Literature

Contents

1 Review papers
2 Geodynamics
 2.1 Analogue modelling
 2.2 Biogeodynamic, geodynamics+biosphere
 2.3 Hadean Earth
 2.4 Archean tectonics, early Earth
 2.5 Asymmetry
 2.6 Anisotropy, Lattice/Crystal preferred orientation (LPO/CPO), SKS splitting
 2.7 Back-arc basin, spreading
 2.8 Continental crust
 2.9 Oceanic crust
 2.10 Oceanic plateaus - evolution, subduction
 2.11 Core dynamics, core formation, CMB temperature/heat flux
 2.12 Compressible flow, Compressibility
 2.13 Computational Structural geology
 2.14 Channel flow model
 2.15 Continental collision
 2.16 Core complexes
 2.17 Tomography, deep Earth structure, lower-mantle structure
 2.18 Extrusion tectonics
 2.19 (Surface) Heat flow
 2.20 Gravity, GRACE, GOCE
 2.21 Dynamo
 2.22 (role of) Elasticity (in geodynamics modelling)
 2.23 (Geodynamics+) surface processes, erosion, sedimentation, topography evolution
 2.24 Geotechnics
 2.25 Glacier dynamics, ice sheets, ice flow, ice rheology
 2.26 Large scale mantle-plate interaction, whole Earth models
 2.27 Crust/Lithosphere modelling, plate motion, plate stress
 2.28 Delamination, edge driven convection, gravitational instability, mantle unrooting, lithosphere thinning, small scale convection, drip
 2.29 Detachment faults
 2.30 Dynamic topography
 2.31 Cratons
 2.32 Lithospheric stress, intra-plate stress, intra-plate deformation
 2.33 Passive margins
 2.34 Eclogites
 2.35 Folding, buckling
 2.36 Geoid
 2.37 Geothermal Energy
 2.38 Grain size (evolution) & influence on geodynamics
 2.39 LLSVP, ULVZ, CMB layer, thermo-chemical piles, D” layer
 2.40 Magma ocean
 2.41 Magma transport / melting / two phase flow/ (intra-plate) volcanism / lava flow/ continental flood basalt, melt migration
 2.42 Magma chambers
 2.43 Mantle convection/dynamics, whole Earth models, plate interaction
 2.44 Mantle convection + growing continents
 2.45 Mantle rheology, phase transitions, stratification, (temperature) profile
 2.46 Mantle wedge
 2.47 Mixing, stirring, degassing, Lyapunov exponent
 2.48 Mantle reservoirs
 2.49 Obduction, ophiolites
 2.50 Oceanic Lithosphere
 2.51 Onset of convection
 2.52 Plate motion and mantle, plate tectonic reconstruction, mechanism
 2.53 Plume dynamics
 2.54 Plume-Lithosphere interaction, LIP, hotspots
 2.55 Porous media
 2.56 Precambrian tectonics
 2.57 Reservoir modelling
 2.58 Restoration, Dynamic Reverse Modelling, Inversion tectonics
 2.59 Rheology, material parameters, rock mechanics
 2.60 Rifting, seafloor spreading, mid-ocean ridges, extension
 2.61 Pull-apart basins
 2.62 Critical Wedges
 2.63 Salt tectonics, Shale tectonics
 2.64 Sea Level evolution, GIA, Post-glacial rebound
 2.65 Seismo-tectonics, subduction earthquakes
 2.66 Stagnant lid
 2.67 Subduction
 2.68 Thermal structure subduction zone and/or slab
 2.69 Slab foundering
 2.70 Intra-oceanic subduction
 2.71 Subduction & plate bending, unbending
 2.72 Subduction - slab detachment, break-off, tearing, sinking velocity
 2.73 Subduction + water (fluids), mantle dynamics + water
 2.74 Subduction/plate tectonics initiation
 2.75 Subduction - flat/low angle/horizontal subduction
 2.76 Subduction - slab rollback
 2.77 Subduction - interface
 2.78 Teaching
 2.79 Tethys
 2.80 Tidal dissipation and heating
 2.81 Transform faults
 2.82 Wilson cycle, supercontinent cycles
 2.83 Planetary accretion, exoplanets, planet formation, segregation
 2.84 Accretionary wedges, nappes, thrust wedges, orogenic wedge, fold-thrust belt
 2.85 Thrust-wrench fault
 2.86 Thrust fault
 2.87 Normal faults
 2.88 Strike slip faults
 2.89 Transpressional systems
 2.90 Urey ratio
 2.91 Intrusions, diapirism, Rayleigh-Taylor instability
3 Celestial bodies
 3.1 Mercury
 3.2 Venus
 3.3 Moon
 3.4 Mars
 3.5 Pluto
 3.6 Super-Earths & exoplanets
 3.7 Icy satellites, icy moons
 3.8 Europa
 3.9 Ceres
 3.10 Enceladus
 3.11 Callisto
 3.12 Ganymede
 3.13 Io
 3.14 Planetesimals
4 Geological areas on Earth
 4.1 South America, Andes, Andean orogeny
 4.2 Central America, Mexico, Guld of Mexico
 4.3 Chile Triple junction
 4.4 North America
 4.5 Siberia
 4.6 Apennines
 4.7 the Netherlands
 4.8 Gulf of Aden
 4.9 Banda
 4.10 Alps
 4.11 Mediterranean region
 4.12 New Zealand
 4.13 Zagros
 4.14 Farallon plate
 4.15 Reunion island/volcano
 4.16 Alaskan region
 4.17 Ethiopian and Afar rift, Malawi Rift, East African rift
 4.18 East mediterranean - Aegean region, Anatolia, Turkey
 4.19 Japan, Izu-Bonin
 4.20 Tonga-Kermadec subduction zone, Fiji
 4.21 Pamir-Hindu Kush region
 4.22 Western United States, San Andreas system
 4.23 Southeastern United States
 4.24 Australian plate
 4.25 Barents sea
 4.26 Carpathians
 4.27 African continent
 4.28 Hawaii
 4.29 Hellenic zone/ Greece
 4.30 Gibraltar zone
 4.31 Norway
 4.32 Canyonlands
 4.33 Dead Sea
 4.34 Canada
 4.35 Basin and Range
 4.36 Yellowstone
 4.37 China, South China Sea
 4.38 Arabian plate
 4.39 Scotia plate
 4.40 Cantabria & North-Iberian margin
 4.41 (North) East Asia
 4.42 (South) East Asia
 4.43 Colorado plateau
 4.44 Antarctica
 4.45 Greenland
 4.46 Atlas, Morroco
 4.47 Atlantic ocean, opening
 4.48 Taiwan
 4.49 Madagascar
 4.50 Mayotte
 4.51 Mariana Trench
 4.52 Pannonian Basin
 4.53 Scandinavia
 4.54 Iran
 4.55 Iceland, Reykjanes Ridge
 4.56 Pacific
 4.57 Philippine plate
 4.58 Variscan
 4.59 Sunda
 4.60 Indian Ocean
 4.61 Himalayan region, Tibetan plateau, India collision
 4.62 Tarim Basin, Tian Shan
 4.63 Pyrenees
 4.64 Dinarides, Pannonian region
 4.65 Caribbean
 4.66 Korea, Korean Peninsula
5 Codes in geodynamics

