1365- 246X.2008.03891.x.
Gaia Siravo et al. “Slab flattening and the rise of the Eastern Cordillera, Colombia”. In: Earth Planet. Sci. Lett. 512 (2019), pp. 100–110. doi: 10.1016/j.epsl.2019.02.002.
E Sizova, T Gerya, and M Brown. “Exhumation mechanisms of melt-bearing ultrahigh pressure crustal rocks during collision of spontaneously moving plates”. In: Journal of Metamorphic Geology 30.9 (2012), pp. 927–955.
E Sizova, T Gerya, M Brown, and LL Perchuk. “Subduction styles in the Precambrian: Insight from numerical experiments”. In: Lithos 116.3-4 (2010), pp. 209–229.
E Sizova, Taras Gerya, and M Brown. “Contrasting styles of Phanerozoic and Precambrian continental collision”. In: Gondwana Research 25.2 (2014), pp. 522–545.
Elena Sizova, Christoph Hauzenberger, Harald Fritz, Shah Wali Faryad, and Taras Gerya. “Late Orogenic Heating of (Ultra) High Pressure Rocks: Slab Rollback vs. Slab Breakoff”. In: Geosciences 9.12 (2019), p. 499. doi: 10.3390/geosciences9120499.
Elena Sizova, Christoph A Hauzenberger, Harald Fritz, and Taras Gerya. “PTt evolution of mantle and associated crustal rocks in collisional orogens: Insight from numerical experiments”. In: Earth-Science Reviews 250 (2024), p. 104707. doi: 10.1016/j. earscirev.2024.104707.
N. H. Sleep. “Channeling at the base of the lithosphere during the lateral flow of plume material beneath flow line hot spots: Channeling during lateral flow of plume material”. In: Geochem. Geophys. Geosyst. 9.8 (2008). doi: 10.1029/2008GC002090.
J.H. de Smet, A.P. van den Berg, and N.J. Vlaar. “The evolution of continental roots in numerical thermo-chemical mantle convection models including differentiation by partial melting”. In: Lithos 24 (1999), pp. 153–170.
T Smith, V Bianchi, and FA Capitanio. “Subduction geometry controls on dynamic topography: implications for the Jurassic Surat Basin”. In: Australian Journal of Earth Sciences 66.3 (2019), pp. 367–377. doi: 10.1080/08120099.2018.1548376.
Piotr K Smolarkiewicz. “A fully multidimensional positive definite advection transport algorithm with small implicit diffusion”. In: J. Comp. Phys. 54.2 (1984), pp. 325–362.
B.-D. So, D.A. Yuen, and S.-M. Lee. “An efficient implicit-explicit adaptive time stepping scheme for multiple-time scale problems in shear zone development”. In: Geochem. Geophys. Geosyst. 14.9 (2013), pp. 3462–3478. doi: 10.1002/ggge.20216.
Byung-Dal So and Fabio A Capitanio. “Self-consistent stick-slip recurrent behaviour of elastoplastic faults in intraplate environment: a Lagrangian solid mechanics approach”. In: Geophy. J. Int. 221.1 (2020), pp. 151–162. doi: 10.1093/gji/ggz581.
S.V. Sobolev, A. Petrunin, Z. Garfunkel, and A.Y. Babeyko. “Thermo-mechanical model of the Dead Sea Transform”. In: Earth Planet. Sci. Lett. 238 (2005), pp. 78–95.
S.V. Sobolev et al. “Linking mantle plumes, large igneous provinces and environmental catastrophes”. In: Nature 477 (2011), p. 312. doi: 10.1038/nature10385.
Stephan V Sobolev and A Yu Babeyko. “What drives orogeny in the Andes?” In: Geology 33.8 (2005), pp. 617–620.
Stephan V Sobolev, Andrey Y Babeyko, Ivan Koulakov, and Onno Oncken. “Mechanism of the Andean orogeny: insight from numerical modeling”. In: The Andes. 2006, pp. 513–535.
Stephan V Sobolev and Michael Brown. “Surface erosion events controlled the evolution of plate tectonics on Earth”. In: Nature 570.7759 (2019), pp. 52–57.
Gaia Soldati, Lapo Boschi, Steve Della Mora, and Alessandro M Forte. “Tomography of core-mantle boundary and lowermost mantle coupled by geodynamics: joint models of shear and compressional velocity”. In: Annals of Geophysics 57.6 (2015). doi: 10.4401/ag-6603.
V.S. Solomatov. “Initiation of subduction by small-scale convection”. In: J. Geophys. Res.: Solid Earth 109.B01412 (2004).
V.S. Solomatov. “Localized subcritical convective cells in temperature-dependent viscosity fluids”. In: Phys. Earth. Planet. Inter. 200-201 (2012), pp. 63–71. doi: 10.1016/j.pepi. 2012.04.005.
V.S. Solomatov and A.C. Barr. “Onset of convection in fluids with strongly temperature-dependent, power-law viscosity”. In: Phys. Earth. Planet. Inter. 155.1-2 (2006), pp. 140–145. doi: 10.1016/j.pepi.2005.11.001.
V.S. Solomatov and A.C. Barr. “Onset of convection in fluids with strongly temperature-dependent, power-law viscosity. 2. Dependence on the initial perturbation”. In: Phys. Earth. Planet. Inter. 165.1-2 (2007), pp. 1–13. doi: 10.1016/j.pepi.2007.06.007.
V.S. Solomatov and L.-N. Moresi. “Stagnant lid convection on Venus”. In: J. Geophys. Res.: Solid Earth 101.E2 (1996), pp. 4737–4753. doi: 10.1029/95JE03361.
Viatcheslav S Solomatov and L-N Moresi. “Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets”. In: J. Geophys. Res.: Solid Earth 105.B9 (2000), pp. 21795–21817.
VS Solomatov and L-N Moresi. “Small-scale convection in the D” layer”. In: J. Geophys. Res.: Solid Earth 107.B1 (2002). doi: 10.1029/2000JB000063.
VS Solomatov and L-N Moresi. “Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets”. In: Geophys. Res. Lett. 24.15 (1997), pp. 1907–1910.
A. Souche, O. Galland, O. Haug, and M. Dabrowski. “Impact of host rock heterogeneity on failure around pressurized conduits: Implications for finger-shaped magmatic intrusions”. In: Tectonophysics 765 (2019), pp. 52–63. doi: 10.1016/j.tecto.2019.05.016.
W. Spakman, M.V. Chertova, A. van den Berg, and D.J.J. van Hinsbergen. “Puzzling features of western Mediterranean tectonics explained by slab dragging”. In: Nature Geoscience 11 (2018), pp. 211–216. doi: 10.1038/s41561-018-0066-z.
Arne Spang, TS Baumann, and Boris JP Kaus. “Geodynamic modeling with uncertain initial geometries”. In: Geochem. Geophys. Geosyst. 23.6 (2022), e2021GC010265. doi: 10.1029/2021GC010265.
S. Spasojevic, M. Gurnis, and R. Sutherland. “Inferring mantle properties with an evolving dynamic model of the Antarctica-New Zealand region from the Late Cretaceous”. In: J. Geophys. Res.: Solid Earth 115.B5 (2010). doi: 10.1029/2009JB006612.
S. Spasojevic, M. Gurnis, and R. Sutherland. “Mantle upwellings above slab graveyards linked to the global geoid lows”. In: Nature Geoscience 3.6 (2010), pp. 435–438. doi: 10.1038/ngeo855.
S. Spasojevic, L. Liu, and M. Gurnis. “Adjoint models of mantle convection with seismic, plate motion, and stratigraphic constraints: North America since the Late Cretaceous”. In: Geochem. Geophys. Geosyst. 10.5 (2009). doi: 10.1029/2008GC002345.
S. Spasojevic, L. Liu, M. Gurnis, and R. D. Müller. “The case for dynamic subsidence of the U.S. east coast since the Eocene”. In: Geophys. Res. Lett. 35.8 (2008). doi: 10.1029/ 2008GL033511.
M. Spiegelman, D.A. May, and C. Wilson. “On the solvability of incompressible Stokes with viscoplastic rheologies in geodynamics”. In: Geochem. Geophys. Geosyst. 17 (2016), pp. 2213–2238. doi: 10.1002/2015GC006228.
Richard Spitz, Arthur Bauville, Jean-Luc Epard, Boris JP Kaus, Anton A Popov, and Stefan M Schmalholz. “Control of 3-D tectonic inheritance on fold-and-thrust belts: insights from 3-D numerical models and application to the Helvetic nappe system”. In: Solid Earth 11.3 (2020), pp. 999–1026. doi: 10.5194/se-11-999-2020.
Richard Spitz, Stefan M Schmalholz, Boris JP Kaus, and Anton A Popov. “Quantification and visualization of finite strain in 3D viscous numerical models of folding and overthrusting”. In: Journal of Structural Geology 131 (2020), p. 103945. doi: 10.1016/j.jsg.2019. 103945.
S. W. Squyres, D. G. Jankowski, M. Simons, S. C. Solomon, B. H. Hager, and G. E. McGill. “Plains tectonism on Venus: The deformation belts of Lavinia Planitia”. In: J. Geophys. Res.: Solid Earth 97.E8 (1992), p. 13579. doi: 10.1029/92JE00481.
O. Srámek and S. Zhong. “Long-wavelength stagnant lid convection with hemispheric variation in lithospheric thickness: Link between Martian crustal dichotomy and Tharsis?” In: J. Geophys. Res.: Solid Earth 115.E9 (2010). doi: 10.1029/2010JE003597.
O. Srámek and S. Zhong. “Martian crustal dichotomy and Tharsis formation by partial melting coupled to early plume migration”. In: J. Geophys. Res.: Planets 117.E1 (2012). doi: 10.1029/2011JE003867.
G. Stadler, M. Gurnis, C. Burstedde, L.C. Wilcox, L. Alisic, and O. Ghattas. “The dynamics of plate tectonics and mantle flow: from local to global scales”. In: Science 329 (2010), pp. 1033–1038. doi: 10.1126/science.1191223.
Nikola Stanković, Taras Gerya, Vesna Cvetkov, and Vladica Cvetković. “Did the Western and the Eastern Vardar ophiolites originate through a single intra-oceanic subduction? Insight from numerical modelling”. In: Gondwana Research 124 (2023), pp. 124–140. doi: 10.1016/j.gr.2023.07.005.
D.R. Stegman, R. Farrington, F.A. Capitanio, and W.P. Schellart. “A regime diagram for subduction styles from 3-D numerical models of free subduction”. In: Tectonophysics 483 (2010), pp. 29–45. doi: 10.1016/j.tecto.2009.08.041.
D.R. Stegman, J. Freeman, W.P. Schellart, L. Moresi, and D. May. “Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback”. In: Geochem. Geophys. Geosyst. 7.3 (2006). doi: 10.1029/2005GC001056.
D.R. Stegman, W.P. Schellart, and J. Freeman. “Competing influences of plate width and far-field boundary conditions on trench migration and morphology of subducted slabs in the upper mantle”. In: Tectonophysics 483 (2010), pp. 46–57. doi: 10.1016/j.tecto.2009. 08.026.
Dave R Stegman, J Freeman, and David A May. “Origin of ice diapirism, true polar wander, subsurface ocean, and tiger stripes of Enceladus driven by compositional convection”. In: Icarus 202.2 (2009), pp. 669–680. doi: 10.1016/j.icarus.2009.03.017.
Dave R Stegman, A Mark Jellinek, Stephen A Zatman, John R Baumgardner, and Mark A Richards. “An early lunar core dynamo driven by thermochemical mantle convection”. In: Nature 421.6919 (2003), pp. 143–146. doi: 10.1038/nature01267.
Dave R Stegman, Mark A Richards, and John R Baumgardner. “Effects of depth-dependent viscosity and plate motions on maintaining a relatively uniform mid-ocean ridge basalt reservoir in whole mantle flow”. In: J. Geophys. Res.: Solid Earth 107.B6 (2002), ETG–5.
Dave R Stegman et al. “gLucifer: next generation visualization framework for high-performance computational geodynamics”. In: Visual Geosciences 13.1 (2008), pp. 71–84. doi: 10.1007/s10069-008-0010-2.
C Stein and U Hansen. “Arrhenius rheology versus Frank-Kamenetskii rheology - Implications for mantle dynamics”. In: Geochem. Geophys. Geosyst. 14.8 (2013), pp. 2757–2770. doi: 10.1002/ggge.20158.
C. Stein, A. Fahl, and U. Hansen. “Resurfacing events on Venus: Implications on plume dynamics and surface topography”. In: Geophys. Res. Lett. 37.1 (2010). doi: 10.1029/ 2009GL041073.
C. Stein, A. Finnenkötter, J.P. Lowman, and U. Hansen. “The pressure-weakening effect in super-Earths: Consequences of a decrease in lower mantle viscosity on surface dynamics”. In: Geophys. Res. Lett. 38.21 (2011). doi: 10.1029/2011GL049341.
C. Stein and U. Hansen. “Plate motions and the viscosity structure of the mantle - Insights from numerical modelling”. In: Earth Planet. Sci. Lett. 272.1-2 (2008), pp. 29–40. doi: 10.1016/j.epsl.2008.03.050.
C. Stein, J. Lowman, and U. Hansen. “A comparison of mantle convection models featuring plates”. In: Geochem. Geophys. Geosyst. 15 (2014), pp. 2689–2698. doi: 10.1002/ 2013GC005211.
C. Stein, J.P. Lowman, and U. Hansen. “The influence of mantle internal heating on lithospheric mobility: Implications for super-Earths”. In: Earth Planet. Sci. Lett. 361 (2013), pp. 448–459. doi: 10.1016/j.epsl.2012.11.011.
Claudia Stein, Matthew J Comeau, Michael Becken, and Ulrich Hansen. “Numerical study on the style of delamination”. In: Tectonophysics 827 (2022), p. 229276. doi: 10.1016/ j.tecto.2022.229276.
Claudia Stein and Ulrich Hansen. “Formation of thermochemical heterogeneities by core-mantle interaction”. In: J. Geophys. Res.: Solid Earth 128.2 (2023), e2022JB025689. doi: 10.1029/2022JB025689.
Claudia Stein and Ulrich Hansen. “Numerical investigation of a layered temperature-dependent viscosity convection in comparison to convection with a full temperature dependence”. In: Phys. Earth. Planet. Inter. 226 (2014), pp. 1–13. doi: 10.1016/j.pepi.2013.11.004.
Claudia Stein and Ulrich Hansen. “Onset of plate motion in the presence of chemical heterogeneities in the mantle and the effect of mantle temperature”. In: J. Geophys. Res.: Solid Earth 129.5 (2024), e2023JB026864. doi: 10.1029/2023JB026864.
B. Steinberger, E. Bredow, S. Lebedev, A. Schaeffer, and T. H. Torsvik. “Widespread volcanism in the Greenland-North Atlantic region explained by the Iceland plume”. In: Nature Geoscience 12.1 (2019), p. 61. doi: 10.1038/s41561-018-0251-0.
B. Steinberger, M.-L. Grasnick, and R. Ludwig. “Exploring the Origin of Geoid Low and Topography High in West Antarctica: Insights from Density Anomalies and Mantle Convection Models”. In: Tektonika 1.2 (2023). doi: 10.55575/tektonika2023.1.2.35.