This is a very rough attempt at classifying my somewhat extensive bibliography per theme/topic. It goes without saying that this cannot be extensive and that since I started computational geodynamics myself around 2006. The provided lists are biaised towards the last 2 decades or so. In retrospect, the categories I have chosen could have been subdivided into narrower fields. I understand that having 100+ references for ’subduction’ or ’mantle convection’ is not particularly useful, but it means that all these papers show up in the bibliography section of this book, and the titles of said papers are then searchable per keyword.

Chapter 1
Review papers

Chapter 2
Geodynamics

topics.tex

2.1 Analogue modelling

2.2 Biogeodynamic, geodynamics+biosphere

2.3 Hadean Earth

2.4 Archean tectonics, early Earth

2.5 Asymmetry

2.6 Anisotropy, Lattice/Crystal preferred orientation (LPO/CPO), SKS splitting

2.7 Back-arc basin, spreading

2.8 Continental crust

2.9 Oceanic crust

2.10 Oceanic plateaus - evolution, subduction

2.11 Core dynamics, core formation, CMB temperature/heat flux

2.12 Compressible flow, Compressibility

2.13 Computational Structural geology

2.14 Channel flow model

2.15 Continental collision

2.16 Core complexes

2.17 Tomography, deep Earth structure, lower-mantle structure

2.18 Extrusion tectonics

2.19 (Surface) Heat flow

2.20 Gravity, GRACE, GOCE

To sort out:

1977: Barbara Romanowicz and Kurt Lambeck. “The mass and moment of inertia of the Earth”. In: Physics of the Earth and Planetary Interiors 15.1 (1977), pp. 1–4

1992: Richard G Gordon and Seth Stein. “Global tectonics and space geodesy”. In: Science 256.5055 (1992), pp. 333–342

1998: John Wahr, Mery Molenaar, and Frank Bryan. “Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE”. In: Journal of Geophysical Research: Solid Earth 103.B12 (1998), pp. 30205–30229. doi: 10.1029/98jb02844

1999: [2902] [2902]
[3190] [3190]
2000: [337] [337]
2001: [426] [426]
2002: [183] [183]
2003: [1929] [1929]
[3232] [3232]
[3566] [3566]
2004: [3400] [3400]
[2903] [2903]
[316] [316]
[3604] [3604]
2005: [568] [568]
[3473] [3473]
2006: [2235] [2235]
[73] [73]
[3347] [3347]
[739] [739]
2007: [2330] [2330]
[2158] [2158]
[2901] [2901]
[2786] [2786]
[3388] [3388]
[1443] [1443]
2008: [3916] [3916]
[2940] [2940]
[3410] [3410]
[3605] [3605]
2012: [1436] [1436]
[2828] [2828]
[1029] [1029]
[181] [181]
[2616] [2616]
[3021] [3021]
[3016] [3016]
[2210] [2210]
[1649] [1649]
[1509] [1509]
2013: [2829] [2829]
[937] [937]
[825] [825]
[3027] [3027]
[3536] [3536]
2014: [2608] [936] [1928] [2069] [80] [489] [3089] 2015: [329] [378] [1110] [2592] [2209] [1020] [2311] [2827] 2016: [1882] [1882]
[2946] [2946]
[901] [901]
[664] [664]
2017: [2945] [2945]
2018: [2597] [2597]
[1437] [1437]
[2879] [2879]
2019: [3208] [3208]
[3152] [3152]
[10] [10]
[3014] [3014]
[3350] [3350]

2.21 Dynamo

2.22 (role of) Elasticity (in geodynamics modelling)

2.23 (Geodynamics+) surface processes, erosion, sedimentation, topography evolution

2.24 Geotechnics

2.25 Glacier dynamics, ice sheets, ice flow, ice rheology

also ian_hewitt_karthaus_rheology.pdf

2.26 Large scale mantle-plate interaction, whole Earth models

2.27 Crust/Lithosphere modelling, plate motion, plate stress

2.28 Delamination, edge driven convection, gravitational instability, mantle unrooting, lithosphere thinning, small scale convection, drip

2.29 Detachment faults

2.30 Dynamic topography

PIC
Taken from http://www.ga.gov.au/news-events/news/latest-news/dynamic-topography-of-australias-margins

See also report/article written by Zhong (2018) Zhong [3888]

2.31 Cratons

2.32 Lithospheric stress, intra-plate stress, intra-plate deformation

2.33 Passive margins

2.34 Eclogites

2.35 Folding, buckling

2.36 Geoid

2.37 Geothermal Energy

2.38 Grain size (evolution) & influence on geodynamics

2.39 LLSVP, ULVZ, CMB layer, thermo-chemical piles, D” layer

PIC[446]

2.40 Magma ocean

2.41 Magma transport / melting / two phase flow/ (intra-plate) volcanism / lava flow/ continental flood basalt, melt migration