Bernhard Steinberger, Clinton P Conrad, Anthony Osei Tutu, and Mark J Hoggard. “On the amplitude of dynamic topography at spherical harmonic degree two”. In: Tectonophysics 760 (2019), pp. 221–228. doi: 10.1016/j.tecto.2017.11.032.
P. Sternai, L. Jolivet, A. Menant, and T. Gerya. “Driving the upper plate surface deformation by slab rollback and mantle flow”. In: Earth Planet. Sci. Lett. 405 (2014), pp. 110–118. doi: 10.1016/j.epsl.2014.08.023.
Pietro Sternai. “Surface processes forcing on extensional rock melting”. In: Scientific Reports 10.1 (2020), pp. 1–13. doi: 10.1038/s41598-020-63920-w.
Pietro Sternai et al. “Effects of asthenospheric flow and orographic precipitation on continental rifting”. In: Tectonophysics (2021), p. 229120. doi: 10.1016/j.tecto.2021. 229120.
Pietro Sternai et al. “On the influence of the asthenospheric flow on the tectonics and topography at a collision-subduction transition zones: Comparison with the eastern Tibetan margin”. In: Journal of Geodynamics 100 (2016), pp. 184–197. doi: 10.1016/j.jog. 2016.02.009.
Bernhard Stöckhert and Taras V Gerya. “Pre-collisional high pressure metamorphism and nappe tectonics at active continental margins: A numerical simulation”. In: Terra Nova 17.2 (2005), pp. 102–110.
Vincent Strak and Wouter P Schellart. “Thermo-mechanical numerical modelling of the South American subduction zone: a multi-parametric investigation”. In: J. Geophys. Res.: Solid Earth 126 (2021). doi: 10.1029/2020JB021527.
William Sturgeon, Ana MG Ferreira, Manuele Faccenda, Sung-Joon Chang, and Lewis Schardong. “On the origin of radial anisotropy near subducted slabs in the midmantle”. In: Geochem. Geophys. Geosyst. 20.11 (2019), pp. 5105–5125. doi: 10.1029/2019GC008462.
Jinbao Su. “Accelerated subduction of the western Pacific Plate promotes the intracontinental uplift and magmatism in late Jurassic South China”. In: Tectonophysics (2023), p. 230136. doi: 10.1016/j.tecto.2023.230136.
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies. “Effects of basal drag on subduction dynamics from 2D numerical models”. In: Solid Earth 12 (2021), pp. 79–93. doi: 10.5194/se-12-79-2021.
C Bane Sullivan and Whitney J Trainor-Guitton. “PVGeo: an open-source Python package for geoscientific visualization in VTK and ParaView”. In: Journal of Open Source Software 4.38 (2019), p. 1451. doi: 10.21105/joss.01451.
J. van Summeren, C. P. Conrad, and E. Gaidos. “Mantle Convection, Plate Tectonics, And Volcanism On Hot Exo-Earths”. In: The Astrophysical Journal 736.1 (2011), p. L15. doi: 10.1088/2041-8205/736/1/L15.
J. van Summeren, C.P. Conrad, and C. Lithgow-Bertelloni. “The importance of slab pull and a global asthenosphere to plate motions”. In: Geochem. Geophys. Geosyst. 13.1 (2012). doi: 10.1029/2011GC003873.
J. van Summeren, E. Gaidos, and C. P. Conrad. “Magnetodynamo lifetimes for rocky, Earth-mass exoplanets with contrasting mantle convection regimes”. In: J. Geophys. Res.: Solid Earth 118.5 (2013), pp. 938–951. doi: 10.1002/jgre.20077.
J.R.G. van Summeren, A.P. van den Berg, and R.D. van der Hilst. “Upwellings from a deep mantle reservoir filtered at the 660 km phase transition in thermo-chemical convection models and implications for intra-plate volcanism”. In: Phys. Earth. Planet. Inter. 172 (2009), pp. 210–224. doi: 10.1016/j.pepi.2008.09.011.
Baolu Sun et al. “Subduction Polarity Reversal Triggered by Oceanic Plateau Accretion: Implications for Induced Subduction Initiation”. In: Geophys. Res. Lett. 48.24 (2021), e2021GL095299. doi: 10.1029/2021GL095299.
E.M. Syracuse, P.E. van Keken, and G.A. Abers. “The global range of subduction zone thermal models”. In: Phys. Earth. Planet. Inter. 183 (2010), pp. 73–90.
Kamil Szewc, Jacek Pozorski, and J-P Minier. “Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method”. In: Int. J. Num. Meth. Eng. 92.4 (2012), pp. 343–369. doi: 10.1002/nme.4339.
Kamil Szewc, Jacek Pozorski, and A Taniere. “Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation”. In: International Journal of Heat and Mass Transfer 54.23-24 (2011), pp. 4807–4816.
Tuan Ta, Kyoshin Choo, Eh Tan, Byunghyun Jang, and Eunseo Choi. “Accelerating DynEarthSol3D on tightly coupled CPU–GPU heterogeneous processors”. In: Computers and Geosciences 79 (2015), pp. 27–37. doi: 10.1016/j.cageo.2015.03.003.
P.J. Tackley. “Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles”. In: J. Geophys. Res.: Solid Earth 101.B2 (1996), pp. 3311–3332.
P.J. Tackley. “Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 7–18.
P.J. Tackley. “Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 1. Pseudoplastic yielding”. In: Geochem. Geophys. Geosyst. 1.1 (2000). doi: 10.1029/2000GC000036.
P.J. Tackley. “Three-dimensional models of mantle convection: influence of phase transitions and temperature-dependent viscosity”. PhD thesis. California Institute of Technology, 1994.
P.J. Tackley and S.D. King. “Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations”. In: Geochem. Geophys. Geosyst. 4.4 (2003). doi: 10.1029/2001GC000214.
Paul J Tackley. “Convection in Io’s asthenosphere: Redistribution of nonuniform tidal heating by mean flows”. In: J. Geophys. Res.: Planets 106.E12 (2001), pp. 32971–32981.
Paul J Tackley. “Mantle convection and plate tectonics: Toward an integrated physical and chemical theory”. In: Science 288.5473 (2000), pp. 2002–2007.
Paul J Tackley. “On the ability of phase transitions and viscosity layering to induce long wavelength heterogeneity in the mantle”. In: Geophys. Res. Lett. 23.15 (1996), pp. 1985–1988.
Paul J Tackley. “Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere”. In: Geochem. Geophys. Geosyst. 1.8 (2000).
Paul J Tackley. “Strong heterogeneity caused by deep mantle layering”. In: Geochem. Geophys. Geosyst. 3.4 (2002), pp. 1–22.
Paul J Tackley. “The quest for self-consistent generation of plate tectonics in mantle convection models”. In: Geophysical Monograph-American Geophysical Union 121 (2000), pp. 47–72.
Paul J Tackley, Michael Ammann, John P Brodholt, David P Dobson, and Diana Valencia. “Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity”. In: Icarus 225.1 (2013), pp. 50–61.
Paul J Tackley, John R Baumgardner, Gary A Glatzmaier, Peter Olson, and Tom Clune. “Three-dimensional spherical simulations of convection in Earth’s mantle and core using massively-parallel computers”. In: Proc. High. Performance Computing Symposium-HPC’99. 1999, pp. 95–100.
Paul J Tackley, Takashi Nakagawa, and John W Hernlund. “Influence of the post-perovskite transition on thermal and thermo-chemical mantle convection”. In: GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION 174 (2007), p. 229.
Paul J Tackley, David J Stevenson, Gary A Glatzmaier, and Gerald Schubert. “Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle”. In: Nature 361.6414 (1993), p. 699.
Paul J Tackley, David J Stevenson, Gary A Glatzmaier, and Gerald Schubert. “Effects of multiple phase transitions in a three-dimensional spherical model of convection in Earth’s mantle”. In: J. Geophys. Res.: Solid Earth 99.B8 (1994), pp. 15877–15901.
Paul J Tackley and Shunxing Xie. “The thermochemical structure and evolution of Earth’s mantle: constraints and numerical models”. In: Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 360.1800 (2002), pp. 2593–2609. doi: 10.1098/rsta.2002.1082.
PJ Tackley and S Xie. “STAG3D: a code for modeling thermo-chemical multiphase convection in Earth’s mantle”. In: Computational Fluid and Solid Mechanics 2003. 2003, pp. 1524–1527.
A Taiwo, HP Bunge, BSA Schuberth, L Colli, and B Vilacis. “Robust global mantle flow trajectories and their validation via dynamic topography histories”. In: Geophy. J. Int. 234.3 (2023), pp. 2160–2179. doi: 10.1093/gji/ggad188.
K. Takeyama, T. R. Saitoh, and J. Makino. “Variable inertia method: A novel numerical method for mantle convection simulation”. In: New Astronomy (2017).
E. Tan, E. Choi, P. Thoutireddy, M. Gurnis, and M. Aivazis. “GeoFramework: Coupling multiple models of mantle convection within a computational framework”. In: Geochem. Geophys. Geosyst. 7.6 (2006), 10.1029/2005GC001155.
E. Tan, M. Gurnis, and L. Han. “Slabs in the lower mantle and their modulation of plume formation”. In: Geochem. Geophys. Geosyst. 3.11 (2002).
E. Tan and Michael Gurnis. “Metastable superplumes and mantle compressibility”. In: Geophys. Res. Lett. 32.20 (2005). doi: 10.1029/2005GL024190.
Eh Tan, Luc Lavier, Harm van Avendonk, and Arnauld Heuret. “The role of frictional strength on plate coupling at the subduction interface”. In: 10.13 (2012), Q10006. doi: 10.1029/2012GC004214.
Eh Tan, Wei Leng, Shijie Zhong, and Michael Gurnis. “On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle”. In: Geochem. Geophys. Geosyst. 12.7 (2011).
Jiaxuan Tang, Lin Chen, Qingren Meng, and Guoli Wu. “The effects of the thermal state of overriding continental plate on subduction dynamics: Two-dimensional thermal-mechanical modeling”. In: Science China Earth Sciences 63 (2020), pp. 1519–1539. doi: 10.1007/ s11430-019-9624-1.
C. A. Taposeea, J. J. Armitage, and J. S. Collier. “Asthenosphere and lithosphere structure controls on early onset oceanic crust production in the southern South Atlantic”. In: Tectonophysics (2017). doi: 10.1016/j.tecto.2016.06.026.
J.M. Taramon, J. Rodriguez-Gonzalez, A.M. Negredo, and M.I. Billen. “Influence of cratonic lithosphere on the formation and evolution of flat slabs: Insights from 3-D time-dependent modeling”. In: Geochem. Geophys. Geosyst. 16 (2015). doi: 10.1002/2015GC005940.
Alizia Tarayoun, Stephane Mazzotti, and Frédéric Gueydan. “Quantitative impact of structural inheritance on present-day deformation and seismicity concentration in intraplate deformation zones”. In: Earth Planet. Sci. Lett. 518 (2019), pp. 160–171. doi: 10.1016/ j.epsl.2019.04.043.
V Tenczer, K Stüwe, and TD Barr. “Pressure anomalies around cylindrical objects in simple shear”. In: Journal of Structural Geology 23.5 (2001), pp. 777–788.
J.L. Tetreault and S.J.H. Buiter. “Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones”. In: J. Geophys. Res.: Solid Earth 117 (2012), B08403. doi: 10.1029/2012JB009316.
J.L. Tetreault and S.J.H. Buiter. “The influence of extension rate and crustal rheology on the evolution of passive margins from rifting to break-up”. In: Tectonophysics 746 (2018), pp. 155–172. doi: 10.1016/j.tecto.2017.08.029.
Jannis Teunissen and Ute Ebert. “Afivo: A framework for quadtree/octree AMR with shared-memory parallelization and geometric multigrid methods”. In: Computer Physics Communications 233 (2018), pp. 156–166.
Thomas Theunissen and Ritske S Huismans. “Long-term coupling and feedback between tectonics and surface processes during non-volcanic rifted margin formation”. In: J. Geophys. Res.: Solid Earth 124 (2019). doi: 10.1029/2018JB017235.
Thomas Theunissen and Ritske S Huismans. “Mantle exhumation at magma-poor rifted margins controlled by frictional shear zones”. In: Nature Communications 13.1 (2022), pp. 1–12. doi: 10.1038/s41467-022-29058-1.
Thomas Theunissen, Ritske S Huismans, Gang Lu, and Nicolas Riel. “Relative continent/mid-ocean ridge elevation: A reference case for isostasy in geodynamics”. In: Earth-Science Reviews 233 (2022), p. 104153. doi: 10.1016/j.earscirev.2022.104153.
M. Thielmann and B.J.P. Kaus. “Shear heating induced lithospheric-scale localization: Does it result in subduction? ” In: Earth Planet. Sci. Lett. 359-360 (2012), pp. 1–13.
M. Thielmann, B.J.P. Kaus, and A.A. Popov. “Lithospheric stresses in Rayleigh-Benard convection: effects of a free surface and a viscoelastic Maxwell rheology”. In: Geophy. J. Int. 203 (2015), pp. 2200–2219. doi: 10.1093/gji/ggv436.
M. Thielmann, D.A. May, and B.J.P. Kaus. “Discretization errors in the Hybrid Finite Element Particle-In-Cell Method”. In: Pure Appl. Geophys. 171.9 (2014), pp. 2164–2184. doi: 10.1007/s00024-014-0808-9.
P van Thienen, AP van den Berg, and NJ Vlaar. “Production and recycling of oceanic crust in the early Earth”. In: Tectonophysics 386.1-2 (2004), pp. 41–65. doi: 10.1016/j. tecto.2004.04.027.
P. van Thienen. “Convective vigour and heat flow in chemically differentiated systems”. In: Geophy. J. Int. 169.2 (2007), pp. 747–766. doi: 10.1111/j.1365-246X.2007.03377.x.
P. van Thienen, A.P. van den Berg, and N.J. Vlaar. “On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth”. In: Tectonophysics 394.1-2 (2004), pp. 111–124. doi: 10.1016/j.tecto.2004.07.058.
P. van Thienen, N.J. Vlaar, and A.P. van den Berg. “Assessment of the cooling capacity of plate tectonics and flood volcanism in the evolution of Earth, Mars and Venus”. In: Phys. Earth. Planet. Inter. 150 (2005), pp. 287–315. doi: 10.1016/j.pepi.2004.11.010.
P. van Thienen, N.J. Vlaar, and A.P. van den Berg. “Plate tectonics on the terrestrial planets”. In: Phys. Earth. Planet. Inter. 142 (2004), pp. 61–74. doi: 10.1016/j.pepi. 2003.12.008.
C. Thieulot. “Analytical solution for viscous incompressible Stokes flow in a spherical shell”. In: Solid Earth 8 (2017), pp. 1181–1191. doi: 10.5194/se-8-1181-2017.
C. Thieulot. “FANTOM: two- and three-dimensional numerical modelling of creeping flows for the solution of geological problems”. In: Phys. Earth. Planet. Inter. 188.1 (2011), pp. 47–68. doi: 10.1016/j.pepi.2011.06.011.
C. Thieulot and W. Bangerth. “On the choice of finite element for applications in geodynamics”. In: Solid Earth 13 (2022), pp. 229–249. doi: 10.5194/se-13-1-2022.
C. Thieulot, P. Fullsack, and J. Braun. “Adaptive octree-based finite element analysis of two- and three-dimensional indentation problems”. In: J. Geophys. Res.: Solid Earth 113 (2008), B12207. doi: 10.1029/2008JB005591.
C. Thieulot, P. Steer, and R.S. Huismans. “Three-dimensional numerical simulations of crustal systems undergoing orogeny and subjected to surface processes”. In: Geochem. Geophys. Geosyst. 15 (2014). doi: 10.1002/2014GC005490.
Cedric Thieulot and Pep Espańol. “Non-isothermal diffusion in a binary mixture with smoothed particle hydrodynamics”. In: Computer physics communications 169.1-3 (2005), pp. 172–176. doi: 10.1016/j.cpc.2005.03.039.
Cedric Thieulot, LPBM Janssen, and Pep Espańol. “Smoothed particle hydrodynamics model for phase separating fluid mixtures. I. General equations”. In: Physical Review E 72.1 (2005), p. 016713. doi: 10.1103/PhysRevE.72.016713.
Cedric Thieulot, LPBM Janssen, and Pep Espańol. “Smoothed particle hydrodynamics model for phase separating fluid mixtures. II. Diffusion in a binary mixture”. In: Physical Review E 72.1 (2005), p. 016714. doi: 10.1103/PhysRevE.72.016714.
Christine Thomas, J-Michael Kendall, and Julian Lowman. “Lower-mantle seismic discontinuities and the thermal morphology of subducted slabs”. In: Earth Planet. Sci. Lett. 225.1-2 (2004), pp. 105–113.
Paul J Thomas and Gerald Schubert. “Crater relaxation as a probe of Europa’s interior”. In: J. Geophys. Res.: Solid Earth 91.B4 (1986), pp. 453–459. doi: 10 . 1029 / JB091iB04p0D453.
Paul J Thomas and Gerald Schubert. “Finite element models of non-Newtonian crater relaxation”. In: J. Geophys. Res.: Solid Earth 92.B4 (1987), E749–E758. doi: 10.1029/ JB092iB04p0E749.
Paul J Thomas and Gerald Schubert. “Power law rheology of ice and the relaxation style and retention of craters on Ganymede”. In: J. Geophys. Res.: Solid Earth 93.B11 (1988), pp. 13755–13762. doi: 10.1029/JB093iB11p13755.
Paul J Thomas and Steven W Squyres. “Formation of crater palimpsests on Ganymede”. In: J. Geophys. Res.: Solid Earth 95.B12 (1990), pp. 19161–19174. doi: 10.1029/ JB095iB12p19161.
Paul J Thomas and Steven W Squyres. “Relaxation of impact basins on icy satellites”. In: J. Geophys. Res.: Solid Earth 93.B12 (1988), pp. 14919–14932. doi: 10.1029/ JB093iB12p14919.
Paul J Thomas, Steven W Squyres, and Michael H Carr. “Flank tectonics of Martian volcanoes”. In: J. Geophys. Res.: Solid Earth 95.B9 (1990), pp. 14345–14355. doi: 10. 1029/JB095iB09p14345.
Erik G Thompson. “Average and complete incompressibility in the finite element method”. In: Int. J. Num. Meth. Eng. 9.4 (1975), pp. 925–932. doi: 10.1002/nme.1620090411.
Erik G Thompson and MI Haque. “A high order finite element for completely incompressible creeping flow”. In: Int. J. Num. Meth. Eng. 6.3 (1973), pp. 315–321. doi: 10.1002/nme. 1620060303.
Erik G Thompson, Lawrence R.M., Fong-Sheng Lin, et al. “Finite element method for incompressible slow viscous flow with a free surface”. In: Dev. Mech. 5 (1969), pp. 93–111. doi: xxxx.
Paul F Thompson and Paul J Tackley. “Generation of mega-plumes from the core-mantle boundary in a compressible mantle with temperature-dependent viscosity”. In: Geophys. Res. Lett. 25.11 (1998), pp. 1999–2002.
Jiacheng Tian, Paul J Tackley, and Diogo L Lourenço. “The tectonics and volcanism of Venus: New modes facilitated by realistic crustal rheology and intrusive magmatism”. In: Icarus (2023), p. 115539. doi: 10.1016/j.icarus.2023.115539.
Xiaochuan Tian, Mark D Behn, Garrett Ito, Jana C Schierjott, Boris JP Kaus, and Anton A Popov. “Magmatism controls global oceanic transform fault topography”. In: Nature Communications 15.1 (2024), p. 1914. doi: 10.1038/s41467-024-46197-9.
C. Tirel, J.-P. Brun, and E. Burov. “Dynamics and structural development of metamorphic core complexes”. In: J. Geophys. Res.: Solid Earth 113.B04403 (2008).
C. Tirel, J.-P. Brun, and E. Burov. “Thermomechanical modeling of extensional gneiss domes”. In: Geological Society of America Special Papers 380 (2004), pp. 67–78.
C. Tirel, J.-P. Brun, E. Burov, M.J.R. Wortel, and S. Lebedev. “A plate tectonics oddity: Caterpillar-walk exhumation of subducted continental crust”. In: Geology 41.5 (2013), pp. 555–558.
Céline Tirel, Pierre Gautier, DJJ van Hinsbergen, and MJR Wortel. “Sequential development of interfering metamorphic core complexes: numerical experiments and comparison with the Cyclades, Greece”. In: Geological Society, London, Special Publications 311.1 (2009), pp. 257–292.
Giovanni Toffol, Jianfeng Yang, Giorgio Pennacchioni, Manuele Faccenda, and Marco Scambelluri. “How to quake a subducting dry slab at intermediate depths: Inferences from numerical modelling”. In: Earth Planet. Sci. Lett. 578 (2022), p. 117289. doi: 10.1016/ j.epsl.2021.117289.
C.G. du Toit. “Finite element solution of the Navier-Stokes equations for incompressible flow using a segregated algorithm”. In: Computer Methods in Applied Mechanics and Engineering 151 (1998), pp. 131–141.
Montserrat Torné et al. “Advances in the modeling of the Iberian thermal lithosphere and perspectives on deep geothermal studies”. In: Geothermal Energy 11.1 (2023), p. 3. doi: 10.1186/s40517-023-00246-6.
N. Tosi, P. Maierová, and D.A. Yuen. “Influence of Variable Thermal Expansivity and Conductivity on Deep Subduction”. In: Subduction Dynamics: From Mantle Flow to Mega Disasters, Geophysical Monograph 211. 2016, pp. 115–133.
N. Tosi and Z. Martinec. “Semi-analytical solution for viscous Stokes flow in two eccentrically nested spheres”. In: Geophy. J. Int. 170 (2007), pp. 1015–1030. doi: 10.1111/j.1365- 246X.2007.03482.x.
N. Tosi et al. “A community benchmark for viscoplastic thermal convection in a 2-D square box”. In: Geochem. Geophys. Geosyst. 16.7 (2015), pp. 2175–2196. doi: 10.1002/ 2015GC005807.
Nicola Tosi and David A Yuen. “Bent-shaped plumes and horizontal channel flow beneath the 660 km discontinuity”. In: Earth Planet. Sci. Lett. 312.3-4 (2011), pp. 348–359.
Nicola Tosi, David A Yuen, and Ondřej Čadek. “Dynamical consequences in the lower mantle with the post-perovskite phase change and strongly depth-dependent thermodynamic and transport properties”. In: Earth Planet. Sci. Lett. 298.1-2 (2010), pp. 229–243.
Nicola Tosi, David A Yuen, Nico de Koker, and Renata M Wentzcovitch. “Mantle dynamics with pressure-and temperature-dependent thermal expansivity and conductivity”. In: Phys. Earth. Planet. Inter. 217 (2013), pp. 48–58. doi: 10.1016/j.pepi.2013.02.004.
G. Toussaint, E. Burov, and J.-P. Avouac. “Tectonic evolution of a continental collision zone: A thermomechanical numerical model”. In: Tectonics 23.TC6003 (2004). doi: 10.1029/ 2003TC001604.
G. Toussaint, E. Burov, and L. Jolivet. “Continental plate collision: unstable vs. stable slab dynamics”. In: Geology 32 (2004), pp. 33–36. doi: 10.1130/G19883.1.
Markus Towara and Uwe Naumann. “A discrete adjoint model for OpenFOAM”. In: Procedia Computer Science 18 (2013), pp. 429–438. doi: 10.1016/j.procs.2013.05.206.
B.J. Travis et al. “A benchmark comparison of numerical methods for infinite Prandtl number thermal convection in two-dimensional Cartesian geometry”. In: Geophysical & Astrophysical Fluid Dynamics 55.3-4 (1990), pp. 137–160.
S.J. Trim, J. P. Lowman, and S.L. Butler. “Improving Mass Conservation With the Tracer Ratio Method: Application to Thermochemical Mantle Flows”. In: Geochem. Geophys. Geosyst. 22 (2020), e2019GC008799. doi: 10.1029/2019GC008799.
Sean J Trim, Samuel L Butler, and Raymond J Spiteri. “Benchmarking multiphysics software for mantle convection”. In: Computers and Geosciences 154 (2021), p. 104797. doi: 10. 1016/j.cageo.2021.104797.
Sean J Trim and Julian P Lowman. “Interaction between the supercontinent cycle and the evolution of intrinsically dense provinces in the deep mantle”. In: J. Geophys. Res.: Solid Earth 121.12 (2016), pp. 8941–8969. doi: 10.1002/2016JB013285.
Sean James Trim, PJ Heron, Claudia Stein, and Julian Philip Lowman. “The feedback between surface mobility and mantle compositional heterogeneity: Implications for the Earth and other terrestrial planets”. In: Earth Planet. Sci. Lett. 405 (2014), pp. 1–14. doi: 10.1016/j.epsl.2014.08.019.
R.A. Trompert and U. Hansen. “Mantle convection simulations with rheologies that generate plate-like behaviour ”. In: Nature 395 (1998), pp. 686–689. doi: 10.1038/27185.
R.A. Trompert and U. Hansen. “On the Rayleigh number dependence of convection with a strongly temperature-dependent viscosity”. In: Physics of Fluids 10.2 (1998), pp. 351–360.
R.A. Trompert and U. Hansen. “The application of a finite volume multigrid method to three-dimensional flow problems in a highly viscous fluid with a variable viscosity”. In: Geophysical & Astrophysical Fluid Dynamics 83.3-4 (1996), pp. 261–291. doi: 10.1080/ 03091929608208968.
AP Trubitsyn. “Two stages of thermal evolution of the continental lithosphere”. In: Izvestiya, Atmospheric and Oceanic Physics 55 (2019), pp. 679–686. doi: 10.1134/ S0001433819070090.
AP Trubitsyn and VP Trubitsyn. “Thermal Model of Changes in the Thickness of the Continental Lithosphere over Time”. In: Doklady Earth Sciences. Vol. 481. 2018, pp. 1104–1107. doi: 10.1134/S1028334X18080330.
V. P. Trubitsyn. “Rheology of the mantle and tectonics of the oceanic lithospheric plates”. In: Izvestiya, Physics of the Solid Earth 48.6 (2012), pp. 467–485. doi: 10.1134/ S1069351312060079.
V. P. Trubitsyn, A. N. Evseev, M. N. Evseev, and E. V. Kharybin. “Mantle plumes in the models of quasi-turbulent thermal convection”. In: Izvestiya, Physics of the Solid Earth 47.12 (2011), pp. 1027–1033. doi: 10.1134/S106935131112010X.
V. P. Trubitsyn and M. N. Evseev. “Plume Mode of Thermal Convection in the Earth’s Mantle”. In: Izvestiya, Physics of the Solid Earth 54.6 (2018), pp. 838–848. doi: 10. 1134/S1069351318060125.
VP Trubitsyn. “Equations of thermal convection for a viscous compressible mantle of the earth including phase transitions”. In: Izvestiya, Physics of the Solid Earth 44.12 (2008), pp. 1018–1026. doi: 10.1134/S1069351308120045.
Valeria Turino, Valentina Magni, Hans Jřrgen Kjřll, and Johannes Jakob. “The effect of magma poor and magma rich rifted margins on continental collision dynamics”. In: J. Geophys. Res.: Solid Earth 128.12 (2023), e2023JB027173. doi: 10.1029/2023JB027173.
A. Osei Tutu, S.V. Sobolev, B. Steinberger, A.A. Popov, and I. Rogozhina. “Evaluating the Influence of Plate Boundary Friction and Mantle Viscosity on Plate Velocities”. In: Geochem. Geophys. Geosyst. 19 (2018), pp. 642–666. doi: 10.1002/2017GC007112.
A. Osei Tutu, B. Steinberger, S.V. Sobolev, I. Rogozhina, and A.A. Popov. “Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography”. In: Solid Earth 9 (2018), pp. 649–668. doi: 10.5194/se-9-649-2018.
K Ueda, Taras V Gerya, and J-P Burg. “Delamination in collisional orogens: Thermomechanical modeling”. In: J. Geophys. Res.: Solid Earth 117.B8 (2012). doi: 10. 1029/2012JB009144.
K. Ueda, T. Gerya, and S.V. Sobolev. “Subduction initiation by thermal-chemical plumes: Numerical studies”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 296–312. doi: 10. 1016/j.pepi.2008.06.032.
K. Ueda, S.D. Willett, T. Gerya, and J. Ruh. “Geomorphological-thermo-mechanical modeling: Application to orogenic wedge dynamics”. In: Tectonophysics 659 (2015), pp. 12–30. doi: 10.1016/j.tecto.2015.08.001.
Leonardo Uieda, Everton P Bomfim, Carla Braitenberg, and Eder Molina. “Optimal forward calculation method of the Marussi tensor due to a geologic structure at GOCE height”. In: Proceedings of the 4th International GOCE User Workshop. Munich Germany. 2011.
Martina M Ulvrova, Nicolas Coltice, Simon Williams, and Paul J Tackley. “Where does subduction initiate and cease? A global scale perspective”. In: Earth Planet. Sci. Lett. 528 (2019), p. 115836. doi: 10.1016/j.epsl.2019.115836.
Martina Ulvrová, Stéphane Labrosse, Nicolas Coltice, P Rĺback, and PJ Tackley. “Numerical modelling of convection interacting with a melting and solidification front: Application to the thermal evolution of the basal magma ocean”. In: Phys. Earth. Planet. Inter. 206 (2012), pp. 51–66. doi: 10.1016/j.pepi.2012.06.008.
S Uppalapati, T Rolf, F Crameri, and SC Werner. “Dynamics of Lithospheric Overturns and Implications for Venus’s Surface”. In: J. Geophys. Res.: Planets 125.11 (2020), e2019JE006258. doi: 10.1029/2019JE006258.
Phćdra Upton, Peter O Koons, and Donna Eberhart-Phillips. “Extension and partitioning in an oblique subduction zone, New Zealand: Constraints from three-dimensional numerical modeling”. In: Tectonics 22.6 (2003). doi: 10.1029/2002TC001431.
T. Utnes. “A segregated implicit pressure projection method for incompressible flows”. In: J. Comp. Phys. 227 (2008), pp. 2198–2211. doi: 10.1016/j.jcp.2007.11.022.
JL Valera. “Development and application of numerical thermomechanical modeling of continental delamination processes”. PhD thesis. Ph. D., Univ. Complutense de Madrid, 2009.