2.42 Magma chambers

2.43 Mantle convection/dynamics, whole Earth models, plate interaction

2.44 Mantle convection + growing continents

2.45 Mantle rheology, phase transitions, stratification, (temperature) profile

2.46 Mantle wedge

2.47 Mixing, stirring, degassing, Lyapunov exponent

2.48 Mantle reservoirs

2.49 Obduction, ophiolites

2.50 Oceanic Lithosphere

2.51 Onset of convection

2.52 Plate motion and mantle, plate tectonic reconstruction, mechanism

1966: Wilson [3735]
1967: McKenzie & Parker [2289]
1968: Isacks et al. [1628]
1973: McKenzie & Selater [2292]
1974: [3229]
1975: [1425], [3508]
1990: [842]
1991: [3575]
1992: [3932], Gordon & Stein [1264]
1994: [1344]
1997: [3689]
1998: Zhong et al. [3896], Lithgow-Bertelloni & Richards [2093]
1999: [2881]
2001: [3813]
2002: [3300]
2003: [980][2833]
2007: [3899]
2009: [2068][848][1616][3025]
2010: [3295][843]
2012: [1607][1357][2764][1522][889][3144]
2013: [2423][696]
2014: Rudoplph & Zhong [2962]
2015: Yoshida & Hamano [3812]
2016: [2725]
2017: Stotz et al. [3334]
2019: Tetley et al. [3411], Wessel & Conrad [3692], Flament [1040]
2020: Semple & Lenardic [3121]
2021: Xianzhi Cao, Nicolas Flament, and R Dietmar Müller. “Coupled evolution of plate tectonics and basal mantle structure”. In: Geochemistry, Geophysics, Geosystems 22 (2021), e2020GC009244. doi: 10.1029/2020GC009244, Suzanne Atkins and Nicolas Coltice. “Constraining the range and variation of lithospheric net rotation using geodynamic modelling”. In: Journal of Geophysical Research: Solid Earth 126 (2021), e2021JB022057. doi: 10.1029/2021JB022057

2.53 Plume dynamics

2.54 Plume-Lithosphere interaction, LIP, hotspots

2.55 Porous media

2.56 Precambrian tectonics

2.57 Reservoir modelling

2013: B Orlic and BBT Wassing. “A study of stress change and fault slip in producing gas reservoirs overlain by elastic and viscoelastic caprocks”. In: Rock Mechanics and Rock Engineering 46.3 (2013), pp. 421–435

2.58 Restoration, Dynamic Reverse Modelling, Inversion tectonics

2.59 Rheology, material parameters, rock mechanics

2.60 Rifting, seafloor spreading, mid-ocean ridges, extension

this should be split into oceanic, continental, 2D, 3D ... add oceanic transforms as separate topic?

Mid-Ocean Ridges

Oceanic transforms

Rifted margins

Continental extension/rifting

2.61 Pull-apart basins

2.62 Critical Wedges

2.63 Salt tectonics, Shale tectonics

2.64 Sea Level evolution, GIA, Post-glacial rebound

2.65 Seismo-tectonics, subduction earthquakes

2.66 Stagnant lid

2.67 Subduction

This category should be subdivided into continental collision, subduction 2D & 3D...

needs sorting: what are the major subtopics ? plate contact/trench? bending ? angle?

2.68 Thermal structure subduction zone and/or slab

2.69 Slab foundering

2.70 Intra-oceanic subduction

2.71 Subduction & plate bending, unbending

2.72 Subduction - slab detachment, break-off, tearing, sinking velocity

2.73 Subduction + water (fluids), mantle dynamics + water

2.74 Subduction/plate tectonics initiation

splitbetween Induced(ISI)andSpontaneous(SSI)

2.75 Subduction - flat/low angle/horizontal subduction

2.76 Subduction - slab rollback

2.77 Subduction - interface

2.78 Teaching

2.79 Tethys

2.80 Tidal dissipation and heating

2.81 Transform faults

2.82 Wilson cycle, supercontinent cycles

2.83 Planetary accretion, exoplanets, planet formation, segregation

2.84 Accretionary wedges, nappes, thrust wedges, orogenic wedge, fold-thrust belt

2.85 Thrust-wrench fault

2.86 Thrust fault

2.87 Normal faults

2.88 Strike slip faults

2.89 Transpressional systems

2.90 Urey ratio

2.91 Intrusions, diapirism, Rayleigh-Taylor instability

See EGU blog article: https://blogs.egu.eu/divisions/gd/2021/02/17/rayleigh-taylor-instability-in-geodynamics/

Chapter 3
Celestial bodies

3.1 Mercury

3.2 Venus

3.3 Moon

3.4 Mars

Mars fact sheet: https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html

3.5 Pluto

3.6 Super-Earths & exoplanets

3.7 Icy satellites, icy moons

Icy moons are a class of natural satellites with surfaces composed mostly of ice. An icy moon may harbor an ocean underneath the surface, and possibly include a rocky core of silicate or metallic rocks. https://en.wikipedia.org/wiki/Icy_moon

3.8 Europa

The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Io is closest, followed by Europa, Ganymede, and Callisto. It has a smooth and bright surface, with a layer of water surrounding the mantle of the planet, thought to be 100 kilometers thick.