JL Valera, Ana M Negredo, MI Billen, and Ivone Jiménez-Munt. “Lateral migration of a foundering high-density root: Insights from numerical modeling applied to the southern Sierra Nevada”. In: Lithos 189 (2014), pp. 77–88. doi: 10.1016/j.lithos.2013.08.021.
JL Valera, Ana M Negredo, and Ivone Jiménez-Munt. “Deep and near-surface consequences of root removal by asymmetric continental delamination”. In: Tectonophysics 502.1-2 (2011), pp. 257–265. doi: 10.1016/j.tecto.2010.04.002.
Juan-Luis Valera, Ana-Mara Negredo, and Antonio Villaseńor. “Asymmetric delamination and convective removal numerical modeling: comparison with evolutionary models for the Alboran Sea region”. In: Pure Appl. Geophys. 165 (2008), pp. 1683–1706. doi: 10.1007/ s00024-008-0395-8.
Luuk Van Agtmaal, Ylona Van Dinther, Ernst Willingshofer, and Liviu Matenco. “Quantifying continental collision dynamics for Alpine-style orogens”. In: Frontiers in Earth Science (2022), p. 1449. doi: 10.3389/feart.2022.916189.
A.P. van den Berg, G. Segal, and D.A. Yuen. “SEPRAN: A Versatile Finite-Element Package for a Wide Variety of Problems in Geosciences”. In: Journal of Earth Science 26.1 (2015), pp. 089–095. doi: 10.1007/s12583-015-0508-0.
A.P. Van Den Berg and D.A. Yuen. “The role of shear heating in lubricating mantle flow”. In: Earth Planet. Sci. Lett. 151.1-2 (1997), pp. 33–42. doi: 10.1016/S0012-821X(97)00110- 6.
A.P. Van den Berg, D.A. Yuen, and J.R. Allwardt. “Non-linear effects from variable thermal conductivity and mantle internal heating: Implications for massive melting and secular cooling of the mantle”. In: Phys. Earth. Planet. Inter. 129.3-4 (2002), pp. 359–375. doi: 10.1016/S0031-9201(01)00304-1.
A.P. van den Berg, D.A. Yuen, G.L. Beebe, and M.D. Christiansen. “The dynamical impact of electronic thermal conductivity on deep mantle convection of exosolar planets”. In: Phys. Earth. Planet. Inter. 178.3-4 (2010), pp. 136–154. doi: 10.1016/j.pepi.2009.11.001.
A.P. van den Berg, D.A. Yuen, and E.S.G. Rainey. “The influence of variable viscosity on delayed cooling due to variable thermal conductivity”. In: Phys. Earth. Planet. Inter. 142.3-4 (2004), pp. 283–295. doi: 10.1016/j.pepi.2004.01.007.
JM van den Broek, V Magni, C Gaina, and SJH Buiter. “The formation of continental fragments in subduction settings: the importance of structural inheritance and subduction system dynamics”. In: J. Geophys. Res.: Solid Earth 125.1 (2020), e2019JB018370. doi: 10.1029/2019JB018370.
E. van der Wiel, D.J.J. van Hinsbergen, C. Thieulot, and W. Spakman. “Linking rates of slab sinking to long-term lower mantle flow and mixing”. In: Earth Planet. Sci. Lett. 625 (2024), p. 118471. doi: 10.1016/j.epsl.2023.118471.
Ylona Van Dinther, Hans R Künsch, and Andreas Fichtner. “Ensemble data assimilation for earthquake sequences: probabilistic estimation and forecasting of fault stresses”. In: Geophy. J. Int. 217.3 (2019), pp. 1453–1478. doi: 10.1093/gji/ggz063.
H.J. van Heck, J.H. Davies, T. Elliott, and D. Porcelli. “Global-scale modelling of melting and isotopic evolution of Earth’s mantle: melting modules for TERRA”. In: Geosci. Model. Dev. 9 (2016), pp. 1399–1411. doi: 10.5194/gmd-9-1399-2016.
HJ Van Heck and PJ Tackley. “Planforms of self-consistently generated plates in 3D spherical geometry”. In: Geophys. Res. Lett. 35.19 (2008). doi: 10.1029/2008GL035190.
J. van Hunen and M.B. Allen. “Continental collision and slab break-off: A comparison of 3-D numerical models with observations”. In: Earth Planet. Sci. Lett. 302 (2011), pp. 27–37. doi: 10.1016/j.epsl.2010.11.035.
J. Van Hunen, A.P. Van Den Berg, and N.J. Vlaar. “A thermo-mechanical model of horizontal subduction below an overriding plate”. In: Earth Planet. Sci. Lett. 182.2 (2000), pp. 157–169. doi: 10.1016/S0012-821X(00)00240-5.
J. Van Hunen, A.P. Van den Berg, and N.J. Vlaar. “Latent heat effects of the major mantle phase transitions on low-angle subduction”. In: Earth Planet. Sci. Lett. 190.3-4 (2001), pp. 125–135. doi: 10.1016/S0012-821X(01)00383-1.
J. van Hunen, A.P. van den Berg, and N.J. Vlaar. “Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: A numerical parameter study”. In: Phys. Earth. Planet. Inter. 146.1-2 (2004), pp. 179–194. doi: 10.1016/j. pepi.2003.07.027.
P. van Keken and S. Zhong. “Mixing in a 3D spherical model of present-day mantle convection”. In: Earth Planet. Sci. Lett. 171 (1999), pp. 533–547. doi: 10.1016/S0012- 821X(99)00181-8.
P.E. van Keken, B.R. Hacker, E.M. Syracuse, and G.A. Abers. “Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide”. In: J. Geophys. Res.: Solid Earth 116.B01401 (2011). doi: 10.1029/2010JB007922.
P.E. Van Keken, S. Karato, and D.A. Yuen. “Rheological control of oceanic crust separation in the transition zone”. In: Geophys. Res. Lett. 23.14 (1996), pp. 1821–1824. doi: 10. 1029/96GL01594.
P.E. van Keken, S.D. King, H. Schmeling, U.R. Christensen, D. Neumeister, and M.-P. Doin. “A comparison of methods for the modeling of thermochemical convection”. In: J. Geophys. Res.: Solid Earth 102.B10 (1997), pp. 22, 477–22, 495.
P.E. van Keken et al. “A community benchmark for subduction zone modelling”. In: Phys. Earth. Planet. Inter. 171 (2008), pp. 187–197. doi: 10.1016/j.pepi.2008.04.015.
PE Van Keken, S Kita, and J Nakajima. “Thermal structure and intermediate-depth seismicity in the Tohoku-Hokkaido subduction zones”. In: Solid Earth 3.2 (2012), pp. 355–364. doi: 10.5194/se-3-355-2012.
Peter E Van Keken and Chris J Ballentine. “Whole-mantle versus layered mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution”. In: Earth Planet. Sci. Lett. 156.1-2 (1998), pp. 19–32. doi: 10.1016/S0012-821X(98)00023-5.
Peter E Van Keken, Chris J Ballentine, and Erik H Hauri. “Convective mixing in the Earth’s mantle”. In: Treatise on geochemistry 2 (2003), pp. 1–21. doi: xxxx.
Peter E Van Keken, Boris Kiefer, and Simon M Peacock. “High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle”. In: Geochem. Geophys. Geosyst. 3.10 (2002). doi: 10.1029/ 2001GC000256.
Peter E Van Keken, David A Yuen, and Linda R Petzold. “DASPK: A new high order and adaptive time-integration technique with applications to mantle convection with strongly temperature-and pressure-dependent rheology”. In: Geophysical & Astrophysical Fluid Dynamics 80.1-2 (1995), pp. 57–74. doi: 10.1080/03091929508229763.
P. Van Thienen, A.P. Van Den Berg, J.H. De Smet, J. Van Hunen, and M.R. Drury. “Interaction between small-scale mantle diapirs and a continental root”. In: Geochem. Geophys. Geosyst. 4.2 (2003). doi: 10.1029/2002GC000338.
Yves Vanbrabant, Denis Jongmans, Riad Hassani, and David Bellino. “An application of two-dimensional finite-element modelling for studying the deformation of the Variscan fold-and-thrust belt (Belgium)”. In: Tectonophysics 309.1-4 (1999), pp. 141–159.
O. Vanderhaeghe, S. Medvedev, P. Fullsack, C. Beaumont, and R.A. Jamieson. “Evolution of orogenic wedges and continental plateaux: insights from crustal thermal-mechanical overlying subduction mantle lithosphere”. In: Geophy. J. Int. 153 (2003), pp. 27–51. doi: 10.1046/ j.1365-246X.2003.01861.x.
Paola Vannucchi, Alexander Clarke, Albert de Montserrat, Audrey Ougier-Simonin, Luca Aldega, and Jason P Morgan. “A strength inversion origin for non-volcanic tremor”. In: Nature Communications 13.1 (2022), p. 2311. doi: 10.1038/s41467-022-29944-8.
J. Vatteville, P.E. van Keken, A. Limare, and A. Davaille. “Starting laminar plumes: Comparison of laboratory and numerical modeling”. In: Geochem. Geophys. Geosyst. 10.12 (2009). doi: 10.1029/2009GC002739.
Mirko Velić, Dave May, and Louis Moresi. “A fast robust algorithm for computing discrete voronoi diagrams”. In: Journal of Mathematical Modelling and Algorithms 8.3 (2009), pp. 343–355. doi: 10.1007/s10852-008-9097-6.
R. Verfürth. “A combined conjugate gradient-multigrid algorithm for the numerical solution of the Stokes problem”. In: IMA Journal of Numerical Analysis 4 (194), pp. 441–455.
Ph. Vernant and J. Chery. “Mechanical modelling of oblique convergence in the Zagros, Iran”. In: Geophy. J. Int. 165 (2006), pp. 991–1002. doi: 10.1111/j.1365-246X.2006.02900.x.
A.V. Vezolainen, V.S. Solomatov, A.T. Basilevsky, and J.W. Head. “Uplift of Beta Regio: Three-dimensional models”. In: J. Geophys. Res.: Planets 109.8 (2004), E08007. doi: 10. 1029/2004JE002259.
A.V. Vezolainen, V.S. Solomatov, J.W. Head, A.T. Basilevsky, and L.-N. Moresi. “Timing of formation of Beta Regio and its geodynamical implications”. In: J. Geophys. Res.: Planets 108.1 (2003), pp. 2–1. doi: 10.1029/2002JE001889.
Damien Violeau and Benedict D Rogers. “Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future”. In: Journal of Hydraulic Research 54.1 (2016), pp. 1–26. doi: 10.1080/00221686.2015.1119209.
S. Virgo, S. Abe, and J.L. Urai. “Extension fracture propagation in rocks with veins: Insight into the crack-seal process using Discrete Element Method modeling”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 5236–5251. doi: oi:10.1002/2013JB010540.
N.J. Vlaar, P.E. van Keken, and A.P. van den Berg. “Cooling of the Earth in the Archean: Consequences of pressure-release melting in a hotter mantle”. In: Earth Planet. Sci. Lett. 121 (1994), pp. 1–18. doi: 10.1016/0012-821X(94)90028-0.
G. Le Voci, D.R. Davies, S. Goes, S.C. Kramer, and C.R. Wilson. “A systematic 2-D investigation into the mantle wedge’s transient flow regime and thermal structure: Complexities arising from a hydrated rheology and thermal buoyancy”. In: Geochem. Geophys. Geosyst. 15.1 (2014). doi: 10.1002/2013GC005022.
K. Vogt and T. Gerya. “Deep plate serpentinization triggers skinning of subducting slabs”. In: Geology (2014). doi: 10.1130/G35565.1.
Katharina Vogt, Antonio Castro, and Taras Gerya. “Numerical modeling of geochemical variations caused by crustal relamination”. In: Geochem. Geophys. Geosyst. 14.2 (2013), pp. 470–487. doi: 10.1002/ggge.20072.
Katharina Vogt, Taras V Gerya, and Antonio Castro. “Crustal growth at active continental margins: numerical modeling”. In: Phys. Earth. Planet. Inter. 192 (2012), pp. 1–20. doi: 10.1016/j.pepi.2011.12.003.
Katharina Vogt, Liviu Matenco, and Sierd Cloetingh. “Crustal mechanics control the geometry of mountain belts. Insights from numerical modelling”. In: Earth Planet. Sci. Lett. 460 (2017), pp. 12–21. doi: 10.1016/j.epsl.2016.11.0160012-821X.
Katharina Vogt, Ernst Willingshofer, Liviu Matenco, Dimitrios Sokoutis, Taras Gerya, and Sierd Cloetingh. “The role of lateral strength contrasts in orogenesis: A 2D numerical study”. In: Tectonophysics 746 (2018), pp. 549–561. doi: 10.1016/j.tecto.2017.08.010.
M. von Tscharner and S. M. Schmalholz. “A 3-D Lagrangian finite element algorithm with remeshing for simulating large-strain hydrodynamic instabilities in power law viscoelastic fluids”. In: Geochem. Geophys. Geosyst. 16.1 (2015), pp. 215–245. doi: 10.1002/ 2014GC005628.
J. de Vries, A. van den Berg, and W. van Westrenen. “Formation and evolution of a lunar core from ilmenite-rich magma ocean cumulates”. In: Earth Planet. Sci. Lett. 292 (2010), pp. 139–147.
L. Vynnytska and H.-P. Bunge. “Restoring past mantle convection structure through fluid dynamic inverse theory: regularisation through surface velocity boundary conditions”. In: GEM - International Journal on Geomathematics 6.1 (2015), pp. 83–100. doi: 10.1007/ s13137-014-0060-6.
L. Vynnytska, M.E. Rognes, and S.R. Clark. “Benchmarking FEniCS for mantle convection simulations”. In: Computers and Geosciences 50 (2013), pp. 95–105. doi: 10.1016/j. cageo.2012.05.012.
Shoichi Wakiya. “Application of bipolar coordinates to the two-dimensional creeping motion of a liquid. I. Flow over a projection or a depression on a wall”. In: Journal of the Physical Society of Japan 39.4 (1975), pp. 1113–1120.
Shoichi Wakiya. “Application of bipolar coordinates to the two-dimensional creeping motion of a liquid. II. Some problems for two circular cylinders in viscous fluid”. In: Journal of the Physical Society of Japan 39.6 (1975), pp. 1603–1607.
RJ Walters, PC England, and GA Houseman. “Constraints from GPS measurements on the dynamics of the zone of convergence between Arabia and Eurasia”. In: J. Geophys. Res.: Solid Earth 122.2 (2017), pp. 1470–1495. doi: 10.1002/2016JB013370.
U Walzer and R Hendel. “Continental crust formation: numerical modelling of chemical evolution and geological implications”. In: Lithos 278 (2017), pp. 215–228. doi: 10.1016/ j.lithos.2016.12.014.
Uwe Walzer and Roland Hendel. “Mantle convection and evolution with growing continents”. In: J. Geophys. Res.: Solid Earth 113 (2008), B09405. doi: 10.1029/2007JB005459.
Uwe Walzer and Roland Hendel. “Real episodic growth of continental crust or artifact of preservation? A 3-D geodynamic model”. In: J. Geophys. Res.: Solid Earth 118.5 (2013), pp. 2356–2370. doi: 10.1002/jgrb.50150.
Uwe Walzer, Roland Hendel, and John Baumgardner. “The effects of a variation of the radial viscosity profile on mantle evolution”. In: Tectonophysics 384.1-4 (2004), pp. 55–90. doi: 10.1016/j.tecto.2004.02.012.
H. Wang, R. Agrusta, and J. van Hunen. “Advantages of a conservative velocity interpolation (CVI) scheme for particle-in-cell methods with application in geodynamic modeling”. In: Geochem. Geophys. Geosyst. 16 (2015). doi: 10.1002/2015GC005824.
H. Wang, J. van Hunen, and D.G. Pearson. “The thinning of subcontinental lithosphere: The roles of plume impact and metasomatic weakening”. In: Geochem. Geophys. Geosyst. 16 (2015), pp. 1156–1171. doi: 10.1002/2015GC005784.
H. Wang, J. van Hunen, D.G. Pearson, and M.B. Allen. “Craton stability and longevity: The roles of composition-dependent rheology and buoyancy”. In: Earth Planet. Sci. Lett. 391 (2014), pp. 224–233.
Hongliang Wang, Jeroen van Hunen, and D Graham Pearson. “Making Archean cratonic roots by lateral compression: a two-stage thickening and stabilization model”. In: Tectonophysics 746 (2018), pp. 562–571. doi: 10.1016/j.tecto.2016.12.001.
Huilin Wang, Claire A Currie, and Peter G DeCelles. “Coupling between lithosphere removal and mantle flow in the central Andes”. In: Geophys. Res. Lett. 48.16 (2021), e2021GL095075. doi: 10.1029/2021GL095075.
Li Wang and Dimitri J Mavriplis. “Adjoint-based h–p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations”. In: J. Comp. Phys. 228.20 (2009), pp. 7643–7661.
Wanying Wang and Thorsten W Becker. “Upper mantle seismic anisotropy as a constraint for mantle flow and continental dynamics of the North American plate”. In: Earth Planet. Sci. Lett. 514 (2019), pp. 143–155. doi: 10.1016/j.epsl.2019.03.019.
X. Wang, J. He, L. Ding, and R. Gao. “A possible mechanism for the initiation of the Yinggehai Basin: A visco-elasto-plastic model”. In: Journal of Asian Earth Sciences 74 (2013), pp. 25–36.
X. Wang and W.K. Liu. “Extended immersed boundary method using FEM and RKPM”. In: Computer Methods in Applied Mechanics and Engineering 193 (2004), pp. 1305–1321. doi: 10.1016/j.cma.2003.12.024.
Xinguo Wang, William E Holt, and Attreyee Ghosh. “Joint modeling of lithosphere and mantle dynamics: Evaluation of constraints from global tomography models”. In: J. Geophys. Res.: Solid Earth 120.12 (2015), pp. 8633–8655. doi: 10.1002/2015JB012188.
Xinguo Wang, William E Holt, and Attreyee Ghosh. “Joint modeling of lithosphere and mantle dynamics: Sensitivity to viscosities within the lithosphere, asthenosphere, transition zone, and D” layers”. In: Phys. Earth. Planet. Inter. 293 (2019), p. 106263. doi: 10. 1016/j.pepi.2019.05.006.
Xinxin Wang, Boris JP Kaus, Liang Zhao, Jianfeng Yang, and Yang Li. “Mountain building in Taiwan: Insights from 3-D geodynamic models”. In: J. Geophys. Res.: Solid Earth 124.6 (2019), pp. 5924–5950. doi: 10.1029/2018JB017165.
Xinxin Wang et al. “3D geodynamic models for HP-UHP rock exhumation in opposite-dip double subduction-collision systems”. In: J. Geophys. Res.: Solid Earth 126.8 (2021), e2021JB022326. doi: 10.1029/2021JB022326.
Y. Wang, J. Huang, and S. Zhong. “Episodic and multistaged gravitational instability of cratonic lithosphere and its implications for reactivation of the North China Craton”. In: Geochem. Geophys. Geosyst. 16 (2015), pp. 815–833.
Y. Wang, J. Huang, S. Zhong, and J. Chen. “Heat flux and topography constraints on thermochemical structure below North China Craton regions and implications for evolution of cratonic lithosphere: Heat flux and topography constraints”. In: J. Geophys. Res.: Solid Earth 121 (2016), pp. 3081–3098. doi: 10.1002/2015JB012540.
Yang Wang, Zhong-Hai Li, and Pengpeng Huangfu. “Continental Deep Subduction Versus Subduction Cessation: The Fate of Collisional Orogens”. In: Tectonics 42 (2023), e2022TC007695. doi: 10.1029/2022TC007695.
Yaoyi Wang et al. “Secular craton evolution due to cyclic deformation of underlying dense mantle lithosphere”. In: Nature Geoscience (2023), pp. 1–9. doi: 10.1038/s41561-023- 01203-5.
Yijun Wang, Ágnes Király, Clinton C Conrad, Lars Hansen, and Menno Fraters. “The importance of anisotropic viscosity in numerical models for olivine textures in shear and subduction deformations”. In: Tektonika 2.1 (2023), pp. 157–173. doi: https://doi. org/10.55575/tektonika2024.2.1.67.
Yongming Wang, Jinshui Huang, and Shijie Zhong. “Episodic and multistaged gravitational instability of cratonic lithosphere and its implications for reactivation of the North China Craton”. In: Geochem. Geophys. Geosyst. 16.3 (2015), pp. 815–833. doi: 10.1002/ 2014GC005681.
Yongming Wang and Mingming Li. “Constraining mantle viscosity structure from a statistical analysis of slab stagnation events”. In: Geochem. Geophys. Geosyst. 21 (2020), e2020GC009286. doi: 10.1029/2020GC009286.
Yongming Wang and Mingming Li. “The interaction between mantle plumes and lithosphere and its surface expressions: 3-D numerical modelling”. In: Geophy. J. Int. 225.2 (2021), pp. 906–925. doi: 10.1093/gji/ggab014.
Zhensheng Wang, Fabio A Capitanio, Zaicong Wang, and Timothy M Kusky. “Accretion of the cratonic mantle lithosphere via massive regional relamination”. In: Proceedings of the National Academy of Sciences 119.39 (2022), e2201226119. doi: 10.1073/pnas. 2201226119.
Zhensheng Wang, Timothy M Kusky, and Fabio A Capitanio. “Ancient Continental Lithosphere Dislocated Beneath Ocean Basins Along the Mid-Lithosphere Discontinuity: A Hypothesis”. In: Geophys. Res. Lett. 44.18 (2017), pp. 9253–9260. doi: 10.1002/ 2017GL074686.
Zhensheng Wang, Timothy M Kusky, and Fabio A Capitanio. “On the role of lower crust and midlithosphere discontinuity for cratonic lithosphere delamination and recycling”. In: Geophys. Res. Lett. 45.15 (2018), pp. 7425–7433. doi: 10.1029/2017GL076948.
Zhensheng Wang, Timothy M Kusky, and Fabio A Capitanio. “Water transportation ability of flat-lying slabs in the mantle transition zone and implications for craton destruction”. In: Tectonophysics 723 (2018), pp. 95–106. doi: 10.1016/j.tecto.2017.11.041.
Zhensheng Wang, Timothy M Kusky, and Lu Wang. “Long-lasting viscous drainage of eclogites from the cratonic lithospheric mantle after Archean subduction stacking”. In: Geology (2022). doi: 10.1130/G49793.1.
Zhensheng Wang and Yixian Xu. “The fate of eclogites in the lithosphere”. In: Science China Earth Sciences 67 (2024), pp. 879–884. doi: 10.1007/s11430-023-1261-2.
N. Wansophark and P. Dechaumphai. “Combined adaptive meshing technique and segregated finite element algorithm for analysis of free and forced convection heat transfer”. In: Finite Elements in Analysis and Design 40 (2004), pp. 645–663.
N. Wansophark and P. Dechaumphai. “Enhancement of Segregated Finite Element Method with Adaptive Meshing Technique for Viscous Incompressible Thermal Flow Analysis”. In: Science Asia 29 (2003), pp. 155–162.
Karin N Warners-Ruckstuhl, Rob Govers, and Rinus Wortel. “Tethyan collision forces and the stress field of the Eurasian Plate”. In: Geophy. J. Int. 195.1 (2013), pp. 1–15.
C.J. Warren, C. Beaumont, and R.A. Jamieson. “Formation and exhumation of ultra-high-pressure rocks during continental collision: Role of detachment in the subduction channel”. In: Geochem. Geophys. Geosyst. 9 (2008). doi: 10.1029/2007GC001839.
C.J. Warren, C. Beaumont, and R.A. Jamieson. “Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision”. In: Earth Planet. Sci. Lett. 267 (2008), pp. 129–145.
P. Waschbusch, G. Batt, and C. Beaumont. “Subduction zone retreat and recent tectonics of the South Island of New Zealand”. In: Tectonics 17.2 (1998), pp. 267–284. doi: 10. 1029/98TC00058.
P. Waschbusch and C. Beaumont. “Effect of a retreating subduction zone on deformation in simple regions of plate convergence”. In: J. Geophys. Res.: Solid Earth 101.12 (1996), pp. 28133–28148.
Louise Watremez et al. “Buoyancy and localizing properties of continental mantle lithosphere: Insights from thermomechanical models of the eastern Gulf of Aden”. In: Geochem. Geophys. Geosyst. 14.8 (2013), pp. 2800–2817. doi: 10.1002/ggge.20179.
W. A. Watters, M. T. Zuber, and B. H. Hager. “Thermal perturbations caused by large impacts and consequences for mantle convection”. In: J. Geophys. Res.: Solid Earth 114.E2 (2009). doi: 10.1029/2007JE002964.
Sam Webber, Susan Ellis, and Ĺke Fagereng. ““Virtual shear box” experiments of stress and slip cycling within a subduction interface mélange”. In: Earth Planet. Sci. Lett. 488 (2018), pp. 27–35. doi: 10.1016/j.epsl.2018.01.035.
Joshua Weber and Nicolas E Flament. “Factors contributing to deep slab dip angles in reconstructions of past mantle flow”. In: Geochem. Geophys. Geosyst. 25 (2024), e2023GC011313. doi: 10.1029/2023GC011313.
Maaike FM Weerdesteijn, Clinton P Conrad, and John B Naliboff. “Solid Earth Uplift Due To Contemporary Ice Melt Above Low-Viscosity Regions of the Upper Mantle”. In: Geophys. Res. Lett. 49.17 (2022), e2022GL099731. doi: 10.1029/2022GL099731.
Maaike FM Weerdesteijn et al. “Modeling viscoelastic solid Earth deformation due to ice age and contemporary glacial mass changes in ASPECT”. In: Geochem. Geophys. Geosyst. 24.3 (2023), e2022GC010813. doi: 10.1029/2022GC010813.
S Shawn Wei, Douglas A Wiens, Peter E van Keken, and Chen Cai. “Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration”. In: Science advances 3.1 (2017), e1601755. doi: 10.1126/sciadv.1601755.
R.F. Weinberg and H. Schmeling. “Polydiapirs: multiwavelength gravity structures”. In: Journal of Structural Geology 14.4 (1992), pp. 425–436. doi: 10.1016/0191-8141(92) 90103-4.
Roberto F Weinberg, Louis Moresi, and Peter Van der Borgh. “Timing of deformation in the Norseman-Wiluna belt, Yilgarn craton, Western Australia”. In: Precambrian Research 120.3-4 (2003), pp. 219–239. doi: 10.1016/S0301-9268(02)00142-0.
Roberto Ferrez Weinberg, AN Sial, and Gorki Mariano. “Close spatial relationship between plutons and shear zones”. In: Geology 32.5 (2004), pp. 377–380. doi: 10.1130/G20290.1.
Jens Weismüller et al. “Fast asthenosphere motion in high-resolution global mantle flow models”. In: Geophys. Res. Lett. 42.18 (2015), pp. 7429–7435. doi: 10 . 1002 / 2015GL063727.
J.R. Weiss, G. Ito, B.A. Brooks, J.-A. Olive, G.F. Moore, and J.H. Foster. “Formation of the frontal thrust zone of accretionary wedges”. In: Earth Planet. Sci. Lett. 495 (2018), pp. 87–100. doi: 10.1016/j.epsl.2018.05.010.
M. B. Weller and A. Lenardic. “Hysteresis in mantle convection: Plate tectonics systems”. In: Geophys. Res. Lett. 39.10 (2012). doi: 10.1029/2012GL051232.
M. B. Weller and A. Lenardic. “The Energetics and Convective Vigor of Mixed-mode Heating: Velocity Scalings and Implications for the Tectonics of Exoplanets: The Energetics of Mixed-mode convection”. In: Geophys. Res. Lett. 43 (2016), pp. 9469–9474. doi: 10. 1002/2016GL069927.
M. B. Weller, A. Lenardic, and C. O’Neill. “The effects of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets”. In: Earth Planet. Sci. Lett. 420 (2015), pp. 85–94. doi: 10.1016/j.epsl.2015.03.021.
M.B. Weller, A. Lenardic, and W.B. Moore. “Scaling relationships and physics for mixed heating convection in planetary interiors: Isoviscous spherical shells”. In: J. Geophys. Res.: Solid Earth 121 (2016), pp. 7598–7617. doi: 10.1002/2016JB013247.
Matthew B Weller, Lukas Fuchs, Thorsten W Becker, and Krista M Soderlund. “Convection in thin shells of icy satellites: effects of latitudinal surface temperature variations”. In: J. Geophys. Res.: Planets 124.8 (2019), pp. 2029–2053. doi: 10.1029/2018JE005799.
Matthew B Weller and Walter S Kiefer. “The Physics of Changing Tectonic Regimes: Implications for the Temporal Evolution of Mantle Convection and the Thermal History of Venus”. In: J. Geophys. Res.: Planets 125 (2020). doi: 10.1029/2019JE005960.
Matthew B Weller and Adrian Lenardic. “On the evolution of terrestrial planets: Bi-stability, stochastic effects, and the non-uniqueness of tectonic states”. In: Geoscience Frontiers 9.1 (2018), pp. 91–102. doi: 10.1016/j.gsf.2017.03.001.
S. Wenker and C. Beaumont. “Can metasomatic weakening result in the rifting of cratons?” In: Tectonophysics 746 (2018), pp. 3–21. doi: 10.1016/j.tecto.2017.06.013.
S. Wenker and C. Beaumont. “Effects of lateral strength contrasts and inherited heterogeneities on necking and rifting of continents”. In: Tectonophysics 746 (2018), pp. 46–63. doi: 10.1016/j.tecto.2016.10.011.
Pieter Wesseling and Cornelis W Oosterlee. “Geometric multigrid with applications to computational fluid dynamics”. In: Journal of Computational and Applied Mathematics 128.1-2 (2001), pp. 311–334. doi: 10.1016/S0377-0427(00)00517-3.
D.M. Whipp, C. Beaumont, and J. Braun. “Feeding the ”aneurysm”: Orogen-parallel mass transport into Nanga Parbat and the western Himalayan syntaxis”. In: J. Geophys. Res.: Solid Earth 119 (2014). doi: 10.1002/2013JB010929.
Mark A Wieczorek and Matthias Meschede. “Shtools: Tools for working with spherical harmonics”. In: Geochem. Geophys. Geosyst. 19.8 (2018), pp. 2574–2592. doi: 10.1029/ 2018GC007529.