3.9 Ceres

https://en.wikipedia.org/wiki/Ceres_(dwarf_planet) The robotic NASA spacecraft Dawn approached Ceres for its orbital mission in 2015. and found Ceres’s surface to be a mixture of water ice, and hydrated minerals such as carbonates and clay.

3.10 Enceladus

Enceladus is the sixth-largest moon of Saturn (19th largest in the Solar System). It is about 500 kilometers in diameter, about a tenth of that of Saturn’s largest moon, Titan. Enceladus is mostly covered by fresh, clean ice, making it one of the most reflective bodies of the Solar System. https://en.wikipedia.org/wiki/Enceladus

3.11 Callisto

The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Io is closest, followed by Europa, Ganymede, and Callisto (1.9 million km or 26.4 RJ from Jupiter). Callisto has the lowest mean density of all Galilean satellites.

3.12 Ganymede

The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Io is closest, followed by Europa, Ganymede, and Callisto.

3.13 Io

The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Io is closest, followed by Europa, Ganymede, and Callisto. With a diameter of 3642 kilometers, it is the fourth-largest moon in the Solar System, and is only marginally larger than Earth’s moon.

3.14 Planetesimals

Chapter 4
Geological areas on Earth

4.1 South America, Andes, Andean orogeny

4.2 Central America, Mexico, Guld of Mexico

4.3 Chile Triple junction

4.4 North America

4.5 Siberia

4.6 Apennines

4.7 the Netherlands

4.8 Gulf of Aden

4.9 Banda

4.10 Alps

4.11 Mediterranean region

4.12 New Zealand

4.13 Zagros

4.14 Farallon plate

4.15 Reunion island/volcano

4.16 Alaskan region

4.17 Ethiopian and Afar rift, Malawi Rift, East African rift

4.18 East mediterranean - Aegean region, Anatolia, Turkey

4.19 Japan, Izu-Bonin

4.20 Tonga-Kermadec subduction zone, Fiji

4.21 Pamir-Hindu Kush region

4.22 Western United States, San Andreas system

4.23 Southeastern United States

4.24 Australian plate

4.25 Barents sea

4.26 Carpathians

4.27 African continent

4.28 Hawaii

4.29 Hellenic zone/ Greece

4.30 Gibraltar zone

4.31 Norway

4.32 Canyonlands

4.33 Dead Sea

4.34 Canada

4.35 Basin and Range

4.36 Yellowstone

4.37 China, South China Sea

4.38 Arabian plate

4.39 Scotia plate

4.40 Cantabria & North-Iberian margin

4.41 (North) East Asia

4.42 (South) East Asia

4.43 Colorado plateau

4.44 Antarctica

4.45 Greenland

4.46 Atlas, Morroco

4.47 Atlantic ocean, opening

J Tuzo Wilson. “Did the Atlantic close and then re-open?” In: Nature 211.5050 (1966), pp. 676–681. doi: 10.1038/211676a0 J. Braun and C. Beaumont. Contrasting styles of lithospheric extension: implications for differences between the Basin and Range Province and rifted continental margins. AAPG Special Volumes, 1989, pp. 53–79. doi: xxxx R. S. White. “Initiation of the Iceland Plume and Opening of the North Atlantic”. In: Extensional Tectonics and Stratigraphy of the North Atlantic Margins. American Association of Petroleum Geologists, 1989. doi: 10.1306/M46497C10 John Lin, GM Purdy, H Schouten, J-C Sempere, and C Zervas. “Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge”. In: Nature 344.6267 (1990), p. 627. doi: 10.1038/344627a0 Gregory A Neumann and Donald W Forsyth. “The paradox of the axial profile: Isostatic compensation along the axis of the Mid-Atlantic Ridge?” In: Journal of Geophysical Research: Solid Earth 98.B10 (1993), pp. 17891–17910. doi: 10.1029/93JB01550 Tine B Larsen, David A Yuen, and Michael Storey. “Ultrafast mantle plumes and implications for flood basalt volcanism in the Northern Atlantic Region”. In: Tectonophysics 311.1-4 (1999), pp. 31–43 Claudio Faccenna, Domenico Giardini, Philippe Davy, and Alessio Argentieri. “Initiation of subduction at Atlantic-type margins: Insights from laboratory experiments”. In: Journal of Geophysical Research: Solid Earth 104.B2 (1999), pp. 2749–2766. doi: 10.1029/1998JB900072 J.J. Armitage, T.J. Henstock, T.A. Minshull, and J.R. Hopper. “Lithospheric controls on melt production during continental breakup at slow rates of extension: Application to the North Atlantic”. In: Geochem. Geophys. Geosyst. 