Markus Wiedemann, Christoph Anthes, Hans-Peter Bunge, Bernhard SA Schuberth, and Dieter Kranzlmülle. “Transforming Geodata for Immersive Visualisation”. In: 2015 IEEE 11th International Conference on e-Science. 2015, pp. 249–254. doi: 10.1109/eScience. 2015.80.
Erik van der Wiel, Jakub Pokornỳ, Hana Čžková, Wim Spakman, Arie P van den Berg, and Douwe JJ van Hinsbergen. “Slab buckling as a driver for rapid oscillations in Indian plate motion and subduction rate”. In: Communications Earth & Environment 5.1 (2024), p. 316. doi: 10.1038/s43247-024-01472-x.
J van Wijk, J van Hunen, and S Goes. “Small-scale convection during continental rifting: Evidence from the Rio Grande rift”. In: Geology 36.7 (2008), pp. 575–578. doi: 10.1130/ G24691A.1.
J.W. van Wijk. “Role of weak zone orientation in continental lithosphere extension”. In: Geophys. Res. Lett. 32.L02303 (2005). doi: 10.1029/2004GL022192.
J.W. van Wijk and D.K. Blackman. “Development of en echelon magmatic segments along oblique spreading ridges”. In: Geology 35.7 (2007), pp. 599–602.
J.W. van Wijk and D.K. Blackman. “Dynamics of continental rift propagation: the end-member modes”. In: Earth Planet. Sci. Lett. 229 (2005), pp. 247–258.
J.W. van Wijk et al. “Small-scale convection at the edge of the Colorado Plateau: Implications for topography, magmatism, and evolution of Proterozoic lithosphere”. In: Geology 38 (2010), pp. 611–614. doi: 10.1130/G31031.1.
C. Wijns, R. Weinberg, K. Gessner, and L. Moresi. “Mode of crustal extension determined by rheological layering”. In: Earth Planet. Sci. Lett. 236 (2005), pp. 120–134.
Chris Wijns, Fabio Boschetti, and Louis Moresi. “Inverse modelling in geology by interactive evolutionary computation”. In: Journal of Structural Geology 25 (2003), pp. 1615–1621. doi: 10.1016/S0191-8141(03)00010-5.
Christopher Wijns. “Exploring conceptual geodynamic models: numerical method and application to tectonics and fluid flow”. PhD thesis. School of Earth and Geographical Sciences, University of Western Australia, 2004.
S. Willett, C. Beaumont, and P. Fullsack. “Mechanical model for the tectonics of doubly vergent compressional orogens”. In: Geology 21 (1993), pp. 371–374.
S. D. Willett. “Rheological dependence of extension in wedge models of convergent orogens”. In: Tectonophysics 305 (1999), pp. 419–435.
S.D. Willett. “Orogeny and orography: The effects of erosion on the structure of mountain belts”. In: J. Geophys. Res.: Solid Earth 104.B12 (1999), p. 28957.
S.D. Willett and C. Beaumont. “Subduction of Asian lithosphere mantle beneath Tibet inferred from models of continental collision”. In: Nature 369 (1994), pp. 642–645.
Sean D. Willett and Daniel C. Pope. “Thermo-mechanical models of convergent orogenesis: Thermal and rheologic dependence of crustal deformation”. In: Rheology and deformation of the lithosphere at continental margins. Columbia University Press, 2003, pp. 166–222.
C. D. Williams, M. Li, A. K. McNamara, E. J. Garnero, and M. C. van Soest. “Episodic entrainment of deep primordial mantle material into ocean island basalts”. In: Nature Communications 6 (2015), p. 8937. doi: 10.1038/ncomms9937.
Karen Williams, D Sarah Stamps, Jaqueline Austermann, Scott King, and Emmanuel Njinju. “Effects of using the consistent boundary flux method on dynamic topography estimates”. In: Geophy. J. Int. 238 (2024), pp. 1137–1149. doi: 10.1093/gji/ggae203.
C.R. Wilson, M. Spiegelman, and P.E. van Keken. “TerraFERMA: The Transparent Finite Element Rapid Model Assembler for multiphysics problems in Earth sciences”. In: Geochem. Geophys. Geosyst. 18 (2017), pp. 769–810. doi: 10.1002/2016GC006702.
C.R. Wilson, M. Spiegelman, P.E. van Keken, and B.R. Hacker. “Fluid flow in subduction zones: The role of solid rheology and compaction pressure”. In: Earth Planet. Sci. Lett. 401 (2014), pp. 261–274. doi: 10.1016/j.epsl.2014.05.052.
CJL Wilson and Yu Zhang. “Comparison between experiment and computer modelling of plane-strain simple-shear ice deformation”. In: Journal of Glaciology 40.134 (1994), pp. 46–55.
SB Wissing, S Ellis, and Othmar-Adrian Pfiffner. “Numerical models of Alpine-type cover nappes”. In: Tectonophysics 367.3-4 (2003), pp. 145–172.
Craig Withers. “Modelling slab age and crustal thickness: numerical approaches to drivers of compressive stresses in the overriding plate in Andean style subduction zone systems. (MSc thesis)”. PhD thesis. Durham University, 2020.
Lorenz Wolf, Ritske S Huismans, Sebastian G Wolf, Delphine Rouby, and Dave A May. “Evolution of Rift Architecture and Fault Linkage During Continental Rifting: Investigating the Effects of Tectonics and Surface Processes Using Lithosphere-Scale 3D Coupled Numerical Models”. In: J. Geophys. Res.: Solid Earth 127.12 (2022), e2022JB024687.
S.G. Wolf, R.S. Huismans, J. Braun, and Yuan X. “Topography of mountain belts controlled by rheology and surface processes”. In: Nature 606 (2022), pp. 516–521. doi: 10.1038/ s41586-022-04700-6.
Sebastian G Wolf and Ritske S Huismans. “Mountain building or backarc extension in ocean-continent subduction systems-a function of backarc lithospheric strength and absolute plate velocities”. In: J. Geophys. Res.: Solid Earth (2019). doi: todo.
Stephanie Wollherr, Alice-Agnes Gabriel, and Carsten Uphoff. “Off-fault plasticity in three-dimensional dynamic rupture simulations using a modal Discontinuous Galerkin method on unstructured meshes: Implementation, verification, and application”. In: Geophy. J. Int. 214.3 (2018), 1556–1584. doi: 10.1093/gji/ggy213.
M. Wolstencroft and J.H. Davies. “Influence of the Ringwoodite-Perovskite transition on mantle convection in spherical geometry as a function of Clapeyron slope and Rayleigh number”. In: Solid Earth 2 (2011), pp. 315–326.
M. Wolstencroft, J.H. Davies, and D.R. Davies. “Nusselt-Rayleigh number scaling for spherical shell Earth mantle simulation up to a Rayleigh number of 109”. In: Phys. Earth. Planet. Inter. 176 (2009), pp. 132–141. doi: 10.1016/j.pepi.2009.05.002.
Martin Wolstencroft and J Huw Davies. “Breaking supercontinents; no need to choose between passive or active”. In: Solid Earth 8.4 (2017), pp. 817–825. doi: 10.5194/se- 8-817-2017.
T. Wong and V.S. Solomatov. “Constraints on plate tectonics initiation from scaling laws for single-cell convection”. In: Phys. Earth. Planet. Inter. 257 (2016), pp. 128–136. doi: 10.1016/j.pepi.2016.05.015.
T. Wong and V.S. Solomatov. “Towards scaling laws for subduction initiation on terrestrial planets: constraints from two-dimensional steady-state convection simulations”. In: Progress in Earth and Planetary Science 2.1 (2015). doi: 10.1186/s40645-015-0041-x.
T. Wong and V.S. Solomatov. “Variations in timing of lithospheric failure on terrestrial planets due to chaotic nature of mantle convection”. In: Geochem. Geophys. Geosyst. 17.5 (2016), pp. 1569–1585. doi: 10.1002/2015GC006158.
Jennifer Worthen, Georg Stadler, Noemi Petra, Michael Gurnis, and Omar Ghattas. “Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow”. In: Phys. Earth. Planet. Inter. 234 (2014), pp. 23–34.
Bingcheng Wu, Yongming Wang, and Jinshui Huang. “Dynamics of the subducted Izanagi-Pacific plates since the Mesozoic and its implications for the formation of big mantle wedge beneath Eastern Asia”. In: Frontiers in Earth Science 10 (2022), p. 829163. doi: 10.3389/feart.2022.829163.
G. Wu, L.L. Lavier, and E. Choi. “Modes of continental extension in a crustal wedge”. In: Earth Planet. Sci. Lett. 421 (2015), pp. 89–97.
Yangming Wu, Jie Liao, Jiarong Qing, and Yongqiang Shen. “Subduction development along extinct mid-ocean ridges versus weakened passive continental margins”. In: Gondwana Research 117 (2023), pp. 243–260. doi: https://doi.org/10.1016/j.gr.2023.02.001.
Guanjie Xiang, Zhensheng Wang, and Timothy M Kusky. “Density and viscosity changes between depleted and primordial mantle at 1000 km depth influence plume upwelling behavior”. In: Earth Planet. Sci. Lett. 576 (2021), p. 117213. doi: 10.1016/j.epsl. 2021.117213.
Xiao Xiang et al. “Plume-Modified Lithosphere Mantle Controlled the Cenozoic Sediment Thickness in the Tarim Basin”. In: Geophys. Res. Lett. 51.2 (2024), e2023GL106203. doi: 10.1029/2023GL106203.
Jingchun Xie, Chengli Huang, and Mian Zhang. “On the formation of thrust fault-related landforms in Mercury’s Northern Smooth Plains: A new mechanical model of the lithosphere”. In: Icarus 388 (2022), p. 115197. doi: 10.1016/j.icarus.2022.115197.
Renxian Xie, Lin Chen, Jason P Morgan, and Yongshun John Chen. “Various lithospheric deformation patterns derived from rheological contrasts between continental terranes: insights from 2-D numerical simulations”. In: Solid Earth 15.7 (2024), pp. 789–806. doi: 10.5194/se-15-789-2024.
Renxian Xie, Lin Chen, Xiong Xiong, Kai Wang, and Zhiyong Yan. “The role of Pre-existing crustal weaknesses in the uplift of the eastern Tibetan Plateau: 2D thermo-mechanical modeling”. In: Tectonics 40.4 (2021), e2020TC006444. doi: 10.1029/2020TC006444.
Renxian Xie et al. “Two phases of crustal shortening in northeastern Tibet as a result of a stronger Qaidam lithosphere during the Cenozoic India–Asia collision”. In: Tectonics 42.1 (2023), e2022TC007261. doi: 10.1029/2022TC007261.
Shunxing Xie and Paul J Tackley. “Evolution of helium and argon isotopes in a convecting mantle”. In: Phys. Earth. Planet. Inter. 146.3-4 (2004), pp. 417–439. doi: 10.1016/j. pepi.2004.04.003.
Shunxing Xie and Paul J Tackley. “Evolution of U-Pb and Sm-Nd systems in numerical models of mantle convection and plate tectonics”. In: J. Geophys. Res.: Solid Earth 109.B11 (2004). doi: 10.1029/2004JB003176.
Yuan Xie, Attila Balázs, Taras Gerya, and Xiong Xiong. “Uplift of the Tibetan Plateau driven by mantle delamination from the overriding plate”. In: Nature Geoscience (2024), pp. 1–6. doi: 10.1038/s41561-024-01473-7.
Bingrui Xu and Neil M Ribe. “A hybrid boundary-integral/thin-sheet equation for subduction modelling”. In: Geophy. J. Int. 206.3 (2016), pp. 1552–1562. doi: 10.1093/ gji/ggw229.
Haixuan Xu, Jianghai Li, Lijie Wang, Xiaoyu Zhang, and Bo Feng. “Influence of mantle plume on continental rift evolution: A case study of the East African rift system”. In: Petroleum Research (2024). doi: 10.1016/j.ptlrs.2024.02.001.
Liang Xue, James D Muirhead, Robert Moucha, Lachlan JM Wright, and Christopher A Scholz. “The Impact of Climate-Driven Lake Level Changes on Mantle Melting in Continental Rifts”. In: Geophys. Res. Lett. 50.18 (2023), e2023GL103905. doi: 10.1029/2023GL103905.
Y. Lina nd Y. Cao. “A new nonlinear Uzawa algorithm for generalised saddle point problems”. In: Applied Mathematics and Computation 175 (2006), pp. 1432–1454.
Yasuhiro Yamada, Kei Baba, and Toshifumi Matsuoka. “Analogue and numerical modelling of accretionary prisms with a decollement in sediments”. In: Geological Society, London, Special Publications 253.1 (2006), pp. 169–183. doi: 10.1144/GSL.SP.2006.253.01.09.
P. Yamato, P. Agard, E. Burov, L. Le Pourhiet, L. Jolivet, and C. Tiberi. “Burial and exhumation in a subduction wedge: Mutual constraints from thermomechanical modeling and natural P-T-t data (Schistes Lustres, western Alps)”. In: J. Geophys. Res.: Solid Earth 112.B07410 (2007). doi: 10.1029/2006JB004441.
P. Yamato, E. Burov, P. Agard, L. Le Pourhiet, and L. Jolivet. “HP-UHP exhumation during slow continental subduction: Self-consistent thermodynamically and thermomechanically coupled model with application to the Western Alps”. In: Earth Planet. Sci. Lett. 271 (2008), pp. 63–74.
P. Yamato, L. Husson, T.W. Becker, and K. Pedoja. “Passive margins getting squeezed in the mantle convection vice”. In: Tectonics 32 (2013), pp. 1559–1570. doi: 10.1002/ 2013TC003375.
P. Yamato, L. Husson, J. Braun, C. Loiselet, and C. Thieulot. “Influence of surrounding plates on 3D subduction dynamics”. In: Geophys. Res. Lett. 36.L07303 (2009). doi: 10. 1029/2008GL036942.
P. Yamato, F. Mouthereau, and E. Burov. “Taiwan mountain building: Insights from 2-D thermomechanical modelling of a rheologically stratified lithosphere”. In: Geophy. J. Int. 176.1 (2009), pp. 307–326. doi: 10.1111/j.1365-246X.2008.03977.x.
P. Yamato, R. Tartese, T. Duretz, and D.A. May. “Numerical modelling of magma transport in dykes”. In: Tectonophysics 526-529 (2012), pp. 97–109.
Ph. Yamato, B.J.P. Kaus, F. Mouthereau, and S. Castelltort. “Dynamic constraints on the crustal-scale rheology of the Zagros fold belt, Iran”. In: Geology 39.9 (2011), pp. 815–818. doi: 10.1130/G32136.1.
Philippe Yamato, Thibault Duretz, M Basset, and Cindy Luisier. “Reaction-induced volume change triggers brittle failure at eclogite facies conditions”. In: Earth Planet. Sci. Lett. 584 (2022), p. 117520. doi: 10.1016/j.epsl.2022.117520.
Philippe Yamato, Thibault Duretz, David A May, and Romain Tartese. “Quantifying magma segregation in dykes”. In: Tectonophysics 660 (2015), pp. 132–147.
Jun Yan, Maxim D. Ballmer, and Paul J. Tackley. “The evolution and distribution of recycled oceanic crust in the Earth’s mantle: Insight from geodynamic models”. In: Earth Planet. Sci. Lett. 537 (2020), p. 116171. doi: 10.1016/j.epsl.2020.116171.
Zhiyong Yan, Lin Chen, Xiong Xiong, Bo Wan, and Houze Xu. “Oceanic Plateau and Subduction Zone Jump: Two-Dimensional Thermo-Mechanical Modeling”. In: J. Geophys. Res.: Solid Earth 126.7 (2021), e2021JB021855. doi: 10.1029/2021JB021855.
Zhiyong Yan, Lin Chen, Andrew V Zuza, Jiaxuan Tang, Bo Wan, and Qingren Meng. “The fate of oceanic plateaus: subduction versus accretion”. In: Geophy. J. Int. 231 (2022), pp. 1349–1362. doi: 10.1093/gji/ggac266.
Zhiyong Yan, Lin Chen, Andrew V Zuza, Xiao Xiang, Renxian Xie, and Sanxi Ai. “Deciphering subduction polarity during ancient arc-continent collisions”. In: Geophys. Res. Lett. 51.15 (2024), e2024GL108761. doi: 10.1029/2024GL108761.
Takatoshi Yanagisawa, Yasuko Yamagishi, Yozo Hamano, and Dave R Stegman. “Mechanism for generating stagnant slabs in 3-D spherical mantle convection models at Earth-like conditions”. In: Phys. Earth. Planet. Inter. 183.1-2 (2010), pp. 341–352. doi: 10.1016/ j.pepi.2010.02.005.
Haibin Yang, Irina M Artemieva, and Hans Thybo. “The Mid-Lithospheric Discontinuity caused by channel flow in proto-cratonic mantle”. In: J. Geophys. Res.: Solid Earth 128 (2023), e2022JB026202. doi: 10.1029/2022JB026202.
Jianfeng Yang, Ross N Mitchell, Christopher J Spencer, Baolu Sun, Chang Zhang, and Liang Zhao. “Magmatic ignitor kick-starts subduction initiation”. In: Gondwana Research 122 (2023), pp. 112–124. doi: 10.1016/j.gr.2023.05.023.
Jianfeng Yang, Liang Zhao, and Yang Li. “Tectonic deformation at the outer rise of subduction zones”. In: Geophy. J. Int. 232.3 (2023), pp. 1533–1544. doi: 10.1093/gji/ ggac402.
Jianfeng Yang et al. “Lower Crustal Rheology Controls the Development of Large Offset Strike-Slip Faults During the Himalayan-Tibetan Orogeny”. In: Geophys. Res. Lett. 47.18 (2020), e2020GL089435. doi: 10.1029/2020GL089435.
Shao-Hua Yang, Zhong-Hai Li, Taras Gerya, Zhi-Qin Xu, and Yao-Lin Shi. “Dynamics of terrane accretion during seaward continental drifting and oceanic subduction: Numerical modeling and implications for the Jurassic crustal growth of the Lhasa Terrane, Tibet”. In: Tectonophysics 746 (2018), pp. 212–228. doi: 10.1016/j.tecto.2017.07.018.
Shuting Yang, Zhong-Hai Li, Bo Wan, Ling Chen, and Boris JP Kaus. “Subduction-induced back-arc extension versus far-field stretching: Contrasting modes for continental marginal break-up”. In: Geochem. Geophys. Geosyst. 22.3 (2021), e2020GC009416. doi: 10.1029/ 2020GC009416.
T. Yang, M. Gurnis, and Z. Zhan. “Trench motion-controlled slab morphology and stress variations: Implications for the isolated 2015 Bonin Islands deep earthquake”. In: Geophys. Res. Lett. (2017). doi: 10.1002/2017GL073989.
T. Yang et al. “Contrasted East Asia and South America tectonics driven by deep mantle flow”. In: Earth Planet. Sci. Lett. 517 (2019), pp. 106–116. doi: 10.1016/j.epsl.2019. 04.025.
Ting Yang and Michael Gurnis. “Dynamic topography, gravity and the role of lateral viscosity variations from inversion of global mantle flow”. In: Geophy. J. Int. 207.2 (2016), pp. 1186–1202. doi: 10.1093/gji/ggw335.
Ting Yang, Michael Gurnis, and Sabin Zahirovic. “Slab avalanche-induced tectonics in self-consistent dynamic models”. In: Tectonophysics 746 (2018), pp. 251–265. doi: 10. 1016/j.tecto.2016.12.007.
Ting Yang, Louis Moresi, Dapeng Zhao, Dan Sandiford, and Joanne Whittaker. “Cenozoic lithospheric deformation in Northeast Asia and the rapidly-aging Pacific Plate”. In: Earth Planet. Sci. Lett. 492 (2018), pp. 1–11. doi: 10.1016/j.epsl.2018.03.057.
Tuoxin Yang, Pengpeng Huangfu, and Yan Zhang. “Differentiation of Continental Subduction Mode: Numerical Modeling”. In: Journal of Earth Science 30 (2019), pp. 809–822. doi: 10.1007/s12583-017-0946-y.
Woo-Sun Yang. “Variable viscosity thermal convection at infinite Prandtl number in a thick spherical shell”. PhD thesis. University of Illinois, 1997.
Woo-Sun Yang and John R Baumgardner. “A matrix-dependent transfer multigrid method for strongly variable viscosity infinite Prandtl number thermal convection”. In: Geophysical & Astrophysical Fluid Dynamics 92.3-4 (2000), pp. 151–195. doi: 10 . 1080 / 03091920008203715.
C. Yao, F. Deschamps, J.P. Lowman, C. Sanchez-Valle, and P.J. Tackley. “Stagnant lid convection in bottom-heated thin 3-D spherical shells: Influence of curvature and implications for dwarf planets and icy moons”. In: J. Geophys. Res.: Solid Earth 119 (2014), pp. 1895–1913. doi: 10.1002/2014JE004653.
Irad Yavneh. “Why multigrid methods are so efficient”. In: Computing in science & engineering 8.6 (2006), p. 12. doi: 10.1109/MCSE.2006.125.
He Yiqian and Yang Haitian. “Solving inverse couple-stress problems via an element-free Galerkin (EFG) method and Gauss–Newton algorithm”. In: Finite Elements in Analysis and Design 46.3 (2010), pp. 257–264. doi: 10.1016/j.finel.2009.09.009.
Soohwan Yoo and Changyeol Lee. “Controls on melt focusing beneath old subduction zones: A case study of northeast Japan”. In: Tectonophysics 851 (2023), p. 229766. doi: 10. 1016/j.tecto.2023.229766.
M. Yoshida. “The role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers”. In: Geophys. Res. Lett. 40 (2013), pp. 5387–5392. doi: 10.1002/2013GL057578.
M. Yoshida, F. Tajima, S. Honda, and M. Morishige. “The 3D numerical modeling of subduction dynamics: Plate stagnation and segmentation, and crustal advection in the wet mantle transition zone”. In: J. Geophys. Res.: Solid Earth 117.B04104 (2012). doi: 10.1029/2011JB008989.
Masaki Yoshida. “Dynamic role of the rheological contrast between cratonic and oceanic lithospheres in the longevity of cratonic lithosphere: A three-dimensional numerical study”. In: Tectonophysics 532 (2012), pp. 156–166. doi: 10.1016/j.tecto.2012.01.029.
Masaki Yoshida. “Mantle convection with longest-wavelength thermal heterogeneity in a 3-D spherical model: Degree one or two?” In: Geophys. Res. Lett. 35.23 (2008). doi: 10.1029/ 2008GL036059.
Masaki Yoshida. “Stress regime analysis for the transition to a stagnant-lid convection regime in the terrestrial mantle”. In: Planetary and Space Science 238 (2023), p. 105794. doi: 10.1016/j.pss.2023.105794.
Masaki Yoshida and Tomoeki Nakakuki. “Effects on the long-wavelength geoid anomaly of lateral viscosity variations caused by stiff subducting slabs, weak plate margins and lower mantle rheology”. In: Phys. Earth. Planet. Inter. 172.3-4 (2009), pp. 278–288. doi: 10.1016/j.pepi.2008.10.018.
Masaki Yoshida and Masaki Ogawa. “Plume heat flow in a numerical model of mantle convection with moving plates”. In: Earth Planet. Sci. Lett. 239.3-4 (2005), pp. 276–285. doi: 10.1016/j.epsl.2005.09.006.
Masaki Yoshida and Masaki Ogawa. “The role of hot uprising plumes in the initiation of plate-like regime of three-dimensional mantle convection”. In: Geophys. Res. Lett. 31.5 (2004). doi: 10.1029/2003GL017376.
Masaki Yoshida, Saneatsu Saito, and Kazunori Yoshizawa. “Dynamics of continental lithosphere extension and passive continental rifting from numerical experiments of visco-elasto-plastic thermo-chemical convection in 2-D Cartesian geometry”. In: Tectonophysics 796 (2020), p. 228659. doi: 10.1016/j.tecto.2020.228659.
Masaki Yoshida, Saneatsu Saito, and Kazunori Yoshizawa. “Possible tectonic patterns along the eastern margin of Gondwanaland from numerical studies of mantle convection”. In: Tectonophysics 787 (2020), p. 228476. doi: 10.1016/j.tecto.2020.228476.
Hongzheng Yu and Shimin Wang. “Unified Linear Stability Analysis for Thermal Convections in Spherical Shells Under Different Boundary Conditions and Heating Modes”. In: Earth and Space Science 6.9 (2019), pp. 1749–1768. doi: 10.1029/2019EA000672.
Qian Yuan, Michael Gurnis, Paul D Asimow, and Yida Li. “A Giant Impact Origin for the First Subduction on Earth”. In: Geophys. Res. Lett. 51 (2024), e2023GL106723. doi: 10.1029/2023GL106723.
Qian Yuan and Mingming Li. “Instability of the African large low-shear-wave-velocity province due to its low intrinsic density”. In: Nature Geoscience (2022). doi: 10.1038/ s41561-022-00908-3.
Qian Yuan et al. “Moon-forming impactor as a source of Earth’s basal mantle anomalies”. In: Nature 623.7985 (2023), pp. 95–99. doi: 10.1038/s41586-023-06589-1.
David A Yuen and Roberto Sabadini. “Secular rotational motions and the mechanical structure of a dynamical viscoelastic Earth”. In: Phys. Earth. Planet. Inter. 36.3-4 (1984), pp. 391–412. doi: 10.1016/0031-9201(84)90059-1.
David A Yuen, Nicola Tosi, and Ondrej Čadek. “Influences of lower-mantle properties on the formation of asthenosphere in oceanic upper mantle”. In: Journal of Earth Science 22.2 (2011), pp. 143–154. doi: 10.1007/s12583-011-0166-9.
Z. Xu Z. Li and T.V. Gerya. “Numerical Geodynamic Modeling of Continental Convergent Margins, Earth Sciences”. In: Earth Sciences. Ed. by Dr. Imran Ahmad Dar. InTech, 2012.
S. Zahirovic, R. D. Müller, M. Seton, N. Flament, M. Gurnis, and J. Whittaker. “Insights on the kinematics of the India-Eurasia collision from global geodynamic models”. In: Geochem. Geophys. Geosyst. 13.4 (2012). doi: 10.1029/2011GC003883.
VS Zakharov, NV Lubnina, AV Stepanova, and TV Gerya. “Simultaneous intruding of mafic and felsic magmas into the extending continental crust caused by mantle plume underplating: 2D magmatic-thermomechanical modeling and implications for the Paleoproterozoic Karelian Craton”. In: Tectonophysics 822 (2022), p. 229173. doi: 10.1016/j.tecto.2021.229173.
Iris van Zelst, Stephanie Wollherr, Alice-Agnes Gabriel, Elizabeth H Madden, and Ylona van Dinther. “Modeling Megathrust Earthquakes Across Scales: One-way Coupling From Geodynamics and Seismic Cycles to Dynamic Rupture”. In: J. Geophys. Res.: Solid Earth 124.11 (2019), pp. 11414–11446. doi: 10.1029/2019JB017539.
Stefanie Zeumann and Andrea Hampel. “Deformation of erosive and accretive forearcs during subduction of migrating and non-migrating aseismic ridges: Results from 3-D finite element models and application to the Central American, Peruvian, and Ryukyu margins”. In: Tectonics 34.9 (2015), pp. 1769–1791. doi: 10.1002/2015TC003867.
Hermann Zeyen, Puy Ayarza, Manel Fernŕndez, and Abdelkrim Rimi. “Lithospheric structure under the western African-European plate boundary: A transect across the Atlas Mountains and the Gulf of Cadiz”. In: Tectonics 24.2 (2005). doi: 10.1029/2004TC001639.
Hermann Zeyen and Manel Fernandez. “Integrated lithospheric modeling combining thermal, gravity, and local isostasy analysis: Application to the NE Spanish Geotransect”. In: J. Geophys. Res.: Solid Earth 99.B9 (1994), pp. 18089–18102. doi: 10.1029/94JB00898.
Caicai Zha, Jian Lin, Zhiyuan Zhou, Min Xu, and Xubo Zhang. “Effects of hotspot-induced long-wavelength mantle melting variations on magmatic segmentation at the Reykjanes Ridge: Insights from 3D geodynamic modelling”. In: J. Geophys. Res.: Solid Earth 127 (2022), e2021JB023244. doi: 10.1029/2021JB023244.
Caicai Zha, Fan Zhang, Jian Lin, Tao Zhang, and Jinyu Tian. “On the relative importance of buoyancy and thickening of aging lithosphere in mantle upwelling and crustal production beneath global mid-ocean ridge system”. In: J. Geophys. Res.: Solid Earth 129.5 (2024), e2023JB028432. doi: 10.1029/2023JB028432.
Lulu Zhang, Sergio Zlotnik, and Chun-Feng Li. “Anomalous Subduction Initiation: Young Under Old Oceanic Lithosphere”. In: Geochem. Geophys. Geosyst. 22.6 (2021), e2020GC009549. doi: 10.1029/2020GC009549.
N. Zhang and Z-X Li. “Formation of mantle ”lone plumes” in the global downwelling zone – A case for subduction-controlled plume generation beneath the South China Sea”. In: Tectonophysics (2018). doi: 10.1016/j.tecto.2017.11.038.
N. Zhang and R. N. Pysklywec. “Role of mantle flow at the North Fiji Basin: Insights from anomalous topography”. In: Geochem. Geophys. Geosyst. 7.12 (2006). doi: 10.1029/ 2006GC001376.
N. Zhang and S. Zhong. “Heat fluxes at the Earth’s surface and core-mantle boundary since Pangea formation and their implications for the geomagnetic superchrons”. In: Earth Planet. Sci. Lett. 306.3-4 (2011), pp. 205–216. doi: 10.1016/j.epsl.2011.04.001.
N. Zhang, S. Zhong, and R. M. Flowers. “Predicting and testing continental vertical motion histories since the Paleozoic”. In: Earth Planet. Sci. Lett. 317-318 (2012), pp. 426–435. doi: 10.1016/j.epsl.2011.10.041.
N. Zhang, S. Zhong, W. Leng, and Z.-X. Li. “A model for the evolution of the Earth’s mantle structure since the Early Paleozoic”. In: J. Geophys. Res.: Solid Earth 115.B06401 (2010). doi: 10.1029/2009JB006896.