10.6 (2009). doi: 10.1029/2009GC002404 M. Albertz and C. Beaumont. “An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 2. Comparison of observations with geometrically complex numerical models”. In: Tectonics 29.TC4018 (2010). doi: 10.1029/2009TC002540 M. Albertz, C. Beaumont, J.W. Shimeld, S.J. Ingsand, and S. Gradmann. “An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: Part 1, comparison of observations with geometrically simple numerical models”. In: Tectonics 29 (2010). doi: 10.1029/2009TC002539 J. Fullea, M. Fernandez, J.C. Afonso, J. Verges, and H. Zeyen. “The structure and evolution of the lithosphere-asthenosphere boundary beneath the Atlantic-Mediterranean Transition Region”. In: Lithos 120.1–2 (2010), pp. 74–95. doi: 10.1016/j.lithos.2010.03.003 Ksenia Nikolaeva, Taras V Gerya, and Fernando O Marques. “Numerical analysis of subduction initiation risk along the Atlantic American passive margins”. In: Geology 39.5 (2011), pp. 463–466. doi: 10.1130/G31972.1 T. Ramsay and R. Pysklywec. “Anomalous bathymetry, 3D edge driven convection, and dynamic topography at the western Atlantic passive margin”. In: Journal of Geodynamics 52.1 (2011), pp. 45–56. doi: 10.1016/j.jog.2010.11.008 L. Husson, C.P. Conrad, and C. Faccenna. “Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell”. In: Earth Planet. Sci. Lett. 317-318 (2012), pp. 126–135. doi: 10.1016/j.epsl.2011.11.040 João C Duarte et al. “Are subduction zones invading the Atlantic? Evidence from the southwest Iberia margin”. In: Geology 41.8 (2013), pp. 839–842. doi: 10.1130/G34100.1 J Ebbing, J Bouman, M Fuchs, S Gradmann, and R Haagmans. “Sensitivity of GOCE gravity gradients to crustal thickness and density variations: Case study for the Northeast Atlantic Region”. In: Gravity, Geoid and Height Systems. Springer, 2014, pp. 291–298. doi: 10.1007/978-3-319-10837-7_37 L. Colli et al. “Rapid South Atlantic spreading changes and coeval vertical motion in surrounding continents: Evidence for temporal changes of pressure-driven upper mantle flow”. In: Tectonics 33.7 (2014), pp. 1304–1321. doi: 10.1002/2014TC003612 C. Heine and S. Brune. “Oblique rifting of the Equatorial Atlantic: Why there is no Saharan Atlantic Ocean”. In: Geology 42.3 (2014), pp. 211–214 N. Flament et al. “Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching”. In: Earth Planet. Sci. Lett. 387 (2014), pp. 107–119. doi: 10.1016/j.epsl.2013.11.017 Javier Fullea, Juan Rodr´i  guez-González, Mar´i  a Charco, Zdenek Martinec, A Negredo, and Antonio Villaseñor. “Perturbing effects of sub-lithospheric mass anomalies in GOCE gravity gradient and other gravity data modelling: Application to the Atlantic-Mediterranean transition zone”. In: International Journal of Applied Earth Observation and Geoinformation 35 (2015), pp. 54–69. doi: 10.1016/j.jag.2014.02.003 J.-A. Olive and J. Escartin. “Dependence of seismic coupling on normal fault style along the Northern Mid-Atlantic Ridge”. In: Geochemistry, Geophysics, Geosystems 17.10 (2016), pp. 4128–4152. doi: 10.1002/2016GC006460 A Beniest, A Koptev, and Evgenii Burov. “Numerical models for continental break-up: Implications for the South Atlantic”. In: Earth and Planetary Science Letters 461 (2017), pp. 176–189. doi: 10.1016/j.epsl.2016.12.034 Sascha Brune, Christian Heine, Peter D Clift, and Marta Pérez-Gussinyé. “Rifted margin architecture and crustal rheology: reviewing Iberia-Newfoundland, central South Atlantic, and South China sea”. In: Marine and Petroleum Geology 79 (2017), pp. 257–281 