N. Zhang, S. Zhong, and A.K. McNarmara. “Supercontinent formation from stochastic collision and mantle convection models”. In: Gondwana Research 15 (2009), pp. 267–275. doi: 10.1016/j.gr.2008.10.002.
S. Zhang and C. O’Neill. “The early geodynamic evolution of Mars-type planets”. In: Icarus 265 (2016), pp. 187–208. issn: 0019-1035. doi: 10.1016/j.icarus.2015.10.019.
Shengxing Zhang and Wei Leng. “Subduction Polarity Reversal: Induced or Spontaneous?” In: Geophys. Res. Lett. 48.11 (2021), e2021GL093201. doi: 10.1029/2021GL093201.
Shengxing Zhang, Wei Leng, and Ling Chen. “Continental tip with thinned lithosphere and thickened crust is a favorable location for subduction initiation”. In: J. Geophys. Res.: Solid Earth 128 (2023), e2023JB027067. doi: 10.1029/2023JB027067.
Shengxing Zhang, Yiliang Li, Wei Leng, and Michael Gurnis. “Photoferrotrophic bacteria initiated plate tectonics in the Neoarchean”. In: Geophys. Res. Lett. 50.13 (2023), e2023GL103553. doi: 10.1029/2023GL103553.
Siqi Zhang, HL Xing, David A Yuen, Huai Zhang, and Yaolin Shi. “Regional stress fields under Tibet from 3D global flow simulation”. In: Journal of Earth Science 22.2 (2011), pp. 155–159. doi: 10.1007/s12583-011-0167-8.
Wenbo Zhang, Nan Zhang, Yan Liang, and Leif Tokle. “The Effect of Pressure-Dependent Viscosity on the Dynamics of the Post-Overturn Lunar Mantle”. In: J. Geophys. Res.: Planets 128.10 (2023), e2023JE007933. doi: 10.1029/2023JE007933.
Wentao Zhang et al. “Geophysical-petrological model for bidirectional mantle delamination of the Adria microplate beneath the northern Apennines and Dinarides orogenic systems”. In: J. Geophys. Res.: Solid Earth 127.12 (2022), e2022JB024800. doi: 10.1029/2022JB024800.
Wentao Zhang et al. “The lithosphere and upper mantle of the Western-Central Mediterranean region from integrated geophysical-geochemical modeling”. In: J. Geophys. Res.: Solid Earth 129.4 (2024), e2023JB028435. doi: 10.1029/2023JB028435.
X. Zhang. “On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations”. In: J. Comp. Phys. 328 (2017), pp. 301–343.
Y Zhang, BE Hobbs, and MW Jessell. “Crystallographic preferred orientation development in a buckled single layer: a computer simulation”. In: Journal of Structural Geology 15.3-5 (1993), pp. 265–276. doi: 10.1016/0191-8141(93)90125-T.
Y Zhang, BE Hobbs, A Ord, and HB Mühlhaus. “Computer simulation of single-layer buckling”. In: Journal of Structural Geology 18.5 (1996), pp. 643–655. doi: 10.1016/ S0191-8141(96)80030-7.
Hui Zhao and Wei Leng. “Aseismic ridge subduction and flat subduction: Insights from three-dimensional numerical models”. In: Earth and Planetary Physics 7.2 (2023), pp. 269–281. doi: 10.26464/epp2023032.
Y Zhao, Jellie De Vries, AP van den Berg, MHG Jacobs, and W van Westrenen. “The participation of ilmenite-bearing cumulates in lunar mantle overturn”. In: Earth Planet. Sci. Lett. 511 (2019), pp. 1–11. doi: 10.1016/j.epsl.2019.01.022.
L. Zheng, H. Zhang, T. Gerya, M. Knepley, D.A. Yuen, and Y. Shi. “Implementation of a multigrid solver on a GPU for Stokes equations with strongly variable viscosity based on Matlab and CUDA”. In: International Journal of High Performance Computing Applications 28.1 (2014), pp. 50–60. doi: 10.1177/1094342013478640.
QunFan Zheng, Huai Zhang, Qin Wang, Zhen Zhang, and YaoLin Shi. “Upper mantle anisotropy and dynamics beneath Cenozoic South China and its surroundings: insights from numerical simulation”. In: Chinese Journal of Geophysics 66.5 (2023), pp. 2007–2018. doi: 10.6038/cjg2022P0780.
S. Zhong. “Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature”. In: J. Geophys. Res.: Solid Earth 111.B4 (2006). issn: 0148-0227. doi: 10.1029/2005JB003972.
S. Zhong. “Migration of Tharsis volcanism on Mars caused by differential rotation of the lithosphere”. In: Nature Geoscience 2.1 (2009), pp. 19–23. doi: 10.1038/ngeo392.
S. Zhong and M. Gurnis. “Dynamic feedback between a continentlike raft and thermal convection”. In: J. Geophys. Res.: Solid Earth 98.B7 (1993), pp. 12219–12232. doi: 10. 1029/93JB00193.
S. Zhong and M. Gurnis. “Role of plates and temperature-dependent viscosity in phase change dynamics”. In: J. Geophys. Res.: Solid Earth 99.B8 (1994), p. 15903. doi: 10. 1029/94JB00545.
S. Zhong and M. Gurnis. “Towards a realistic simulation of plate margins in mantle convection”. In: Geophys. Res. Lett. 22.8 (1995), pp. 981–984. doi: 10.1029/95GL00782.
S. Zhong and M. Gurnis. “Viscous flow model of a subduction zone with a faulted lithosphere: Long and short wavelength topography, gravity and geoid”. In: Geophys. Res. Lett. 19.18 (1992), pp. 1891–1894. doi: 10.1029/92GL02142.
S. Zhong, M. Gurnis, and G. Hulbert. “Accurate determination of surface normal stress in viscous flow from a consistent boundary flux method”. In: Phys. Earth. Planet. Inter. 78.1-2 (1993), pp. 1–8. doi: 10.1016/0031-9201(93)90078-N.
S. Zhong, M. Gurnis, and L. Moresi. “Free-surface formulation of mantle convection-I. Basic theory and application to plumes”. In: Geophy. J. Int. 127.3 (1996), pp. 708–718. doi: 10.1111/j.1365-246X.1996.tb04049.x.
S. Zhong, M. Gurnis, and L. Moresi. “Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models”. In: J. Geophys. Res.: Solid Earth 103.B7 (1998), pp. 15, 255–15, 268. doi: 10.1029/98JB00605.
S. Zhong, A. McNamara, E. Tan, L. Moresi, and M. Gurnis. “A benchmark study on mantle convection in a 3-D spherical shell using CitcomS”. In: Geochem. Geophys. Geosyst. 9.10 (2008). doi: 10.1029/2008GC002048.
S. Zhong and A.B. Watts. “Lithospheric deformation induced by loading of the Hawaiian Islands and its implications for mantle rheology”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 6025–6048. doi: 10.1002/2013JB010408.
S. Zhong, N. Zhang, Z.-X. Li, and J.H. Roberts. “Supercontinent cycles, true polar wander, and very long-wavelength mantle convection”. In: Earth Planet. Sci. Lett. 261 (2007), pp. 551–564. doi: 10.1016/j.epsl.2007.07.049.
S. Zhong, M.T. Zuber, L.N. Moresi, and M. Gurnis. “The role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection”. In: J. Geophys. Res.: Solid Earth 105.B5 (2000), pp. 11, 063–11, 082. doi: 10.1029/2000JB900003.
S.J. Zhong, D.A. Yuen, L.N. Moresi, and M.G. Knepley. “7.05 - Numerical Methods for Mantle Convection”. In: Treatise on Geophysics (Second Edition). Ed. by Gerald Schubert. Second Edition. Oxford, 2015, pp. 197–222. doi: 10.1016/B978-0-444-53802-4.00130- 5.
Sh. Zhong and M. Gurnis. “Interaction of weak faults and non-Newtonian rheology produces plate tectonics in a 3D model of mantle flow”. In: Nature 383 (1996), pp. 245–247. doi: 10.1038/383245a0.
Shijie Zhong. “Analytic solutions for Stokes’ flow with lateral variations in viscosity”. In: Geophy. J. Int. 124.1 (1996), pp. 18–28. doi: 10.1111/j.1365-246X.1996.tb06349.x.
Shijie Zhong. “Dynamics of thermal plumes in three-dimensional isoviscous thermal convection”. In: Geophy. J. Int. 162.1 (2005), pp. 289–300. doi: 10.1111/j.1365- 246X.2005.02633.x.
Shijie Zhong. “Role of ocean-continent contrast and continental keels on plate motion, net rotation of lithosphere, and the geoid”. In: J. Geophys. Res.: Solid Earth 106.B1 (2001), pp. 703–712. doi: 10.1029/2000JB900364.
Shijie Zhong, Kaixuan Kang, Geruo A, and Chuan Qin. “CitcomSVE: A Three-Dimensional Finite Element Software Package for Modeling Planetary Mantle’s Viscoelastic Deformation in Response to Surface and Tidal Loads”. In: Geochem. Geophys. Geosyst. 23.10 (2022), e2022GC010359. doi: 10.1029/2022GC010359.
Shijie Zhong, Archie Paulson, and John Wahr. “Three-dimensional finite-element modelling of Earth’s viscoelastic deformation: effects of lateral variations in lithospheric thickness”. In: Geophy. J. Int. 155.2 (2003), pp. 679–695. doi: 10.1046/j.1365-246X.2003.02084.x.
Shijie Zhong, Chuan Qin, Geruo A, and John Wahr. “Can tidal tomography be used to unravel the long-wavelength structure of the lunar interior?” In: Geophys. Res. Lett. 39.15 (2012). doi: 10.1029/2012GL052362.
Shijie Zhong and Maxwell L Rudolph. “On the temporal evolution of long-wavelength mantle structure of the Earth since the early Paleozoic”. In: Geochem. Geophys. Geosyst. 16.5 (2015), pp. 1599–1615. doi: 10.1002/2015GC005782.
Xinyi Zhong and Zhong-Hai Li. “Compression at Strike-Slip Fault Is a Favorable Condition for Subduction Initiation”. In: Geophys. Res. Lett. 50.4 (2023), e2022GL102171. doi: 10. 1029/2022GL102171.
Xinyi Zhong and Zhong-Hai Li. “Forced subduction initiation at passive continental margins: velocity-driven versus stress-driven”. In: Geophys. Res. Lett. 46 (2019), pp. 11, 054–11, 064. doi: 10.1029/2019GL084022.
Xinyi Zhong and Zhong-Hai Li. “Formation of Metamorphic Soles underlying Ophiolites during Subduction Initiation: A Systematic Numerical Study”. In: J. Geophys. Res.: Solid Earth 127 (), e2021JB023431. doi: 10.1029/2021JB023431.
Quan Zhou and Lijun Liu. “A hybrid approach to data assimilation for reconstructing the evolution of mantle dynamics”. In: Geochem. Geophys. Geosyst. 18.11 (2017), pp. 3854–3868. doi: 10.1002/2017GC007116.
X. Zhou, Z.-H. Li, T.V. Gerya, R.J. Stern, Z. Xu, and J. Zhang. “Subduction initiation dynamics along a transform fault control trench curvature and ophiolite ages”. In: Geology 46.7 (2018), pp. 607–610. doi: 10.1130/G40154.1.
Xin Zhou, Zhong-Hai Li, Taras V. Gerya, and Robert J. Stern. “Lateral propagation-induced subduction initiation at passive continental margins controlled by preexisting lithospheric weakness”. In: Science Advances 6.10 (2020). doi: 10.1126/sciadv.aaz1048.
Xin Zhou and Ikuko Wada. “Differentiating induced versus spontaneous subduction initiation using thermomechanical models and metamorphic soles”. In: Nature Communications 12.1 (2021), pp. 1–10. doi: 10.1038/s41467-021-24896-x.
Aiyu Zhu, Dongning Zhang, Tao Zhu, and Yingxing Guo. “Influence of mantle convection to the crustal movement pattern in the northeastern margin of the Tibetan Plateau based on numerical simulation”. In: Science China Earth Sciences 61 (2018), pp. 1644–1658. doi: 10.1007/s11430-017-9236-7.
G. Zhu, T. Gerya, D.A. Yuen, S. Honda, T. Yoshida, and T. Connolly. “Three-dimensional dynamics of hydrous thermal-chemical plumes in oceanic subduction zones”. In: Geochem. Geophys. Geosyst. 10 (2009). doi: 10.1029/2009GC002625.
G. Zhu, T.V. Gerya, P.J. Tackley, and E. Kissling. “Four-dimensional numerical modeling of crustal growth at active continental margins”. In: J. Geophys. Res.: Solid Earth 118 (2013), pp. 4682–4698. doi: 10.1002/jgrb.50357.
Guizhi Zhu, Taras V Gerya, Satoru Honda, Paul J Tackley, and David A Yuen. “Influences of the buoyancy of partially molten rock on 3-D plume patterns and melt productivity above retreating slabs”. In: Phys. Earth. Planet. Inter. 185.3-4 (2011), pp. 112–121. doi: 10.1016/j.pepi.2011.02.005.
Guizhi Zhu, Yaolin Shi, and Paul Tackley. “Subduction of the western Pacific plate underneath Northeast China: implications of numerical studies”. In: Phys. Earth. Planet. Inter. 178.1-2 (2010), pp. 92–99. doi: 10.1016/j.pepi.2009.10.008.
T. Zhu. “Tomography-based mantle flow beneath Mongolia-Baikal area”. In: Phys. Earth. Planet. Inter. 237 (2014), pp. 40–50. doi: 10.1016/j.pepi.2014.10.003.
T. Zhu and S.N. Atluri. “A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method”. In: Computational Mechanics 21 (1998), pp. 211–222. doi: 10.1007/s004660050296.
Yi Zhu, Patrick J Fox, and Joseph P Morris. “A pore-scale numerical model for flow through porous media”. In: International journal for numerical and analytical methods in geomechanics 23.9 (1999), pp. 881–904. doi: 10.1002/(SICI)1096-9853(19990810)23: 9<881::AID-NAG996>3.0.CO;2-K.
S. Zlotnik, P. Diez, M. Fernandez, and J. Verges. “Numerical modelling of tectonic plates subduction using X-FEM”. In: Computer Methods in Applied Mechanics and Engineering 196 (2007), pp. 4283–4293. doi: 10.1016/j.cma.2007.04.006.
Mary Lou Zoback and Randall M Richardson. “Stress perturbation associated with the Amazonas and other ancient continental rifts”. In: J. Geophys. Res.: Solid Earth 101.B3 (1996), pp. 5459–5475. doi: 10.1029/95JB03256.
Mohd Zuhair, Thyagarajulu Gollapalli, Fabio A Capitanio, Peter G Betts, and Juan Carlos Graciosa. “The Role of Slab Steps on Tectonic Loading Along Subduction Zones: Inferences on the Seismotectonics of the Sunda Convergent Margin”. In: Tectonics 41.9 (2022), e2022TC007242. doi: 10.1029/2022TC007242.
F. Zwaan, G. Scheurs, J. Naliboff, and S.J.H. Buiter. “Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models”. In: Tectonophysics 693 (2016), pp. 239–260. doi: 10.1016/j.tecto.2016.02.036.