C. A. Taposeea, J. J. Armitage, and J. S. Collier. “Asthenosphere and lithosphere structure controls on early onset oceanic crust production in the southern South Atlantic”. In: Tectonophysics (2017). doi: 10.1016/j.tecto.2016.06.026 J. Escartin et al. “Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13o20’N and 13o30’N, Mid Atlantic Ridge)”. In: Geochemistry, Geophysics, Geosystems 18.4 (2017), pp. 1451–1482. doi: 10.1002/2016GC006775 Joao C Duarte, Wouter P Schellart, and Filipe M Rosas. “The future of Earth’s oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation”. In: Geological Magazine 155.1 (2018), pp. 45–58. doi: 10.1017/S0016756816000716 Y. Vibe, A.M. Friedrich, H.-P. Bunge, and S.R. Clark. “Correlations of oceanic spreading rates and hiatus surface area in the North Atlantic realm”. In: Lithosphere 10.5 (2018), pp. 677–684. doi: 10.1130/L736.1 L. Colli, S. Ghelichkhan, H.-P. Bunge, and J. Oeser. “Retrodictions of Mid Paleogene mantle flow and dynamic topography in the Atlantic region from compressible high resolution adjoint mantle convection models: Sensitivity to deep mantle viscosity and tomographic input model”. In: Gondwana Research 53 (2018), pp. 252–272. doi: 10.1016/j.gr.2017.04.027 Alexey Shulgin and Irina Artemieva. “Thermo-chemical heterogeneity and density of continental and oceanic upper mantle in the European-North Atlantic region”. In: Journal of Geophysical Research: Solid Earth 124 (2019), pp. 9280–9312. doi: 10.1029/2018JB017025 B. Steinberger, E. Bredow, S. Lebedev, A. Schaeffer, and T. H. Torsvik. “Widespread volcanism in the Greenland-North Atlantic region explained by the Iceland plume”. In: Nature Geoscience 12.1 (2019), p. 61. doi: 10.1038/s41561-018-0251-0 Marco Cuffaro, Edie Miglio, Mattia Penati, and Marco Viganò. “Mantle thermal structure at northern Mid-Atlantic Ridge from improved numerical methods and boundary conditions”. In: Geophysical Journal International 220.2 (2020), pp. 1128–1148. doi: 10.1093/gji/ggz488 Marta Pérez-Gussinyé, Miguel Andrés-Mart´i  nez, M Araújo, Y Xin, J Armitage, and JP Morgan. “Lithospheric strength and rift migration controls on synrift stratigraphy and breakup unconformities at rifted margins: Examples from numerical models, the Atlantic and South China Sea margins”. In: Tectonics 39.12 (2020), e2020TC006255. doi: 10.1029/2020TC006255 Gang Lu and Ritske S Huismans. “Melt volume at Atlantic volcanic rifted margins controlled by depth-dependent extension and mantle temperature”. In: Nature Communications 12.1 (2021), pp. 1–10. doi: 10.1038/s41467-021-23981-5 WP Schellart, V Strak, A Beniest, JC Duarte, and FM Rosas. “Subduction invasion polarity switch from the Pacific to the Atlantic Ocean: A new geodynamic model of subduction initiation based on the Scotia Sea region”. In: Earth-Science Reviews 236 (2022), p. 104277. doi: 10.1016/j.earscirev.2022.104277

4.48 Taiwan

4.49 Madagascar

4.50 Mayotte

4.51 Mariana Trench

4.52 Pannonian Basin

4.53 Scandinavia

4.54 Iran

4.55 Iceland, Reykjanes Ridge

4.56 Pacific

4.57 Philippine plate

4.58 Variscan

4.59 Sunda

4.60 Indian Ocean

4.61 Himalayan region, Tibetan plateau, India collision

4.62 Tarim Basin, Tian Shan

4.63 Pyrenees

4.64 Dinarides, Pannonian region

4.65 Caribbean

4.66 Korea, Korean Peninsula

Sungho Lee, Arushi Saxena, Jung-Hun Song, Junkee Rhie, and Eunseo Choi. “Contributions from lithospheric and upper-mantle heterogeneities to upper crustal seismicity in the Korean Peninsula”. In: Geophysical Journal International 229.2 (2022), pp. 1175–1192. doi: 10.1093/gji/ggab527

Chapter 5
Codes in geodynamics

In what follows I make a quick inventory of the main codes of computational geodynamics, for crust, lithosphere and/or mantle modelling. In order to find all CIG-codes citations go to: https://geodynamics.org/cig/news/publications-refbase/